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Abstract Based on the Hermitian and skew-Hermitian splitting (HSS), we come up
with a generalized HSS iteration method with a flexible shift-parameter for solving
the non-Hermitian positive definite system of linear equations. This iteration method
utilizes the optimization technique to obtain the optimal value of the flexible shift-
parameter at iteration process. Both theory and experiment have shown that the new
strategy is efficient.
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1 Introduction

In this study we focus on solving the large sparse non-Hermitian and positive definite
system of linear equations

Ax = b, (1.1)
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where A ∈ C
n×n is nonsingular and x, b ∈ C

n . Based on the Hermitian/skew-
Hermitian (HS) splitting [25]

A = H + S

of the coefficient matrix A, where

H = 1

2
(A + A∗), S = 1

2
(A − A∗), A∗ is the conjugate transpose of A,

Bai et al. [9] first proposed the efficient Hermitian and skew-Hermitian splitting (HSS)
iteration method with a fixed shift-parameter in 2003 for solving the system (1.1). The
method was designed as follows: Given an initial guess x0 ∈ C

n , for k = 0, 1, 2, . . .
until the sequence of iterates {xk}∞k=0 ⊂ C

n converges, compute the next iterate xk+1
according to the following formulation:

{
(α I + H)xk+ 1

2
= (α I − S)xk + b,

(α I + S)xk+1 = (α I − H)xk+ 1
2

+ b,
(1.2)

where I is the identity matrix and α is a fixed shift-parameter (a given positive con-
stant).

Note that the HSS iteration (1.2) may also be considered as a splitting iteration
induced from the splitting of the matrix A as follows,

A = M(α) − N (α),

where

M(α) = 1

2α
(α I + H)(α I + S) and N (α) = 1

2α
(α I − H)(α I − S). (1.3)

It was proved in [9] that the HSS iteration method converges unconditionally to the
unique solution of the linear system (1.1), and the upper bound of the convergence rate
of the method is about the same as that of the conjugate gradient method applied to a
linear system of the coefficient matrix H . The optimal shift-parameter [9] is estimated
as

αopt = argmin
α

{
max

λmin≤λ≤λmax

∣∣∣∣α − λ

α + λ

∣∣∣∣
}

= √
λminλmax,

where λmin and λmax are the minimum and the maximum eigenvalues of the matrix
H , respectively.

Because of its outstanding performance and elegant mathematical properties, the
HSS iteration method obtains widespread attention. For instance, it is extended to
solve non-Hermitian positive semi-definite matrices [7,11], the saddle point problems
[2,4,6,23], complex symmetric linear systems [5,16] and so on. Many modifications
and generalizations of the HSS iteration method can be found in [1,10,12,18–21]
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and the references therein. On the other hand, some effective algorithms use the HSS
iteration as a preconditioner or use the preconditioning variants of the HSS iteration,
which often work out excellent results; see [13–15] and their references.

However, we have noticed that the shift-parameter α is a constant throughout the
iteration process in all discussed above, which reduces the effectiveness of themethods
from one point of view.

For the Hermitian positive definite linear system, Pearcy [22] has designed the
device of changing iteration shift-parameters on the half-steps

⎧⎨
⎩ xk+ 1

2
= −

(
V1 + αk+ 1

2
D

)−1 [
(V2 − αk+ 1

2
D)xk − b

]
,

xk+1 = −(V2 + αk+1D)−1
[
(V1 − αk+1D)xk+ 1

2
− b

]
,

where D is a positive definite normalizing matrix, V1, V2 are Hermitian positive def-
inite matrices such that A = V1 + V2, α 1

2
≥ α1 ≥ α1+ 1

2
≥ · · · ≥ αt− 1

2
≥ αt , and

αk = αk(mod t) for k > t . But the convergence of this alternating direction implicit
(ADI) iteration method depends on the positive definiteness of the splitting matrices
V1 and V2. Furthermore, for the case V1V2 = V2V1 and D = I , Douglas [17] showed
that ADI was always convergent and the problem of choosing an optimal parame-
ter sequence [24] has also been solved for this case. Unfortunately, the problems
of practical interest are usually with V1V2 �= V2V1. So we propose the generalized
HSS iteration method with a flexible shift-parameter. Moreover, motivated by the
optimization models [26], shift-parameters αk, k = 1, 2, . . . are constructed by the
minimization of residuals.

The remained of the paper is organized as follows. In Sect. 2, we describe the
proposed iteration method. In Sect. 3, we use some numerical experiments to show the
effectiveness of the new iteration method. Finally, we end the paper with a conclusion
in Sect. 4.

2 The generalized HSS method with a flexible shift-parameter

In this section, we present a generalized HSS method to solve the system of linear
equations (1.1) and it is stated as follows.

Method 2.1 (The generalized HSS method with a flexible shift-parameter) Let x0 ∈
C
n be an arbitrary initial guess and ε > 0 be a given tolerance. The splitting matrices

M(α) and N (α) are defined by (1.3). For k = 0, 1, 2, . . . until the sequence of iterates
{xk}∞k=0 ⊂ C

n converges, compute the next iteration xk+1 according to the following
procedure.

(1) Compute rk = b − Axk.
(2) Solve the following system of linear equations:

{
(αk+1 I + H)xk+ 1

2
= (αk+1 I − S)xk + b,

(αk+1 I + S)xk+1 = (αk+1 I − H)xk+ 1
2

+ b,
(2.1)
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where αk+1 is the solution of the following optimization problem

min
α

r∗
k+1 (α I − H)−2 rk+1, (2.2)

here, rk+1 = N (α)M(α)−1rk .
(3) If ‖rk+1‖2 ≤ ε, stop; otherwise, k ⇐ k + 1 and go to (1).

If α = α1 = α2 = · · · in (2.1), Method 2.1 reduces to the HSS iteration method
with a fixed shift-parameter. Sowe only consider the situation that the shift-parameters
αk , k = 1, 2, . . . are not all equal, which is said the generalized HSS method with a
flexible shift-parameter.

In matrix-vector form, the scheme (2.1) can be equivalently written as

xk+1 = Tαk+1xk + Gαk+1b, k = 0, 1, 2, . . . ,

where

Tαk+1 = (αk+1 I + S)−1(αk+1 I − H)(αk+1 I + H)−1(αk+1 I − S) (2.3)

and

Gαk+1 = 2αk+1(αk+1 I + S)−1(αk+1 I + H)−1.

Evidently, we can express xk+1 as

xk+1 = Qk+1x0 + ck+1, k = 0, 1, 2, . . . ,

where
Qk+1 = Tαk+1Tαk · · · Tα1 (2.4)

and

ck+1 = (
Gαk+1 + Tαk+1Gαk + Tαk+1Tαk Gαk−1 + · · · + Tαk+1Tαk · · · Tα2Gα1

)
b.

Lemma 2.1 Let xk be generated by Method 2.1, M(α) and N (α) be given by (1.3).
Then at the (k+1)-st step it holds that

∥∥∥(α I − H)−1rk+1

∥∥∥2
2

= r∗
k (α I + H)−2rk, (2.5)

where α is obtained by the optimization model (2.2). Furthermore,

d

dα

(∥∥∥(α I − H)−1rk+1

∥∥∥2
2

)
= −2r∗

k (α I + H)−3rk . (2.6)
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Proof Let Φ(α) = (α I − S)(α I + S)−1, we see that Φ(α)∗Φ(α) = I , which means
that Φ(α) is a unitary matrix. Since

(α I − H)−1N (α)M(α)−1 = (α I − S)(α I + S)−1(α I + H)−1 = Φ(α)(α I + H)−1,

we have∥∥∥(α I − H)−1rk+1

∥∥∥2
2

=
(
(α I − H)−1N (α)M(α)−1rk, (α I − H)−1N (α)M(α)−1rk

)
=

(
Φ(α)(α I + H)−1rk, Φ(α)(α I + H)−1rk

)
= r∗

k (α I + H)−2rk .

Note that

d
(
(α I + H)−1

)
dα

= −(α I + H)−1 d (α I + H)

dα
(α I + H)−1 and

d (α I + H)

dα
= I.

Then,

d

dα

(∥∥∥(α I − H)−1rk+1

∥∥∥2
2

)

= r∗
k
d

(
(α I + H)−1

)
dα

(α I + H)−1rk + r∗
k (α I + H)−1 d

(
(α I + H)−1

)
dα

rk

= −2r∗
k (α I + H)−3rk .

��
Theorem 2.1 Let A be a non-Hermitian positive definite matrix. Then the iteration
sequence {xk} generated by Method 2.1 converges to the unique solution x∗ of the
system of linear equations (1.1). Furthermore, if A is a normal matrix, then the 2-
norm of the error vector ek = xk − x∗ is strictly decreasing, i.e., ‖ek+1‖2 < ‖ek‖2,
k = 0, 1, 2, . . ..

Proof Let ek = xk − x∗ be the error at the kth step of Method 2.1. If αk+1 is obtained
by the minimization model (2.2), then for any αk > 0 it holds that

r∗
k+1(αk+1 I − H)−2rk+1 = r∗

k (αk+1 I + H)−2rk ≤ r∗
k (αk I + H)−2rk . (2.7)

From (2.7), we have

∥∥∥(αk+1 I − H)−1rk+1

∥∥∥
2

≤
∥∥∥(αk I + H)−1rk

∥∥∥
2

=
∥∥∥(αk I + H)−1(αk I − H)(αk I − H)−1rk

∥∥∥
2

≤
∥∥∥(αk I + H)−1(αk I − H)

∥∥∥
2

∥∥∥(αk I − H)−1rk
∥∥∥
2
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= max
λi∈λ(H)

∣∣∣∣ αk − λi

αk + λi

∣∣∣∣
∥∥∥(αk I − H)−1rk

∥∥∥
2
.

It is noted that there exists a positive number γ such that for any αk > 0 the inequality

maxλi∈λ(H)

∣∣∣ αk−λi
αk+λi

∣∣∣ ≤ 1 − γ is valid. Thus we have

∥∥∥(αk+1 I − H)−1rk+1

∥∥∥
2

≤ (1 − γ )

∥∥∥(αk I − H)−1rk
∥∥∥
2

≤ · · ·
≤ (1 − γ )k+1

∥∥∥(α0 I − H)−1r0
∥∥∥
2
.

Moreover,
lim
k→∞(αk+1 I − H)−1rk+1 = 0.

For any α > 0, the matrix (α I − H)−1 is of full rank. Hence, we have lim
k→∞ rk+1 = 0.

On the other hand, if A is a normal matrix, we get

HS = SH.

Thus, T (α) = (α I + S)−1(α I − S)(α I − H)(α I + H)−1 is also a normal matrix,
which implies that

‖T (α)‖2 = ρ(T (α)).

Therefore, for the iteration matrix Qk+1 in (2.4), it holds that

‖Qk+1‖2 ≤ ‖Tαk+1‖2‖Tαk‖2 · · · ‖Tα1‖2 = ρ
(
Tαk+1

)
ρ

(
Tαk

) · · · ρ (
Tα1

)
< 1.

Moreover,

‖Qk+1‖2 = ‖Tαk+1Qk‖2 < ‖Qk‖2 < 1.

So,

‖ek+1‖2 = ‖Qk+1e0‖2 = ‖Tαk+1Qke0‖2 < ‖Qke0‖2 = ‖ek‖2.

��
It is worthy to note that the solution of the minimization model (2.2) is equivalent

to compute the root of d
dα

(‖(α I − H)−1rk+1‖22
) = 0 in Theorem 2.1. However,

the computational formula (2.6) is only of theoretical meaning and it is far away
from actual applications, since the computational cost of the matrix (α I + H)−3 is
expensive. Instead, we approximate the root of f (α) = ‖(α I − H)−1rk+1‖22 = 0 by
the Newton method. An alternative procedure might be to approximate the value of
f (α) = ‖(α I + H)−1rk‖22 = 0 by (2.5). Hence, Method 2.1 could be rewritten into a
practical form stated in Method 2.2.
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Method 2.2 (The practical generalized HSS method with a flexible shift-parameter)
Let x0 ∈ C

n be an arbitrary initial guess and ε > 0 be a given precision. The splitting
matrices M(α) and N (α) are defined by (1.3). For k = 0, 1, 2, . . . until the sequence
of iterates {xk}∞k=0 ⊂ C

n converges, compute the next iteration xk+1 according to the
following procedure.

(1) Compute rk = b − Axk.
(2) Solve the systems of linear equations:

{
(αk+1 I + H)xk+ 1

2
= (αk+1 I − S)xk + b,

(αk+1 I + S)xk+1 = (αk+1 I − H)xk+ 1
2

+ b,

where αk+1 is the root of the equation

f (α) = ‖(α I + H)−1rk‖22 = 0.

(3) If ‖rk+1‖2 ≤ ε, stop; otherwise, k ⇐ k + 1 and go to (1).

Remark 2.1 For the sake of saving computational cost, we can perform a new update
on the shift-parameter α for every p iteration steps.

3 Numerical experiments

In this section, we provide numerical results to illustrate the effectiveness of Methods
2.1 and 2.2 in terms of the iteration steps (denoted as IT), the elapsed computing times
in seconds (denoted asCPU), and the relative residual error (denoted asRES) defined
by

RES = ‖b − Axk‖2
‖b − Ax0‖2 .

All tests are started from the vector x0 = 0, and terminated when the current
iteration satisfies RES≤ 10−6. In addition, the numerical experiments are performed
in MATLAB (version R2013a) on PC in double precision, which is 2.40 GHz central
processing unit [Intel(R) Core(TM)i7-4500 CPU] with 8G memory and Microsoft
Window 8 operating system. In actual computation, the αk is updated for every 5
iteration steps.

Example 3.1 [8] Consider the two-dimensional convection-diffusion equation

−(uxx + uyy) + β(ux + uy) = g(x, y),

on the unit square (0, 1) × (0, 1) with constant coefficient β and subject to Dirichlet-
type boundary condition. By applying the five-point centered finite difference
discretization, we get the system of linear equations (1.1) with the coefficient matrix

A = T ⊗ I + I ⊗ T,
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where h = 1
m+1 is the equidistant step-size (In this test, m = 32.), ⊗ denotes the

Kronecker product, and T is a tridiagonal matrix given by

T = tridiag(−1 − Re, 2,−1 + Re),

where

Re = βh

2
(3.1)

is the mesh Reynolds number. Moreover, the right-hand side vector b is taken to be
b = Ax∗ with x∗ = (1, 1, . . . , 1)T ∈ R

n being the exact solution.

Here and in the sequel, BGN-HSS means the HSS method by Bai et al. [9], and
H-HSS means the new practical methods by Huang [19]. Correspondingly, Methods
2.1 and 2.2 are termed briefly as MWZ1-HSS, and MWZ2-HSS, respectively.

In Table 1, we give the iteration numbers, the CPU times and the RES values
of BGN-HSS, H-HSS, MWZ1-HSS and MWZ2-HSS methods for Example 3.1 with
respect to different choices of the problem parameter β.

From Table 1, it can be seen that for different β the numbers of iteration steps
of MWZ1-HSS and MWZ2-HSS methods are less than those of BGN-HSS and H-
HSS methods at almost the same CPU times. The case β = 50 and β = 5000 of
these observations can be further illustrated by the iteration pictures plotted in Fig. 1.
Clearly, MWZ2-HSS method outperforms both BGN-HSS and H-HSS methods.

Table 1 Iteration Step, CPUTime, andRES of BGN-HSS, H-HSS,MWZ1-HSS andMWZ2-HSSmethods
for Example 3.1

Method β

50 100 500 1000 5000 10000

BGN-HSS

IT 45 46 56 74 155 216

CPU 0.20 0.22 0.25 0.32 0.67 0.94

RES 8.61e−7 6.70e−7 9.03e−7 8.89e−7 9.66e−7 9.98e−7

H-HSS

IT 66 35 50 70 163 252

CPU 0.29 0.15 0.22 0.31 0.71 1.10

RES 9.57e−7 7.53e−7 9.88e−7 9.83e−7 9.59e−7 9.81e−7

MWZ1-HSS

IT 32 41 58 70 113 115

CPU 0.81 1.03 1.44 1.73 2.80 2.84

RES 9.58e−7 8.70e−7 9.26e−7 9.72e−7 9.96e−7 9.93e−7

MWZ2-HSS

IT 38 43 56 62 83 92

CPU 0.19 0.21 0.27 0.30 0.41 0.45

RES 4.28e−7 9.56e−7 9.77e−7 9.77e−7 9.29e−7 9.83e−7

123



The generalized HSS method with a flexible... 551

0 10 20 30 40 50 60 70
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration Number

R
el

at
iv

e 
R

es
id

ua
l

BGN−HSS

H−HSS

MWZ−HSS

0 20 40 60 80 100 120 140 160 180
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration Number

R
el

at
iv

e 
R

es
id

ua
l

BGN−HSS

H−HSS

MWZ−HSS

(a) (b)

Fig. 1 Relative residual versus iteration step for the BGN-HSS, H-HSS and MWZ2-HSS methods with
m = 32

Example 3.2 [8]We solve the linear system Ax = b, where A is a 2-by-2 blockmatrix
as follows:

A =
(

B E
−ET 0.5I

)
,

where

B =
(
I ⊗ TH + TH ⊗ I 0

0 I ⊗ TH + TH ⊗ I

)
∈ R

2m2×2m2
, E =

(
I ⊗ F
F ⊗ I

)
∈ R

2m2×m2
,

with

TH =

⎛
⎜⎜⎜⎜⎝

2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎠ ∈ R

m×m, F = δh ·

⎛
⎜⎜⎜⎝

1
−1 1

. . .
. . .

−1 1

⎞
⎟⎟⎟⎠ ∈ R

m×m,

and h = 1
m+1 being the discretization mesh-size.

In this example, the total number of variables is 3m2, and the right-hand side vector
b is taken to be b = Ax∗ with x∗ = (1, 1, . . . , 1)T ∈ R

n being the exact solution.
In Table 2, we provide the iteration numbers, the CPU times and the RES values

of BGN-HSS, H-HSS, MWZ1-HSS and MWZ2-HSS methods for Example 3.2 with
respect to different choices of the problem parameter δ as well as the problem size m.
Clearly, the iteration steps of MWZ2-HSS method is much less than those of H-HSS
and BGN-HSS methods. For the case δ = 1000, when the problem size m becomes
large the iteration steps of MWZ2-HSS method unchange but those of BGN-HSS and
H-HSS methods are increasing. As for the computing time, the situation is almost the
same except for MWZ1-HSS method.
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Table 2 Iteration Step, CPUTime, andRES of BGN-HSS, H-HSS,MWZ1-HSS andMWZ2-HSSmethods
for Example 3.2

Method m δ = 10 δ = 100 δ = 1000

IT CPU RES IT CPU RES IT CPU RES

BGN-HSS 16 83 1.08 9.41e−7 44 0.10 9.61e−7 44 0.10 9.99e−7

24 76 0.39 9.74e−7 64 0.33 8.83e−7 64 0.33 9.05e−7

32 101 0.96 9.54e−7 83 0.80 9.41e−7 83 0.80 9.40e−7

H-HSS 16 172 0.39 9.94e−7 56 0.13 9.55e−7 52 0.12 9.10e−7

24 369 1.89 9.82e−7 108 0.56 9.23e−7 85 0.44 9.44e−7

32 631 6.13 9.99e−7 179 1.74 9.48e−7 130 1.25 9.50e−7

MWZ1-HSS 16 83 1.08 9.41e−7 27 0.36 9.71e−7 37 0.49 8.61e−7

24 192 5.29 9.59e−7 56 1.57 8.86e−7 45 1.28 9.81e−7

32 336 20.10 9.80e−7 99 5.80 9.29e−7 62 3.62 9.53e−7

MWZ2-HSS 16 44 0.11 8.86e−7 36 0.09 7.62e−7 40 0.10 7.25e−7

24 58 0.33 9.35e−7 45 0.24 7.80e−7 40 0.24 8.42e−7

32 69 0.86 9.69e−7 61 0.74 8.38e−7 42 0.52 8.64e−7

Furthermore, we use the following singular linear system to further examine the
effectiveness of MWZ2-HSS method. Note that H-HSS method fails for this example.
The generalized HSS method proposed by Li et al. [20] (as the above manner, denoted
as LLP-GHSS) could be applied for comparison.

Example 3.3 [3] Consider the two-dimensional variable-coefficient second-order dif-
ferential equation satisfying the periodic boundary condition given as follows:

⎧⎪⎨
⎪⎩

− ∂
∂x

(
c(x, y) ∂u

∂x

)
− ∂

∂y

(
c(x, y) ∂u

∂y

)
+ γ

(
∂u
∂x + ∂u

∂y

)
= f (x, y), (x, y) ∈ (0, 1) × (0, 1),

u(x, 0) = u(x, 1), x ∈ (0, 1),
u(0, y) = u(1, y), y ∈ (0, 1).

(3.2)
The right-hand side vector is taken to be b = Ax∗ with x∗ = (1, 2, . . . , n)T being the
exact solution.

When c(x, y) ≡ 1, the differential equation (3.2) is discretized by using the same
approach as Example 3.1, with the equidistant stepsize h = 1

m and n = m2. So we can
get the real linear systemwith the singular and positive semi-definite n-by-n coefficient
matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� −(1 − Re)I 0 · · · 0 −(1 + Re)I
−(1 + Re)I � −(1 − Re)I · · · 0 0

0 −(1 + Re)I � · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · � −(1 − Re)I
−(1 − Re)I 0 0 · · · −(1 + Re)I �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n,
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Table 3 Iteration Step, CPUTime, andRES of BGN-HSS, H-HSS,MWZ1-HSS andMWZ2-HSSmethods
for Example 3.3

m Method β

5 10 102 103 104 105

16 BGN-HSS

IT 43 44 48 48 48 48

CPU 0.05 0.05 0.06 0.06 0.06 0.12

RES 8.01e−7 8.62e−7 8.09e−7 8.53e−7 8.53e−7 8.54e−7

LLP-GHSS

IT 24 40 34 32 32 32

CPU 0.03 0.05 0.04 0.04 0.04 0.07

RES 7.77e−7 9.50e−7 7.75e−7 9.99e−7 9.93e−7 9.93e−7

MWZ1-HSS

IT 196 195 174 141 118 94

CPU 0.71 0.71 0.66 0.62 0.74 0.74

RES 9.59e−7 9.81e−7 9.51e−7 9.86e−7 9.68e−7 9.50e−7

MWZ2-HSS

IT 21 20 26 26 26 26

CPU 0.04 0.03 0.04 0.04 0.05 0.07

RES 6.87e−7 9.66e−7 7.31e−7 6.65e−7 6.61e−7 6.61e−7

24 BGN-HSS

IT 61 63 70 70 70 70

CPU 0.17 0.18 0.21 0.22 0.22 0.57

RES 8.42e−7 8.41e−7 8.91e−7 9.94e−7 9.95e−7 9.95e−7

LLP-GHSS

IT 34 59 52 48 48 48

CPU 0.10 0.18 0.16 0.15 0.15 0.37

RES 7.85e−7 9.53e−7 8.44e−7 8.01e−7 7.88e−7 7.88e−7

MWZ1-HSS

IT 184 184 170 136 110 88

CPU 1.77 1.80 1.65 1.59 1.76 2.04

RES 9.93e−7 9.79e−7 9.83e−7 9.52e−7 9.91e−7 9.42e−7

MWZ2-HSS

IT 25 25 27 26 26 26

CPU 0.09 0.09 0.11 0.09 0.11 0.22

RES 7.38e−7 9.55e−7 4.54e−7 8.34e−7 8.11e−7 8.11e−7

32 BGN-HSS

IT 78 80 91 93 93 93

CPU 0.43 0.45 0.53 0.54 0.54 1.81

RES 8.72e−7 9.63e−7 9.88e−7 8.93e−7 8.95e−7 8.95e−7
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Table 3 continued

m Method β

5 10 102 103 104 105

LLP-GHSS

IT 44 77 71 63 63 63

CPU 0.28 0.44 0.42 0.37 0.37 1.19

RES 7.74e−7 9.48e−7 9.21e−7 8.43e−7 8.19e−7 8.19e−7

MWZ1-HSS

IT 177 177 167 130 106 88

CPU 3.38 3.46 3.39 3.14 3.66 4.23

RES 9.87e−7 9.78e−7 9.52e−7 9.91e−7 9.65e−7 9.31e−7

MWZ2-HSS

IT 31 32 34 43 43 43

CPU 0.22 0.22 0.26 0.29 0.44 0.82

RES 9.58e−7 5.62e−7 5.90e−7 4.17e−7 3.56e−7 3.55e−7

where �∈ R
m×m is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 + Re 0 · · · 0 −1 − Re

−1 − Re 4 −1 + Re · · · 0 0
0 −1 − Re 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −1 + Re

−1 + Re 0 0 · · · −1 − Re 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and Re is defined by (3.1).
In Table 3, we list the numbers of iteration steps, the CPU times and the RES values

of BGN-HSS, LLP-HSS,MWZ1-HSS andMWZ2-HSSmethods for Example 3.3with
respect to different choices of the problem parameter β as well as the problem size
m.

FromTable 3, we see thatMWZ1-HSSmethod is not sensitive to the shift-parameter
αk+1. In this table, all methods can get a satisfactory approximation for solving this
singular linear system. Evidently, the number of iteration steps tends to a constant
when β becomes large. Table 3 shows that MWZ2-HSS method requires less iteration
steps and computing times than BGN-HSS and LLP-GHSS methods. It is also noted
that MWZ2-HSS method needs to compute the updated optimal shift-parameter for
every 5 iteration steps, while BGN-HSS and LLP-GHSS methods do not require
this additional computation. In Fig. 2, we further show the numerical advantages
of MWZ2-HSS method over the other three methods for different values of β and
n.
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Fig. 2 Relative residual versus iteration number for the BGN-HSS, LLP-HSS and MWZ2-HSS iteration
methods with respect to the different n

4 Conclusion

In this paper, we propose a generalized HSS iteration method for solving the non-
Hermitian positive definite system of linear equations. The numerical experiments
show that the proposed MWZ2-HSS method is superior to the methods given in [9,19,
20]. Even though the coefficient matrix is singular and non-Hermitian positive semi-
definite, the new iteration method can gain almost the same excellent properties as the
HSS method.
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