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Abstract For generalized saddle point problems, we propose a simplified Hermitian
and skew-Hermitian splitting (SHSS) preconditionerwhich ismuch closer to the gener-
alized saddle point matrix than the HSS preconditioner. It is proved that all eigenvalues
of the SHSS preconditioned matrix are real and nonunit eigenvalues are located in a
positive interval. We also study the eigenvector distribution and the degree of the min-
imal polynomial of the preconditioned matrix. Numerical examples of a model Stokes
problem show the effectiveness of the SHSS preconditioner.
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1 Introduction

We consider the iterative solution of the generalized saddle point problem
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A ū ≡
[

A BT

−B C

] [
x
y

]
=

[
f

−g

]
≡ b, (1.1)

where A ∈ R
n×n is symmetric positive definite, B ∈ R

m×n (m ≤ n) has full row
rank, C ∈ R

m×m is symmetric positive semi-definite, and f ∈ R
n and g ∈ R

m are
given vectors. The above assumptions show that the generalized saddle point matrix
A is nonsymmetric positive semi-definite and nonsingular. The generalized saddle
point problem (1.1) arises in many areas of scientific computing and engineering
applications, such as computational fluid dynamics [25], mixed finite element dis-
cretization of elliptic PDEs [18], element-free Galerkin discretization of elasticity
problem [12,22,37], data interpolation [23], constrained optimization, constrained
least-squares problem [31], and so on; see also [1,15] and the references therein.

Many efficient solvers have been studied in the past decades for solving the sad-
dle point problem (1.1). In many cases, A, B and C are large sparse matrices and
iterative techniques are preferable for solving (1.1). And Krylov subspace iterative
methods are a class of effective methods for solving such systems of linear equations.
Since A is nonsymmetric and often ill-conditioned, preconditioning is in most cases
indispensable for the iterative solution of (1.1). A high-quality preconditioner plays
a crucial role in guaranteeing the fast convergence rate of Krylov subspace methods.
The preconditioner usually reduces the number of iteration steps required for conver-
gence. On the other hand, it doesn’t significantly increase the computational cost for
each iteration. A lot of preconditioners have been investigated for the generalized sad-
dle point problem (1.1), such as block diagonal and block triangular preconditioners
[1,10,20,29], constraint preconditioners [11,38], HSS preconditioner and its variants
[5,8,9,14], and so on.

Applying the HSS iteration method in [8], Benzi and Golub in [14] discussed the
following HSS preconditioner

P̂HSS = 1

2α
(α I + H )(α I + S )

= 1

2α

[
α I + A 0

0 α I + C

] [
α I BT

−B α I

]
(1.2)

for the saddle point problem (1.1), where α > 0 is a given constant, I is the identity
matrix, and

H =
[
A 0
0 C

]
and S =

[
0 BT

−B 0

]

are the Hermitian and the skew-Hermitian parts ofA , respectively. The HSS precon-
ditioner P̂HSS in (1.2) is induced by the HSS iteration method

{
(α I + H )ūk+ 1

2 = (α I − S )ūk + b,

(α I + S )ūk+1 = (α I − H )ūk+ 1
2 + b,

k = 0, 1, 2, . . . . (1.3)

The authors in [14] have proved that the HSS iteration method (1.3) converges uncon-
ditionally to the unique solution of the generalized saddle point problem (1.1). It
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is noted that the HSS iteration method was first proposed by Bai et al. [8] for solv-
ing non-Hermitian positive definite linear systems and they proved the unconditionally
convergent property of this method. The iteration scheme (1.3) is indeed a special case
of the original HSS iteration method. Due to the elegant mathematical properties, the
HSS iteration method has attracted much attention and there are many papers devoted
to the various aspects of this method. Based on the idea of the HSS iteration, many
effective iterative methods and the corresponding preconditioners were proposed for
saddle point problems. In [5], the accelerated HSS iteration method was proposed by
introducing another parameter. For saddle point problems from time-harmonic eddy
current models, the block alternating splitting implicit iteration method [3] and the
alternating positive semi-definite splitting method [33] were proposed. For the saddle
point matrix from two dimensional Navier–Stokes problem, the deteriorated positive
and skew-Hermitian splitting preconditioner [32], the dimensional split preconditioner
[16], and themodified dimensional split preconditioner [21]were presented bymaking
use of the special structure of the coefficient matrix. In order to get a better approxi-
mation to the saddle point matrix, some relaxed preconditioners were also proposed
for the saddle point matrix; see [17,19,22]. In addition, the authors in [7,24,27,36]
have studied spectral properties of the HSS-based preconditioned matrix. Since the
spectral distribution of the preconditioned matrix relates closely to the convergence
rate of Krylov subspace methods, it is expected that the preconditioned saddle point
matrix has desired eigenvalue distribution like tightly clustered spectra or positive real
spectra; see [4,34].

In this paper, we propose a simplified Hermitian and skew-Hermitian splitting
(SHSS) preconditioner for the generalized saddle point problem (1.1), which is based
on the HSS preconditioner. The SHSS preconditioner is much closer to the general-
ized saddle point matrix A than the HSS preconditioner, but it is no longer induced
by an alternating direction iteration method. The SHSS preconditioner is much easier
to be implemented than the HSS preconditioner. Theoretical analysis shows that all
eigenvalues of the SHSS preconditioned saddle point matrix are real and the nonunit
eigenvalues are located in a positive interval. We also obtain the eigenvector distribu-
tion and an upper bound of the degree of theminimal polynomial of the preconditioned
matrix. In addition, we present a practical choice of the parameter involved, which
leads to excellent numerical results.

The remainder of this paper is organized as follows. In Sect. 2, we propose the SHSS
preconditioner and compare the computational costs of the HSS and SHSS precondi-
tioners. In Sect. 3, some properties of the SHSS preconditioned matrix are analyzed.
Numerical examples are given to show the effectiveness of the SHSS preconditioner
in Sect. 4. Finally, in Sect. 5 we end this paper with a few of concluding remarks.

2 A simplified HSS preconditioner

In this section, we present a simplified variant of the HSS perconditioner for the
generalized saddle point problem (1.1). When the HSS splitting matrix P̂HSS in (1.2)
is served as a preconditioner, the pre-factor has no effect on the preconditioned system.
For convenience, we replace it by the following HSS preconditioner
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PHSS = 1

α
(α I + H )(α I + S )

= 1

α

[
α I + A 0

0 α I + C

] [
α I BT

−B α I

]
. (2.1)

By direct computation, we know that the HSS preconditionerPHSS has the following
block structure

PHSS =
[

α I + A BT + 1
α
ABT

−B − 1
α
CB α I + C

]

and the difference between the preconditionerPHSS and the generalized saddle point
matrix A is given by

QHSS = PHSS − A =
[

α I 1
α
ABT

− 1
α
CB α I

]
. (2.2)

It is observed from (2.2) that when the parameter α tends to zero, the diagonal blocks
tend to be zero matrices while the off-diagonal blocks go to infinity. Therefore, we
must choose an appropriate parameter α to balance the diagonal and the off-diagonal
parts.

According to the theory of preconditioning techniques, we know that the spectral
distribution of the preconditioned matrix relates closely to the convergence of Krylov
subspacemethods and favorable convergence rates are often associated with the eigen-
values of the preconditioned matrix around one and away from zero. Hence, we hope
that a preconditioner and the coefficient matrix should be as close as possible. From
this point of view, the HSS preconditionerPHSS in (2.1) may not be a good approx-
imation to the generalized saddle point matrix A . From (2.1) we know that the HSS
preconditioner is a scaled product of the block diagonal symmetric positive definite
matrix α I +H and the normal matrix α I +S . In order to get a better approximation
to the generalized saddle point matrix A , we propose the following simplified HSS
(SHSS) preconditioner

PSHSS = 1

α

[
A 0
0 α I

] [
α I BT

−B C

]

=
[

A 1
α
ABT

−B C

]
, (2.3)

which is a scaled product of a block diagonal symmetric positive definite matrix and a
block nonsymmetric positive semi-definite matrix. The difference between the SHSS
preconditioner PSHSS and the generalized saddle point matrix A is

QSHSS = PSHSS − A =
[
0

( 1
α
A − I

)
BT

0 0

]
. (2.4)

There is only the (1, 2) block being nonzero in QSHSS , which shows that the pre-
conditionerPSHSS is a better approximation to the matrixA than the preconditioner
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PHSS and it may be easier to analyze the eigenvalue distribution of the preconditioned
matrixP−1

SHSSA .
For the SHSS preconditioner, there is another advantage that it is easier to imple-

ment than the HSS preconditioner. In fact, when the SHSS preconditioner is used
to accelerate the convergence of Krylov subspace methods, it is necessary to solve
sequences of generalized residual equations of the form

[
A 0
0 α I

] [
α I BT

−B C

] [
z1
z2

]
=

[
r1
r2

]
, (2.5)

where [zT1 , zT2 ]T and [rT1 , rT2 ]T are the current and the generalized residual vectors,
respectively. Then it follows from (2.5) that

[
z1
z2

]
=

[
α I BT

−B C

]−1 [
A 0
0 α I

]−1 [
r1
r2

]

=
[
I − 1

α
BT

0 I

][
1
α
I 0

0
(
C + 1

α
BBT

)−1

] [
I 0
1
α
B I

] [
A−1 0
0 1

α
I

] [
r1
r2

]
.

(2.6)

Thus, from (2.6) we derive the following algorithm for solving the generalized residual
equations (2.5).

Algorithm 2.1 For a given residual vector [rT1 , rT2 ]T , the current vector [zT1 , zT2 ]T in
(2.5) is computed by the following procedures:

(1) solve Av1 = r1;
(2) solve (C + 1

α
BBT )z2 = 1

α
(Bv1 + r2);

(3) z1 = 1
α
(v1 − BT z2).

From Algorithm 2.1, we see that there are two linear subsystems with coefficient
matrices A and C + 1

α
BBT needed to be solved at steps (1) and (2). Because the

matrices A and C + 1
α
BBT are symmetric positive definite, at each step we can use

the sparse Cholesky decomposition to solve the two linear subsystems. To implement
the SHSS preconditioner efficiently, there is an important issue of how to choose the
parameter α. It is difficult to find the theoretically optimum parameter α. However, by
an algebraic estimation technique [26] we can find a suitable parameter

αest = ‖BBT ‖2
‖C‖2 , (2.7)

which balances the matricesC and BBT in practical computation. It can be found that
the estimate (2.7) is a good choice for the parameter α and numerical results in Sect. 4
confirm this.
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In the HSS preconditioning process, we need to solve sequences of generalized
residual equations of the form

[
α I + A 0

0 α I + C

] [
α I BT

−B α I

] [
z1
z2

]
=

[
r1
r2

]
, (2.8)

which can be fulfilled by the following algorithm.

Algorithm 2.2 For a given residual vector [rT1 , rT2 ]T , the current vector [zT1 , zT2 ]T in
(2.8) is computed by the following procedures:

(1) solve (α I + A)v1 = r1;
(2) solve (α I + C)v2 = r2;
(3) solve (α I + 1

α
BBT )z2 = 1

α
Bv1 + v2;

(4) z1 = 1
α
(v1 − BT z2).

From Algorithm 2.2, we see that there are three linear subsystems with coefficient
matricesα I+A,α I+C andα I+ 1

α
BBT needed to be solved. These linear subsystems

can also be solved by the sparseCholesky decomposition, since the coefficientmatrices
are symmetric positive definite. The theoretical optimal parameter α for the HSS
preconditioner can be found in [2,6,13] and a practical choice of α can be found in
[28].

ComparingAlgorithms 2.1 to 2.2, we observe that the SHSS preconditioner ismuch
easier to implement than the HSS preconditioner, since the former only needs to solve
two symmetric positive definite linear subsystems while the latter needs to solve three
symmetric positive definite linear subsystems. Therefore, the cost for one iteration of
the SHSS preconditioner is much cheaper than that of the HSS preconditioner.

3 Analysis of the SHSS preconditioned matrix

The spectral distribution of the preconditioned matrix relates closely to the conver-
gence rate of Krylov subspace methods. Tightly clustered spectrum or positive real
spectrum of the preconditioned matrix are desirable. In this section, we derive some
properties of the SHSS preconditioned saddle point matrix P−1

SHSSA . Here and in
the sequel, we use sp(W ) to represent the spectrum of the matrix W . The following
theorem describes the eigenvalue distribution of the preconditioned matrixP−1

SHSSA .

Theorem 3.1 Assume that A ∈ R
n×n is a symmetric positive definite matrix, B ∈

R
m×n has full row rank, C ∈ R

m×m is a symmetric positive semi-definite matrix, and
α is a positive constant. Let the SHSS preconditioner PSHSS be defined as in (2.3).
Let sp(C) ⊆ [0, μm], sp(BBT ) ⊆ [σ1, σm], and sp(BA−1BT ) ⊆ [τ1, τm]. Then the
preconditioned matrixP−1

SHSSA has an eigenvalue 1 with multiplicity at least n, and
the remaining eigenvalues are real and located in the positive interval
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[ ατ1

αμm + σm
,

α(μm + τm)

σ1

]
.

Proof From (2.4) and (2.6), we obtain

P−1
SHSSA = P−1

SHSS(PSHSS − QSHSS)

= I − P−1
SHSSQSHSS

= I − α

[
α I BT

−B C

]−1 [
A 0
0 α I

]−1 [
0

( 1
α
A − I

)
BT

0 0

]

= I −
[
I − 1

α
BT

(
C + 1

α
BBT

)−1
B −BT

(
C + 1

α
BBT

)−1

(
C + 1

α
BBT

)−1
B α

(
C + 1

α
BBT

)−1

][
0

( 1
α
I − A−1

)
BT

0 0

]

= I −
[
0

[
I − 1

α
BT

(
C + 1

α
BBT

)−1
B

] ( 1
α
I − A−1

)
BT

0
(
C + 1

α
BBT

)−1
B

( 1
α
I − A−1

)
BT

]

=
[
I A−1BT − 1

α
BT

(
C + 1

α
BBT

)−1
(C + BA−1BT )

0
(
C + 1

α
BBT

)−1
(C + BA−1BT )

]
. (3.1)

It then follows from (3.1) that the preconditioned matrixP−1
SHSSA has an eigenvalue

1 with multiplicity at least n and the remaining eigenvalues are the same as those of
the matrix (C + 1

α
BBT )−1(C + BA−1BT ).

Since the matrices BBT and BA−1BT are symmetric positive definite matrices,
and the matrix C is a symmetric positive semi-definite matrix, we know that μm ≥ 0,
σm ≥ σ1 > 0, τm ≥ τ1 > 0, and

sp

(
C + 1

α
BBT

)
⊆

[σ1

α
, μm + 1

α
σm

]

and
sp(C + BA−1BT ) ⊆ [τ1, μm + τm].

As the matrices C + 1
α
BBT and C + BA−1BT are also symmetric positive definite,

we obtain

sp

((
C + 1

α
BBT

)−1
)

⊆
[

α

αμm + σm
,

α

σ1

]
,

and

sp

((
C + 1

α
BBT

)−1

(C + BA−1BT )

)
⊆

[
ατ1

αμm + σm
,

α(μm + τm)

σ1

]
.

Therefore, the remaining eigenvalues of the preconditioned matrixP−1
SHSSA are real

and located in the positive interval
[

ατ1
αμm+σm

,
α(μm+τm )

σ1

]
. �	

Remark 3.1 Note that the positive interval presented in Theorem 3.1 is not so sharp. In
fact, if we take A = α I , then all eigenvalues of the preconditioned matrix P−1

SHSSA
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are 1. However, the positive interval in Theorem 3.1 is
[

σ1
αμm+σm

,
αμm+σm

σ1

]
, which is

subject to theories of eigenvalue estimates for the product of two symmetric positive
definite matrices [30]. How to find a sharp eigenvalue estimate needs further study. In

practical implementation, if we take αest = ‖BBT ‖2‖C‖2 = σm
μm

, then the positive interval

becomes
[

τ1
2μm

,
σm (μm+τm )

σ1μm

]
. Here, we assume that μm > 0.

The convergence of Krylov subspace methods is not only related to the eigen-
value distribution of the preconditioned matrix, but also related to the number of
corresponding linearly independent eigenvectors. The eigenvector distribution of the
preconditioned matrixP−1

SHSSA is presented in the following theorem.

Theorem 3.2 Let the SHSS preconditioner PSHSS be defined as in (2.3), then the
preconditioned matrixP−1

SHSSA has n+ i + j (0 ≤ i + j ≤ m) linearly independent
eigenvectors. There are

(1) n eigenvectors

[
u�

0

]
(� = 1, 2, . . . , n) that correspond to the eigenvalue 1, where

u� (� = 1, 2, . . . , n) are arbitrary linearly independent vectors.

(2) i (0 ≤ i ≤ m) eigenvectors

[
u1�
v1�

]
(1 ≤ � ≤ i) that correspond to the eigenvalue

1, where v1� 
= 0, (A− α I )BT v1� = 0, i = dim{null(A− α I ) ∩ range(BT )}, and
u1� are arbitrary vectors.

(3) j (0 ≤ j ≤ m) eigenvectors

[
u2�
v2�

]
(1 ≤ � ≤ j) that correspond to eigenvalues

λ� 
= 1, where v2� 
= 0, (C + BA−1BT )v2� = λ�(C + 1
α
BBT )v2� , and u2� =

1
1−λ�

(
λ�

α
I − A−1)BT v2� .

Proof Let λ be an eigenvalue of the preconditioned matrixP−1
SHSSA and

[
u
v

]
be the

corresponding eigenvector. From (3.1) we have

[
I A−1BT − 1

α
BT F−1E

0 F−1E

] [
u
v

]
= λ

[
u
v

]
, (3.2)

where E = C + BA−1BT and F = C + 1
α
BBT . Note that the matrices E and F are

symmetric positive definite. It then follows from (3.2) that

{
(1 − λ)u = (

λ
α
I − A−1

)
BT v,

Ev = λFv.
(3.3)

If λ = 1 holds true, then the Eq. (3.3) become

{
(A − α I )BT v = 0,

Ev = Fv.
(3.4)
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When v = 0, the Eq. (3.4) are always true. Hence, there are n linearly independent

eigenvectors

[
u�

0

]
(� = 1, 2, . . . , n) corresponding to the eigenvalue 1, where u�

(� = 1, 2, . . . , n) are arbitrary linearly independent vectors. Since the second equation
in (3.4) is equivalent to

BA−1(A − α I )BT v = 0, (3.5)

if there exists any v 
= 0 which satisfies the first equation in (3.4), then it must satisfy
(3.5) or the second equation in (3.4). Hence, there will be i (0 ≤ i ≤ m) linearly

independent eigenvectors

[
u1�
v1�

]
(1 ≤ � ≤ i) that correspond to the eigenvalue 1,

where v1� satisfy (A − α I )BT v1� = 0 and u1� are arbitrary vectors. Further, we know
that i = dim{null(A − α I ) ∩ range(BT )}, where null(·) and range(·) denote the null
space and range space of the corresponding matrix, respectively.

Next, we consider the case λ 
= 1. It then follows from (3.3) that the nonunit
eigenvalues of the preconditioned matrix P−1

SHSSA are the same as those of the
matrix F−1E . From the first equation in (3.3), we have

u = 1

1 − λ

(
λ

α
I − A−1

)
BT v. (3.6)

If v = 0, then u = 0, which contradicts with

[
u
v

]
being an eigenvector. Hence, v 
= 0.

If there exists v 
= 0 which satisfies the second equation in (3.3), then there will be j

(0 ≤ j ≤ m) linearly independent eigenvectors

[
u2�
v2�

]
(1 ≤ � ≤ j) that correspond

to eigenvalues λ 
= 1. Here, the vectors v2� (1 ≤ � ≤ j) satisfy Ev2� = λFv2� and
the vectors u2� (1 ≤ � ≤ j) satisfy (3.6). For this case, the vector u2� 
= 0 unless
BT v2� ∈ null( λ

α
A − I ).

Finally, we show that the n + i + j eigenvectors are linearly independent. Let
c = [c1, c2, . . . , cn]T , c1 = [c11, c12, . . . , c1i ]T and c2 = [c21, c22, . . . , c2j ]T be three
vectors with 0 ≤ i, j ≤ m. Then we need to show that

[
u1 · · · un
0 · · · 0

] ⎡
⎢⎣
c1
...

cn

⎤
⎥⎦ +

[
u11 · · · u1i
v11 · · · v1i

] ⎡
⎢⎣
c11
...

c1i

⎤
⎥⎦ +

[
u21 · · · u2j
v21 · · · v2j

] ⎡
⎢⎣
c21
...

c2j

⎤
⎥⎦ =

⎡
⎢⎣
0
...

0

⎤
⎥⎦

(3.7)
holds true if and only if the vectors c, c1 and c2 are all zero vectors, where the first
matrix consists of the eigenvectors corresponding to the eigenvalue 1 for the case (1),
the second matrix consists of those for the case (2), and the third matrix consists of
the eigenvectors corresponding to λ 
= 1 for the case (3). By multiplying both sides
of (3.7) from left withP−1

SHSSA , we obtain
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[
u1 · · · un
0 · · · 0

]⎡
⎢⎣
c1
...

cn

⎤
⎥⎦+

[
u11 · · · u1i
v11 · · · v1i

] ⎡
⎢⎣
c11
...

c1i

⎤
⎥⎦+

[
u21 · · · u2j
v21 · · · v2j

] ⎡
⎢⎣

λ1c21
...

λ j c2j

⎤
⎥⎦ =

⎡
⎢⎣
0
...

0

⎤
⎥⎦ .

(3.8)
Then, by subtracting (3.8) from (3.7), it holds that

[
u21 · · · u2j
v21 · · · v2j

] ⎡
⎢⎣

(λ1 − 1)c21
...

(λ j − 1)c2j

⎤
⎥⎦ =

⎡
⎢⎣
0
...

0

⎤
⎥⎦ .

Because the eigenvalues λ� 
= 1 and

[
u2�
v2�

]
(� = 1, . . . , j) are linearly independent,

we know that c2� = 0 (� = 1, . . . , j). As the vectors v1� (� = 1, . . . , i) are also linearly
independent, we have c1� = 0 (� = 1, . . . , i). Thus, the Eq. (3.7) reduces to

[
u1 · · · un
0 · · · 0

] ⎡
⎢⎣
c1
...

cn

⎤
⎥⎦ =

⎡
⎢⎣
0
...

0

⎤
⎥⎦ .

Since u� (� = 1, . . . , n) are linearly independent, we have c� = 0 (� = 1, . . . , n).
Therefore, the n + i + j eigenvectors are linearly independent. �	

In the following, we study an upper bound of the degree of the minimal polynomial
of the preconditioned matrix P−1

SHSSA , which indicates the finite-step termination
properties of the preconditioned Krylov subspace iteration methods with an optimal
or Galerkin property [34] with respect to the SHSS preconditioner.

Theorem 3.3 Let the SHSS preconditioner PSHSS be defined as in (2.3). Then the
degree of the minimal polynomial of the preconditioned matrix P−1

SHSSA is at most
m + 1.

Proof From (3.1) we know that the preconditioned matrixP−1
SHSSA is a block upper

triangular matrix with the (1,1) block being an identity matrix, that is,

P−1
SHSSA =

[
I Θ2
0 Θ1

]
,

where Θ1 = (C + 1
α
BBT )−1(C + BA−1BT ) and Θ2 = A−1BT − 1

α
BT (C +

1
α
BBT )−1(C + BA−1BT ).
Let λi (i = 1, . . . , m) be the eigenvalues of the matrix Θ1. Then the characteristic

polynomial of the matrix P−1
SHSSA is

ΦP−1
SHSSA

(λ) = det(P−1
SHSSA − λI ) = (−1)m+n(λ − 1)n

m∏
i=1

(λ − λi ).
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Let

Ψ (λ) = (λ − 1)
m∏
i=1

(λ − λi ).

Then

Ψ (P−1
SHSSA ) = (P−1

SHSSA − I )
m∏
i=1

(P−1
SHSSA − λi I )

=

⎡
⎢⎢⎣
0 Θ2

m∏
i=1

(Θ1 − λi I )

0 (Θ1 − I )
m∏
i=1

(Θ1 − λi I )

⎤
⎥⎥⎦ .

Since λi (i = 1, . . . ,m) are also the eigenvalues of Θ1 ∈ R
m×m , by Hamilton–

Cayley theorem we have
∏m

i=1(Θ1 − λi I ) = 0. Therefore, the degree of the minimal
polynomial of the preconditioned matrix P−1

SHSSA is at most m + 1. �	

According to Theorem 3.3, we easily see that when a Krylov subspace method with
an optimal or Galerkin property, like GMRES, is applied to a preconditioned linear
system with the coefficient matrixP−1

SHSSA , it will converge to the exact solution of
the linear system with the coefficient matrix A in m + 1 or fewer iterations, in exact
arithmetic.

4 Numerical experiments

In this section, we use numerical experiments to illustrate the effectiveness of the
SHSS preconditioner PSHSS for the generalized saddle point problem (1.1). To this
end, we apply the GMRES iteration method incorporated with the SHSS precondi-
tionerPSHSS , the HSS preconditioner PHSS and no preconditioner (denoted by I ),
respectively, to solve the saddle point linear system (1.1).

The test generalized saddle point linear systems arise from the Stokes equation:

⎧⎪⎪⎨
⎪⎪⎩

−νΔu + �p = f̃ , in �

� · u = g̃, in �

u = 0, on ∂�∫
�
p(x)dx = 0.

(4.1)

where the velocity u = (uTx , uTy )T is a vector-valued function, the pressure p is a
scalar function, Ω = (0, 1) × (0, 1) ⊂ R

2, ∂Ω is the boundary of Ω , ν stands for the
viscosity scalar, and Δ is the componentwise Laplace operator. The test example is
the “leaky” two dimensional lid-driven cavity problem in a square domain (0 ≤ x ≤
1, 0 ≤ y ≤ 1). The boundary conditions are ux = uy = 0 on the three fixed walls
(x = 0, y = 0, x = 1), and ux = 1, uy = 0 on the moving wall (y = 1).
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Here, we use the IFISS software package developed by Elman et al. [25] to generate
discretizations of the Stokes equation (4.1). In the test problems, finite element subdi-
visions based on both uniform and stretched grids of square elements are adopted. The
mixed finite element is the bilinear-pressure: Q1− P0 pair with local stabilization (the
stabilization parameter is taken as 0.25) [35]. For the case of stretched grids, we use the
default stretch factors provided by IFISS. The stretching is done in both the horizontal
and vertical directions, which results in rather fine grids near the boundaries. Then we
get the discretized linear system of the form

[
A BT

−B C

] [
u
p

]
=

[
f

−g

]
,

where A is the discrete Laplace operator, BT is the discrete gradient operator, B is
the discrete divergence operator, and C is the local stablization matrix. Four grids of
increasing sizes (i.e., 8× 8, 16× 16, 32× 32, 64× 64) are studied here. In these test
problems, we always take ν = 1.

We compare these different preconditioned GMRES methods from aspects of the
number of iteration steps (denoted by ‘IT’) and elapsed CPU times in seconds (denoted
by ‘CPU’). In actual implementations, the initial guess is chosen to be the zero vector
and the iteration is terminated if the current iterations satisfy

ERR = ‖b − A ūk‖2
‖b − A ū0‖2 ≤ 10−6

or if the number of the prescribed iteration steps kmax = 1500 is exceeded. All runs are
performed in MATLAB 2010 on an Intel Core (4G RAM)Windows 7 system. For the
SHSS preconditioner, we choose a practical parameter α by the formula (2.7). For the
HSS preconditioner, we choose a quasi-optimal parameter α by the formula studied by
Huang in [28]. In addition, we solve the linear subsystems in Algorithms 2.1 and 2.2
by means of sparse direct methods, that is, the sparse Cholesky factorization and the
sparse incomplete Cholesky factorization. The coefficient matrices of the subsystems
are factored once into triangular matrices. The resulting sparse triangular factors are
used at each step for the forward and backward substitution. Here, the factorizations
are done without reordering.

In Tables 1 and 2, we list the values of the parameter α in the preconditioners
PHSS and PSHSS , the numbers of iteration steps, the CPU times and the corre-
sponding residuals of GMRES method incorporated with preconditioners I , PHSS

and PSHSS . Here, the Cholesky factorization is used as an exact solver for the lin-
ear subsystems. The difference of these two tables is that Table 1 lists the numerical
results for Stokes problem with different uniform grids, while Table 2 lists those with
stretched grids. From Tables 1 and 2, we can see that the GMRES method converges
very slowly if no preconditioning technique is used. If the HSS preconditioner or
the SHSS preconditioner is employed, the preconditioned GMRES method converges
fast. Moreover, the SHSS preconditioned GMRES method uses much less number of
iteration steps and CPU time than the HSS preconditioned GMRES method for all
these different grids. This shows that our proposed SHSS preconditioner outperforms
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Table 1 Numerical results for Stokes problem with different uniform grids by exact solvers

Method Grid

8 × 8 16 × 16 32 × 32 64 × 64

I

IT 75 167 356 361

CPU 0.0589 0.2394 3.1075 8.6438

ERR 9.2778e−7 9.2429e−7 9.9679e−7 9.8849e−7

PHSS

α 0.0223 0.0057 0.0014 0.0004

IT 69 105 156 230

CPU 0.0447 0.1009 0.6160 6.6932

ERR 8.9266e−7 9.2440e−7 9.9617e−7 9.7744e−7

PSHSS

α 3.7038 3.9273 3.9685 3.9670

IT 13 18 27 40

CPU 0.0136 0.0179 0.0864 0.8342

ERR 1.9259e−7 7.4630e−7 8.4484e−7 7.2097e−7

Table 2 Numerical results for Stokes problem with different stretched grids by exact solvers

Method Grid

8 × 8 16 × 16 32 × 32 64 × 64

I

IT 99 348 440 750

CPU 0.0803 0.9462 4.7348 36.2146

ERR 9.5450e−7 9.8005e−7 9.9400e−7 9.9857e−7

PHSS

α 0.0264 0.0062 0.0013 0.0004

IT 76 167 373 691

CPU 0.0578 0.1717 2.8286 39.2989

ERR 6.6510e−7 9.5018e−7 9.8572e−7 9.8939e−7

PSHSS

α 14.4651 73.2923 296.7627 1.0293e+3

IT 16 29 54 78

CPU 0.0112 0.0381 0.1638 1.7200

ERR 4.9177e−7 8.2515e−7 8.7702e−7 4.9987e−7

the HSS preconditioner in accelerating the convergence of the GMRES method for
solving the Stokes problem.

In order to compare effects of the HSS and the SHSS preconditioners with respect
to the parameter α, we plot the number of iteration steps of the HSS preconditioned
GMRES method with α from 0.0001 to 0.01 and that of the SHSS preconditioned
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Fig. 1 Number of iterations with α for uniform 16 × 16 grids: HSS preconditioning (left) and SHSS
preconditioning (right)
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Fig. 2 Number of iterations with α for stretched 16 × 16 grids: HSS preconditioning (left) and SHSS
preconditioning (right)

GMRES method with α from 3 to 5 for Stokes problem with uniform 16 × 16 grids
in Fig. 1. Similarly, we plot the number of iteration steps of the HSS preconditioned
GMRES method with α from 0.0001 to 0.01 and that of the SHSS preconditioned
GMRES method with α from 50 to 80 for Stokes problem with stretched 16 × 16
grids in Fig. 2. The varying interval of α is chosen according to the estimated values in
Tables 1 and 2. In these figures, ‘*’ denotes the corresponding number of iteration steps
listed in Tables 1 and 2. From Figs. 1 and 2, we can see that the SHSS preconditioner
is not so sensitive to the parameter α, while the parameter α influences the HSS
preconditioner greatly. From this point, the SHSS preconditioner is more effective
and practical than the HSS preconditioner.

To further discuss the effectiveness of the HSS and the SHSS preconditioners, we
also use the incomplete Cholesky factorization as a direct solver for the subsystems
and observe their influence on the convergence rate of the preconditioned GMRES
methods. This is essentially the GMRES method incorporated with an inexact HSS
preconditioner and an inexact SHSS preconditioner. In Tables 3 and 4, we list the
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Table 3 Numerical results for Stokes problem with 32 × 32 uniform grids by inexact solvers

Method Drop tolerance

0.005 0.001 0.0005 0.0001

PHSS

IT 286 194 179 157

CPU 1.524 0.7862 0.6883 0.5805

ERR 9.9719e−7 9.7939e−7 9.9415e−7 9.9432e−7

PSHSS

IT 40 37 35 28

CPU 0.0674 0.0707 0.0863 0.0816

ERR 8.3195e−7 6.8263e−7 7.1707e−7 6.8787e−7

Table 4 Numerical results for Stokes problem with 32 × 32 stretched grids by inexact solvers

Method Drop tolerance

0.005 0.001 0.0005 0.0001

PHSS

IT 729 519 481 383

CPU 7.0565 3.9873 3.3637 2.8501

ERR 9.7781e−7 9.7903e−7 9.8510e−7 9.3623e−7

PSHSS

IT 73 66 65 56

CPU 0.1459 0.1436 0.1527 0.1448

ERR 7.8092e−7 9.7117e−7 5.2958e−7 5.5909e−7

numerical results of the HSS and the SHSS preconditioned GMRES methods with
the inexact solver for the Stokes equation with 32 × 32 uniform grids and stretched
grids, respectively. From Tables 3 and 4, we can see that the HSS and the SHSS
preconditioned GMRES methods with the inexact solver can also compute satisfac-
tory numerical solutions. The numbers of iteration steps decrease with reduced drop
tolerances for these preconditioned GMRES methods. For the HSS preconditioned
GMRES method, the elapsed CPU times decrease with reduced drop tolerances for
both uniform and stretched grids. On the other hand, for the SHSS preconditioned
GMRES method, the elapsed CPU times slightly increase for the uniform grids and
vary small for the stretched grids with reduced drop tolerances. Comparing the CPU
times in Tables 3 and 4 with these in Tables 1 and 2, we find that the SHSS precondi-
tioned GMRESmethod with the inexact solver costs less CPU times than that with the
exact solver for the given four drop tolerances. Moreover, the SHSS preconditioned
GMRES method with the exact and inexact solver both take much less CPU time
than the HSS preconditioned GMRES method. Therefore, the SHSS preconditioned
GMRES method is effective for solving the Stokes problem.
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5 Conclusions

In this paper, based on the Hermitian and skew-Hermitian splitting (HSS) precondi-
tioner and the principle that a preconditioner should be as close as possible to the
coefficient matrix and also easy to solve, we propose a new simplified HSS (SHSS)
preconditioner for the generalized saddle point problem (1.1). Theoretical analyses
show that all eigenvalues of the SHSS preconditioned matrix are located in a positive
real interval. We also study the eigenvector distribution of the SHSS preconditioned
matrix. Moreover, the degree of the minimal polynomial of the preconditioned matrix
P−1

SHSSA is at most m + 1, which shows that the SHSS preconditioned GMRES
method converges to the exact solution with the coefficient matrix A in m + 1 or
fewer iterations in exact arithmetic for solving the generalized saddle point problem
(1.1). Numerical examples of a model Stokes equation are illustrated to show that
our proposed SHSS preconditioner outperforms the HSS preconditioner in accelerat-
ing the convergence of the GMRES method. Although the SHSS preconditioner can
accelerate the convergence of the GMRES method greatly, it may not have the opti-
mal property, i.e., the iteration number of the SHSS preconditioned GMRES method
depends on the problem size. How to improve the SHSS preconditioner and analyze
an optimal parameter α should be further studied in depth.
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