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Abstract For nonsymmetric saddle point problems, Pan et al. (Appl Math Comput
172:762–771, 2006) proposed a deteriorated positive-definite and skew-Hermitian
splitting (DPSS) preconditioner. In this paper, a variant of the DPSS preconditioner is
proposed to accelerate the convergence of the associated Krylov subspace methods.
The new preconditioner is much closer to the coefficient matrix than the DPSS pre-
conditioner. The spectral properties of the new preconditioned matrix are analyzed.
Theorem which provides the dimension of the Krylov space for the preconditioned
matrix is obtained. Numerical experiments of a model Navier–Stokes problem are
presented to illustrate the effectiveness of the new preconditioner.
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1 Introduction

Consider the solution of the large and sparse saddle point linear system

[
A BT

−B 0

] [
x
y

]
=

[
f

−g

]
, or A u = b, (1.1)

where A ∈ R
n×n is nonsymmetric and positive definite (i.e., its symmetric part is

positive definite), B ∈ R
m×n has full row rank, BT is the transpose of the matrix B,

x, f ∈ R
n , y, g ∈ R

m and m ≤ n. Under these conditions, A is nonsingular so that
the solution of (1.1) exists and is unique. The system (1.1) is important and arises
in a variety of scientific and engineering applications, such as computational fluid
dynamics, constrained optimization, mixed or hybrid finite element approximations
of second-order elliptic problems, and so on. See [2,15] and the references therein for
a detailed discussion.

Since the coefficientmatrix of (1.1) is large and sparse, iterativemethods for solving
(1.1) are more attractive than direct methods in terms of storage requirements and
computing time. Recently, many effective iterative methods have been proposed to
solve the saddle point problem (1.1), which include, to name just a few of them, Uzawa
method [1,15], SOR-like and GSOR iteration methods [4,11,12,24], HSS (Hermitian
and skew-Hermitian splitting) based methods [5,8–10]. See also [2] and [15] for a
comprehensive survey and detailed study. However, some iterative methods, such as
Krylov subspace methods, often suffer from slow convergence or even stagnation
in some special engineering problems. In order to accelerate the convergence of the
associated Krylov subspace method, the preconditioning technique is often used [13,
30,32].

In the past few years, in light of the special structure of problem (1.1), numerous pre-
conditioners have been proposed. These include, block diagonal and block triangular
preconditioners [2,3,7,18,25,27,29] (which are based on thematrix splitting ormatrix
factorization of the coefficientmatrixA ), constraint preconditioners [14,21,22,26,29]
(which are seldom used when the coefficient matrixA is nonsymmetric), HSS-based
preconditioners [6,8,10,17,33], dimensional splitting (DS) preconditioners [16,19]
(which have difficulties dealing with low-viscosity problems on stretched grids), and
so on.

In this paper, for nonsymmetric saddle point problem (1.1), a new preconditioner
based on the DPSS preconditioner in [28] will be proposed, which is referred to as
a variant of the deteriorated positive-definite and skew-Hermitian splitting (VDPSS)
preconditioner. After a brief introduction of the DPSS preconditioner, we present the
new preconditioner in Sect. 2. The spectral properties of the preconditioned matrix are
derived in Sect. 3. In that section, we also investigate the impact upon the convergence
of the corresponding Krylov subspace method. In Sect. 4, numerical experiments are
presented to illustrate the effectiveness of our preconditioner, including comparisons
with other preconditioners. Finally, this paper is ended with some conclusions in
Sect. 5.

For convenience, we briefly explain some of the terminologies used in this paper.Rl

means the usual l-dimensional Euclidean space. For P ∈ R
l×l , PT and P−1 indicate
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A variant of the deteriorated PSS preconditioner... 589

the transpose and the inverse of thematrix P , respectively.λ(P) denotes the eigenvalue
of P . uT , u∗ and ‖ u ‖2 are the transpose, conjugate transpose and the 2-norm of a
vector u. In denotes the identity matrix of size n.

2 A variant of the DPSS preconditioner

2.1 The DPSS preconditioner

For nonsymmetric saddle point problem (1.1), Pan, Ng and Bai in [28] proposed the
DPSS preconditioner, which is induced by a deteriorated positive-definite and skew-
Hermitian splitting (DPSS) iterative method [3]. Here we give a brief introduction to
the DPSS preconditioner, and readers can consult [28] for more details. In [28], for the
special property of the (1,1)-block matrix A, the authors split the coefficient matrix
A into

A = M + N ,

where

M =
[
A 0
0 0

]
, N =

[
0 BT

−B 0

]
.

Then we have two splittings of A , i.e.,

A = (α I + M ) − (α I − N ) = (α I + N ) − (α I − M ),

where I is the identity matrix and α is a given positive parameter. SinceM is positive
semi-definite andN is skew-Hermitian, α I +M and α I +N are both nonsingular.
Motivated by the classical ADI iteration technique, the splitting iteration is proposed{

(α I + M )uk+ 1
2 = (α I − N )uk + b,

(α I + N )uk+1 = (α I − M )uk+ 1
2 + b.

k = 0, 1, 2 . . . .

Thus, the deteriorated positive-definite and skew-Hermitian splitting (DPSS) iteration
can be obtained

uk+1 = (α I + N )−1(α I − M )(α I + M )−1(α I − N )uk

+2α(α I + N )−1(α I + M )−1b. (2.1)

It is easy to observe that (2.1) can also be induced by the splitting A = PDPSS −
QDPSS (withPDPSS nonsingular), which yields

uk+1 = P−1
DPSSQDPSSu

k + P−1
DPSSb, (2.2)

where

PDPSS = 1

2α
(α I + M )(α I + N ), QDPSS = 1

2α
(α I − M )(α I − N ).
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590 J. Zhang, C. Gu

Then the DPSS preconditioner PDPSS can be obtained. In [20], Cao et al. have
proved that the DPSS iterative method (2.1) is convergent unconditionally. For the
DPSS preconditioner, eigenvalue distribution of the preconditioned matrixP−1

DPSSA
is discussed in [28]. It is demonstrated in [28] that the eigenvalues of the preconditioned
matrix gather into two cluster, i.e., (0, 0) and (2, 0), when α tends to 0+.

2.2 A variant of the DPSS preconditioner

Since the factor 1/2 has no effect on the preconditioned system, we can take any
other constant instead of it. In this paper, we omit it for convenience. Then the DPSS
preconditioner can be written as

PDPSS = 1

α
(α I + M )(α I + N )

= 1

α

[
α I + A 0

0 α I

] [
α I BT

−B α I

]
. (2.3)

From (1.1) and (2.3), we get the difference between the preconditioner PDPSS and
the coefficient matrix A

PDPSS − A =
⎡
⎣α I + A

(
I + 1

α
A

)
BT

−B α I

⎤
⎦ −

[
A BT

−B 0

]

=
[

α I
1

α
ABT

0 α I

]
. (2.4)

It shows that when α tends to 0+, the weight of the two diagonal blocks in the matrix
PDPSS − A also approaches 0, while the weight of the nonzero off-diagonal block
approaches +∞. Hence, the choice of α needs to be balanced.

A general criterion for an efficient preconditioner is that it should be as close as
possible to the coefficient matrix A , such that the preconditioned matrix will have a
clustered spectrum (away from 0) [15]. Therefore, by replacing the shift term α I in
the (1,1) block of the first matrix in (2.3) with zero matrix, we get a variant of the
DPSS preconditioner PVDPSS as follows

PVDPSS = 1

α

[
A 0
0 α I

] [
α I BT

−B α I

]

=
[
A 0
0 I

] [
I

1

α
BT

−B α I

]

=
[

A
1

α
ABT

−B α I

]
. (2.5)
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The difference between PVDPSS and A is

R = PVDPSS − A =
[
0

1

α
ABT − BT

0 α I

]
. (2.6)

Although the (1,2)-block matrix is different from that in (2.4), the (1,1)-block matrix
in (2.6) now vanishes, which indicates that PVDPSS gives a better approximation to
the coefficient matrixA for the same α. Therefore,PVDPSS is expected to be a better
preconditioner thanPDPSS. Furthermore, the structure of (2.6) facilitates the analysis
of the eigenvalue distribution of the preconditioned matrix; see the discussion in the
next section.

In fact, the VDPSS preconditioner PVDPSS can also be obtained by the following
splitting of the coefficient matrix A

A = PVDPSS − R =
[

A
1

α
ABT

−B α I

]
−

[
0

1

α
ABT − BT

0 α I

]
,

which recasts in a fixed-point iteration, i.e., the VDPSS iteration

uk+1 = Γ uk + Θ, (2.7)

with u0 = ((x0)T , (y0)T )T being an initial vector, and Γ = P−1
VDPSSR, Θ =

P−1
VDPSSb. But it should also come to our attention that the VDPSS preconditioner

PVDPSS no longer relates to an alternating iteration method.

3 Eigenvalue analysis of the preconditioned matrix

In this section, we examine the spectral properties of the preconditioned matrix
P−1

VDPSSA whose eigenvalue distribution influences the convergence of an iterative
method. In particular, it is desirable that the number of distinct eigenvalues, or at least
the number of clusters, is small, then the rate of convergence will be rapid. To be
more precise, if there are only a few distinct eigenvalues, then the iterative method
will terminate within a small number of steps.

We first give a lemma about the explicit expression ofP−1
VDPSS.

Lemma 3.1 Let

P1 =
[
A 0
0 I

]
, P2 =

[
I

1

α
BT

−B α I

]
.

HereP2 has the block-triangular factorization

P2 =
[

I 0
−B I

] [
I 0
0 Ã

] [
I

1

α
BT

0 I

]
, (3.1)
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with Ã = α I + 1

α
BBT . Then we have

P−1
VDPSS = P−1

2 P−1
1 =

⎡
⎣ A−1 − 1

α
BT Ã−1BA−1 − 1

α
BT Ã−1

Ã−1BA−1 Ã−1

⎤
⎦ . (3.2)

Theorem 3.1 Let the VDPSS preconditioner be defined in (2.5), then the precondi-
tioned matrixP−1

VDPSSA has eigenvalue 1 of algebraic multiplicity at least n. The real
part of the remaining eigenvalues of the preconditioned matrix P−1

VDPSSA satisfies

ασ 2
mλmin(H̃)

α2 + σ 2
m

≤ Re(λ) ≤ ασ 2
1 λmax(H̃)

α2 + σ 2
1

,

where σm and σ1 are the smallest and largest singular values of matrix B, H̃ =
(A−1 + (A−1)T )/2 is the symmetric part of matrix A−1.

Proof From Lemma 3.1 we have

P−1
VDPSSA = I − P−1

VDPSSR

= I −
⎡
⎣ A−1 − 1

α
BT Ã−1BA−1 − 1

α
BT Ã−1

Ã−1BA−1 Ã−1

⎤
⎦

[
0

1

α
ABT − BT

0 α I

]

= I−
⎡
⎢⎣ 0

1

α
BT −A−1BT − 1

α2 B
T Ã−1BBT + 1

α
BT Ã−1BA−1BT − BT Ã−1

0
1

α
Ã−1BBT − Ã−1BA−1BT +α Ã−1

⎤
⎥⎦

=
[
In S1
0 S2

]
, (3.3)

where S1 = −(
1

α
BT − A−1BT − 1

α2 B
T Ã−1BBT + 1

α
BT Ã−1BA−1BT − BT Ã−1),

S2 = Ã−1BA−1BT .
Therefore, the preconditioned matrix P−1

VDPSSA has eigenvalue 1 of algebraic
multiplicity at least n. The remaining non-unit eigenvalues of P−1

VDPSSA are the
solution of the eigenvalue problem

Ã−1BA−1BT u = λu. (3.4)

Since Ã = α I + 1

α
BBT , (3.4) is equivalent to

BA−1BT u = λ

(
α I + 1

α
BBT

)
u. (3.5)
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It is obvious that u �= 0.Without loss of generality, we assume ‖ u ‖2= 1.Multiplying
the equation (3.5) by u∗ yields

u∗BA−1BT u = λ

(
α + 1

α
u∗BBT u

)
. (3.6)

Let v = BT u, then (3.6) reduces to

v∗A−1v = λ

(
α + 1

α
v∗v

)
. (3.7)

The conjugate transpose of (3.7) is

v∗(A−1)T v = λ̄

(
α + 1

α
v∗v

)
. (3.8)

Since H̃ = (A−1 + (A−1)T )/2 is the symmetric part of matrix A−1, from (3.7) and
(3.8), it is easy to obtain

v∗ H̃v

v∗v
= Re(λ)

(
α

v∗v
+ 1

α

)
.

According to the Courant-Fisher theorem,

λmin(H̃) ≤ v∗ H̃v

v∗v
≤ λmax(H̃),

σ 2
m ≤ v∗v = u∗BBT u ≤ σ 2

1 ,

where, σm and σ1 are the smallest and largest singular values of matrix B, respectively.
Then, we have

ασ 2
mλmin(H̃)

α2 + σ 2
m

≤ Re(λ) ≤ ασ 2
1 λmax(H̃)

α2 + σ 2
1

. (3.9)

Thus, the proof of the theorem is completed. �	
Remark 3.1 From (3.7), the non-unit eigenvalues of the preconditioned matrix
P−1

VDPSSA satisfy

λ = αv∗A−1v

α2 + v∗v
. (3.10)

Taking α → 0+ and α → +∞, we get the non-unit eigenvalues λi → 0, which will
be confirmed by the figures in the next section.
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It has been mentioned above that the idea of preconditioning attempts to improve
on the spectral properties, such that the total number of iterations required to solve
the system to within some tolerance will be indeed decreased. Among the iterative
methods currently available, Krylov subspace methods are the most important for
solving the underlying system. The iterative method with an optimal property, such as
GMRESmethod, will terminatewhen the degree of theminimal polynomial is attained
[31]. In particular, the degree of the minimal polynomial is equal to the dimension of
the corresponding Krylov subspace [30]. Next theorem provides some analysis to the
dimension of the Krylov subspace K (P−1

VDPSSA , b).

Theorem 3.2 Let the VDPSS preconditioner be defined in (2.5), then the dimension
of the Krylov subspaceK (P−1

VDPSSA , b) is at most m + 1. Specially, once the matrix
S2 = Ã−1BA−1BT has k (1 ≤ k ≤ m) distinct eigenvalues μi (1 ≤ i ≤ k), of
respective multiplicity θi , where

∑k
i=1 θi = m, the dimension of the Krylov subspace

K (P−1
VDPSSA , b) is at most k + 1.

Proof According to the form of P−1
VDPSSA in (3.3) and the eigenvalue distribution

described in Theorem 3.1, it is evident that the characteristic polynomial of the pre-
conditioned matrixP−1

VDPSSA is

(P−1
VDPSSA − I )n

m∏
i=1

(P−1
VDPSSA − λi I ).

Expanding the polynomial (P−1
VDPSSA − I )

∏m
i=1(P

−1
VDPSSA −λi I ) of degreem+1,

we have

(P−1
VDPSSA − I )

m∏
i=1

(P−1
VDPSSA − λi I ) =

⎡
⎢⎢⎢⎢⎣
0 S1

m∏
i=1

(S2 − λi I )

0 (S2 − I )
m∏
i=1

(S2 − λi I )

⎤
⎥⎥⎥⎥⎦ .

Since λ
′
i s are the eigenvalues of matrix S2, then

m∏
i=1

(S2 − λi I ) = 0.

Therefore, the degree of the minimal polynomial of P−1
VDPSSA is at most m + 1.

Consequently, the dimensionof the correspondingKrylov subspaceK (P−1
VDPSSA , b)

is at most m + 1.
In the case when the matrix S2 = Ã−1BA−1BT has k (1 ≤ k ≤ m) distinct

eigenvalues μi of respective multiplicity θi . We write the characteristic polynomial of
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A variant of the deteriorated PSS preconditioner... 595

the preconditioned matrixP−1
VDPSSA as

(P−1
VDPSSA − I )n−1

[
k∏

i=1

(P−1
VDPSSA − μi I )

θi−1

]

(P−1
VDPSSA − I )

[
k∏

i=1

(P−1
VDPSSA − μi I )

]
.

Let Φ = (P−1
VDPSSA − I )

[
k∏

i=1

(P−1
VDPSSA − μi I )

]
, then

Φ =

⎡
⎢⎢⎢⎢⎣
0 S1

k∏
i=1

(S2 − μi I )

0 (S2 − I )
k∏

i=1

(S2 − μi I )

⎤
⎥⎥⎥⎥⎦ .

Since
∏k

i=1(S2 − μi I ) = 0, it is obvious that Φ is a zero matrix. Therefore, the
dimension of the Krylov subspaceK (P−1

VDPSSA , b) is at most k+1. Thus, the proof
of the theorem is completed. �	

Remark 3.2 Theorem3.2 indicates that if aKrylov subspacemethod (such asGMRES)
preconditioned by the VDPSS preconditioner is used for solving (1.1), then it will
terminate in at most m + 1 steps within some tolerance. Even in some special case,
it will terminate in at most k + 1 (1 ≤ k ≤ m) iterations. This theorem reveals
the excellent acceleration effect of the VDPSS preconditioner, which will also be
confirmed in the section of numerical experiments.

Before the end of this section, we shall also analyze some implementation aspects
about the preconditioner PVDPSS. At each step of the VDPSS iteration or applying
the VDPSS preconditionerPVDPSS within a Krylov subspace method, a linear system
withPVDPSS as the coefficientmatrix needs to be solved. That is to say, a linear system
of the form

[
A

1

α
ABT

−B α I

]
z = r

needs to be solved for a given vector r at each step, where z = [zT1 , zT2 ]T , r =
[rT1 , rT2 ]T , z1, r1 ∈ Rn , z2, r2 ∈ Rm . Based on the matrix factorization ofPVDPSS in
Lemma 3.1, we have
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[
z1
z2

]
=

[
I − 1

α
BT

0 I

] [
I 0
0 Ã−1

] [
I 0
B I

] [
A−1 0
0 I

] [
r1
r2

]
. (3.11)

Hence, the following algorithmic version of the VDPSS iterative method can be
derived.

Algorithm 3.1 For a given r = [rT1 , rT2 ]T , we can compute the vector z = [zT1 , zT2 ]T
by (3.11) from the following steps:

(i) solve Ap1 = r1;
(ii) solve (α I + 1

α
BBT )z2 = Bp1 + r1;

(iii) solve z1 = p1 − 1
α
BT z2.

Remark 3.3 From Algorithm 3.1, it is required to solve two sub-linear systems with
coefficient matrices A and Ã = α I + 1

α
BBT at each iteration. Obviously, according

to the assumption given in Sect. 1, we know that the matrix A is positive definite, and
Ã = α I + 1

α
BBT is symmetric positive definite. Therefore, in inexact manner, we

can employ the GMRES method and the conjugate gradient (CG) method to solve the
two sub-linear systems, respectively. In actual implementations, the inexact solvers
can be used to reduce the cost of each iteration, but they will also lead to somewhat
slower convergence. Thus we can also solve the two sub-linear systems exactly. The
system with the coefficient matrix A can be solved with the sparse LU factorization,
and the system with the coefficient matrix Ã = α I + 1

α
BBT can be solved with the

sparse Cholesky factorization.

Remark 3.4 The RDPSS preconditioner proposed in [20] is similar to the VDPSS
preconditioner, just different in the (2,2) block. In [20], the shift term α I in the (2,2)
block of the RDPSS preconditioner also vanishes. Consequently, two sub-linear sys-
tems with coefficient matrices A and 1

α
BBT need to be solved at each iteration when

applying the RDPSS preconditioner within a Krylov subspace method. It is easy to
observe that the condition number of α I + 1

α
BBT should be better than 1

α
BBT when

choosing large value of α, which will bring about substantial improvement on the
number of iterations. However, it does not mean that we should use some unduly
large α when applying the VDPSS preconditioner. In fact, experiments indicate that
α = 100 is appropriate, which is also the reason why we choose α = 100 in Sect. 4.
This attractive merit of the VDPSS preconditioner will be stressed by the numerical
results in the next section.

4 Numerical experiments

In this section, we carry out some numerical experiments to illustrate the effectiveness
of the VDPSS preconditioner for the nonsymmetric saddle point problem (1.1). The
DPSS preconditioner [28] and the RDPSS preconditioner [20] are adopted to high-
light the proposed preconditioner in terms of eigenvalue distribution, iteration and
CPU time. Unless otherwise specified, we use left preconditioning with the restarted
GMRES method [31] which has restarting frequency 30, i.e., GMRES(30). The zero

123



A variant of the deteriorated PSS preconditioner... 597

vector is adopted as the initial vector. The iteration stops when ‖ rk ‖2 / ‖ r0 ‖2<
10−6 or the prescribed maximum number of restarts kmax = 1000 is exceeded, where
rk is the residual at the kth iteration. The main criteria used for comparison are the
total number of iteration steps and CPU time which are abbreviated to Iter and CPU.
All experiments are run on a PC using MATLAB 2008 under Windows 7 operating
system.

Here we consider the Oseen problem which is obtained from the linearization of
the steady-state Navier–Stokes equation with suitable boundary condition on ∂Ω:

⎧⎨
⎩

−νΔu + (ω · ∇)u + ∇p = f, in Ω,

divu = 0, in Ω,

u = g, on ∂Ω,

(4.1)

where ν > 0 represents the kinematic viscosity, div is the divergence, Δ is the vector
Laplace operator, ∇ is the gradient, u, p stand for the velocity and pressure of the
fluid, respectively. We mainly focus on the “regularized” two-dimensional lid-driven
cavity problems discretized by Q2-P1 finite element on both uniform and stretched
grids. The IFISS software package [23] developed by Elman, Ramage and Silvester
is used to generate the test problems. In each case, we consider three viscosity values,
that is, ν = 1, ν = 0.1, ν = 0.01 to generate linear systems corresponding to 16×16,
32× 32, 64× 64 and 128× 128 meshes. The resulting linear systems have the form

[
A BT

−B 0

] [
x
y

]
=

[
f

−g

]
,

where A ∈ R
n×n corresponds to the discretization of the convection-diffusion term,

the rectangular matrix BT ∈ R
n×m represents the discrete gradient operator, and

B ∈ R
m×n represents the divergence operator.

It should be emphasized that the sub-linear systems arising from the application
of the preconditioners are solved by direct methods. In Matlab, this corresponds to
computing the Cholesky or LU factorization in combination with AMD or column
AMD reordering.

4.1 Discretizing with Q2-P1 finite element on uniform grids

Wefirst consider discretizing theOseen problemwithQ2-P1 finite element on uniform
grids. Although the rate of convergence of nonsymmetric Krylov iterations precon-
ditioned by a parameter-dependent preconditioner depends on the particular choice
of the parameter, the analysis to the optimal parameter seems to be quite a difficult
problem. In our numerical experiments, the parameters are determined experimentally.
Since in Remark 3.1, we have analyzed theoretically that the non-unit eigenvalues will
tend to 0 when α → 0+ and α → +∞. In order to verify this property, but also to
justify Remark 3.4, α = 0.001, α = 1, α = 10 and α = 100 are adopted as sam-
ples to investigate the trait of the new preconditioner PVDPSS. Here, α = 1 are also
considered in [20].
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Fig. 1 Eigenvalue distribution of the preconditioned matrix (Q2P1FEM, ν = 0.1, 32 × 32 uniform grid)

Figure 1 demonstrates the eigenvalue distribution of the new preconditionedmatrix
P−1

VDPSSA and the DPSS preconditioned matrixP−1
DPSSA for α = 0.001, α = 1 and

α = 100 on 32 × 32 uniform grids with ν = 0.1. Numerical results for different
choices of ν and α on the uniform grids are tabulated in Tables 1, 2, 3. We compare
the three preconditioners in terms of the iteration steps and CPU time. It should be
noted that in these tables, the symbol “–” means that the corresponding algorithm will
not be convergent within the prescribed number of restarts kmax = 1000.

From the figures and tables, we can get

(i) Figure 1 echoes Theorem 3.1 that the preconditioned matrix P−1
VDPSSA has at

least n eigenvalues 1. In fact, there are 2178 (the dimension n) eigenvalues of
value 1 in (b)(d)(f) of Fig. 1 as compared to none in the subplot (a)(c)(e) (using
the DPSS preconditioner). From the figures, we find that the non-unit eigenvalues
converge to 0 when α → 0+ and +∞. This phenomenon confirms the statement
in Remark 3.1.
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Table 1 Numerical results for Oseen equation with different uniform grids (Q2P1FEM, ν = 1)

Grid α VDPSS RDPSS DPSS

Iter CPU Iter CPU Iter CPU

16 × 16 0.001 21 0.0312 21 0.0312 48 0.1092

1 22 0.0468 27 0.0936 132 0.1560

10 20 0.0312 35 0.0624 360 0.0624

100 11 0.0312 48 0.0936 168 0.2028

32 × 32 0.001 40 0.3744 40 0.3120 77 0.5928

1 23 0.2496 57 0.3744 668 1.0608

10 13 0.1092 82 0.4836 337 0.8268

100 10 0.1716 129 0.3900 288 0.7488

64 × 64 0.001 69 1.2636 68 1.6536 157 1.9344

1 14 1.1076 156 2.2308 351 4.0404

10 11 0.9048 172 2.0592 560 4.9764

100 8 1.1388 351 3.4632 488 3.9624

128 × 128 0.001 220 11.2477 142 9.7813 587 21.6373

1 13 4.6644 267 13.1040 610 22.2769

10 10 5.4288 458 19.5001 1035 35.8334

100 6 4.1964 1732 58.5316 784 27.0662

Table 2 Numerical results for Oseen equation with different uniform grids (Q2P1FEM, ν = 0.1)

Grid α VDPSS RDPSS DPSS

Iter CPU Iter CPU Iter CPU

16 × 16 0.001 23 0.0312 23 0.0312 45 0.0936

1 24 0.0468 35 0.0468 183 0.1716

10 23 0.0468 48 0.0624 195 0.1248

100 14 0.1092 73 0.0624 132 0.1248

32 × 32 0.001 42 0.2028 42 0.2496 79 0.4836

1 27 0.2496 73 0.4680 342 0.7332

10 15 0.1560 180 0.4992 338 1.4040

100 12 0.1716 181 0.5460 241 0.5722

64 × 64 0.001 75 1.2012 75 1.3104 115 1.6068

1 17 0.9984 167 1.9968 819 6.2244

10 14 1.0452 420 3.6504 912 6.7548

100 11 0.8580 1686 11.5441 574 4.6644

128 × 128 0.001 163 9.4381 147 9.0325 203 10.6237

1 16 5.9748 387 17.1133 2358 77.2985

10 13 4.6488 3073 101.3694 2262 73.4453

100 9 4.6800 – – 1151 39.8583
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Table 3 Numerical results for Oseen equation with different uniform grids (Q2P1FEM, ν = 0.01)

Grid α VDPSS RDPSS DPSS

Iter CPU Iter CPU Iter CPU

16 × 16 0.001 53 0.0780 53 0.0780 96 0.2652

1 78 0.0624 144 0.1092 705 0.2496

10 69 0.0780 298 0.1404 786 0.3248

100 64 0.0936 1392 0.4680 510 0.2496

32 × 32 0.001 81 0.3120 81 0.3120 97 0.4524

1 148 0.2964 697 0.9516 1688 1.9500

10 102 0.3900 3481 4.1964 1455 1.8096

100 80 0.3276 – – 814 0.9984

64 × 64 0.001 140 1.6380 140 1.6380 75 1.3416

1 236 2.5276 2170 15.0229 3491 22.4017

10 115 1.4352 1861 119.0444 2404 15.4129

100 49 1.9344 – – 1099 7.8313

128 × 128 0.001 701 25.1786 330 14.9605 141 8.4453

1 119 9.0793 7795 258.5561 6468 241.1931

10 64 6.2088 – – 4074 128.9504

100 48 6.0840 – – 1271 46.8315

(ii) Tables 1, 2, 3 indicate that using the VDPSS preconditioner often leads to much
better performance than using the DPSS and RDPSS preconditioners in terms of
iteration counts and CPU time. Specially in the case of some large values of α, the
VDPSS preconditioner has significant reduction in the iteration counts, while the
other two preconditioners are difficult to implement efficiently, even the RDPSS
preconditioner sometimes fails to converge. But it also comes to our attention that
the new preconditioner is not competitive in the case of small α. Apart from that,
the new preconditioner seems to be difficult in dealing with low viscosity, that is,
the iteration counts increase with the decreasing of the kinematic viscosity.

4.2 Discretizing with Q2-P1 finite element on stretched grids

To further investigate the VDPSS preconditioner, we also consider discretizing the
Oseen problem with Q2-P1 finite element on stretched grids. Similar to the uniform
grids, we also test four values of the parameter α, that is, α = 0.001, α = 1, α = 10
and α = 100 with the kinematic viscosity ν = 0.01, ν = 0.1 and ν = 1.

Figure 2 depicts the eigenvalue distribution of the preconditioned matrices
P−1

DPSSA and P−1
VDPSSA for α = 0.001 α = 1 and α = 100 on 32 × 32 stretched

grids with ν = 0.1. Tables 4, 5, 6 demonstrate the numerical results for ν = 1,
ν = 0.1 and ν = 0.01 on the stretched grids, where the default stretch factors are
provided by IFISS.
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Fig. 2 Eigenvalue distribution of the preconditioned matrix (Q2P1FEM, ν = 0.1, 32 × 32 stretched grid)

The conclusion obtained from Fig. 2 and Tables 4, 5, 6 is similar to that given
in Sect. 4.1. The VDPSS preconditioner leads to much better performance than the
DPSS and RDPSS preconditioners in the case of some large values of α. And the new
preconditioner also has difficulty in dealing with low-viscosity problems on stretched
grids.

5 Conclusion

In this paper, we present a variant of the deteriorated positive-definite and skew-
Hermitian splitting (VDPSS) preconditioner for nonsymmetric saddle point problem
(1.1). The proposed preconditioner is based on the deteriorated positive-definite and
skew-Hermitian splitting (DPSS) preconditioner, but is much closer to the coefficient
matrix. The eigenvalue distribution and the acceleration effect (as a preconditioner)
on GMRES(30) for solving the Oseen problems have been investigated. Numerical
experiments have shown that the new preconditioner is effective. However, how to
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Table 4 Numerical results for Oseen equation with different stretched grids (Q2P1FEM, ν = 1)

Grid α VDPSS RDPSS DPSS

Iter CPU Iter CPU Iter CPU

16 × 16 0.001 15 0.0312 15 0.0312 25 0.0624

1 25 0.0312 29 0.0312 460 0.2496

10 34 0.2184 37 0.2312 421 0.6396

100 28 0.0468 59 0.0936 429 0.2652

32 × 32 0.001 23 0.2340 23 0.2340 51 0.3120

1 87 0.4212 72 0.2652 592 0.8736

10 66 0.3744 89 0.4680 1942 2.5272

100 35 0.2028 216 0.4368 1674 2.0748

64 × 64 0.001 64 1.4820 40 1.7472 115 1.8092

1 136 1.5288 138 2.5534 1701 11.2477

10 73 1.2636 209 2.6832 4810 30.4514

100 23 0.9828 548 5.2260 3208 20.5609

128 × 128 0.001 60 8.1085 61 8.1909 120 11.4193

1 150 10.7329 250 23.3377 4502 139.0125

10 49 5.9434 507 35.9582 2897 95.8002

100 5 5.0544 1435 85.3949 1378 47.6427

Table 5 Numerical results for Oseen equation with different stretched grids (Q2P1FEM, ν = 0.1)

Grid α VDPSS RDPSS DPSS

Iter CPU Iter CPU Iter CPU

16 × 16 0.001 21 0.0156 21 0.0156 38 0.0936

1 39 0.0936 37 0.0936 329 0.2652

10 87 0.0936 58 0.0312 676 0.3496

100 37 0.0780 96 0.1248 188 0.1404

32 × 32 0.001 30 0.2496 30 0.2496 58 0.6240

1 224 0.5928 89 0.4992 1636 2.1372

10 95 0.3432 175 0.7020 1125 1.2948

100 64 0.3432 478 0.7644 614 0.9204

64 × 64 0.001 100 1.6068 56 1.3728 152 2.2152

1 208 2.2932 210 2.4648 2403 17.2693

10 73 1.8408 209 2.5116 4810 29.7494

100 73 1.4196 3640 25.9274 1623 12.2305

128 × 128 0.001 281 18.4865 90 7..8469 509 26.5826

1 291 12.7921 527 23.1973 6487 200.3677

10 153 8.7985 1646 60.9964 8047 252.3316

100 52 5.7408 13,427 453.2921 2394 77.1893
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Table 6 Numerical results for Oseen equation with different stretched grids (Q2P1FEM, ν = 0.01)

Grid α VDPSS RDPSS DPSS

Iter CPU Iter CPU Iter CPU

16 × 16 0.001 41 0.0312 41 0.0312 73 0.0780

1 189 0.1716 96 0.0780 626 0.2652

10 136 0.1248 330 0.1404 911 0.4056

100 80 0.0936 297 0.2048 639 0.2340

32 × 32 0.001 62 0.3120 63 0.3120 81 0.4680

1 874 1.6068 300 0.8424 1808 2.3244

10 186 0.3432 1912 2.4808 2020 2.8556

100 94 0.7644 24075 26.0366 1297 1.4976

64 × 64 0.001 208 2.4336 109 2.0124 123 1.8720

1 447 3.5724 1255 8.5489 4221 26.6294

10 411 3.3852 9433 56.6104 4106 25.6154

100 272 2.4180 – – 2177 14.0713

128 × 128 0.001 5335 229.4464 206 11.6689 1549 70.5281

1 734 25.6934 3874 137.4152 7833 240.1635

10 568 21.9181 – – 8265 257.8385

100 339 14.8513 – – 3641 115.9711

deal with low-viscosity problems still requires further in-depth studies. Meanwhile,
future work should also focus on the choice of the optimal parameter α.
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