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1 Introduction

The construction of modified equation is generally the first step of the backward error
analysis for the numerical solution of differential equations, which has obtained much
success during the last decades [8,9,11,12], especially in the qualitative analysis of
symplectic methods for Hamiltonian systems [5,14,22,23,26–28,31,35]. It constructs
perturbed Hamiltonian systems to approximate the symplectic methods, reveals the
reason for their long-time good behavior, and implies the construction of higher order
methods. For a more detailed review of these see e.g. the monographs [13,17].

The extension of the modified equations to the stochastic context is a relatively
new topic. To knowledge of the authors, some prior work include [1,6,25,29,34,36],
and so on. In [34], linear Langevin equations are considered. In [29], modified
equations that approximate the forward and backward Euler methods in the sense
of weak convergence for Itô stochastic differential equations (SDEs) with additive
noise are given, with the discussion of extension to other type of equations and
approximation. Zygalakis [36] describes a general framework for deriving modi-
fied equations for SDEs with respect to weak convergence, using weak stochastic
Taylor expansions. Debussche and Faou [6] builds modified equations not at the
level of the SDEs, but at the level of the Kolmogorov generators associated with
the process solution of the SDEs. Pavliotis et al. [25] uses modified equations to
exhibit the poor behavior of the Euler methods for small random perturbations of
Hamiltonian flows, and [1] proposes a new method for constructing numerical inte-
grators with high weak order for the time integration of SDEs, inspired by the theory
of stochastic modified equations. The recent work [2] analyses sufficient conditions
for the Lie–Trotter splitting to preserve the invariant measure of nonlinear ergodic
Langevin dynamics, with the application of the stochastic backward error analy-
sis.

Anton, Deng and Wong have developed in their recent article [4] the approach of
constructing weak stochastic symplectic methods using generating functions. In this
paper, we attempt to establish modified equations of weak k + k′ order apart from
the k-th order weakly convergent symplectic methods, that is, stochastic symplec-
tic methods with respect to weak convergence and of weak order k, for stochastic
Hamiltonian systems in terms of their generating functions, which is an extension
of the approach producing modified equations for deterministic symplectic meth-
ods employing their generating functions [5,23]. In case that the noises are additive,
or they are multiplicative but the Hamiltonian functions Hr (p, q), r ≥ 1 asso-
ciated to the diffusion part depend only on p or only on q, the approach can
work, and we find in such situations that the modified equation of the weakly
convergent symplectic methods are again perturbed stochastic Hamiltonian sys-
tems.

The contents are arranged as follows. Section 2 is an introduction of the stochastic
modified equations theory. Section 3 reviews the stochastic generating function theory
for stochastic symplectic methods. In Sect. 4 we develop the approach of constructing
modified equations of weakly convergent symplectic methods via their generating
functions. Section 5 gives some examples, for which numerical tests are performed in
Sect. 6. Section 7 is a brief conclusion.
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2 Stochastic modified equations

Given a stochastic differential equation

dX (t) = a(X)dt +
m∑

r=1

σr (X)dWr (t), X (0) = x, (2.1)

where the drift and diffusion coefficients a(X) and σr (X) are Rd → Rd functions
satisfying conditions that guarantee the existence and uniqueness of the solution (see
e.g. [18,24] for details). W (t) = (W1(t), . . . ,Wm(t))T is m-dimensional standard
Wiener process. A numerical approximation of it X0, X1, . . . with step size h is said
to converge weakly of order p, if for any T > 0 with NT h = T

|E(φ(XNT )) − E(φ(X (T )))| = O(h p) (2.2)

forφ ∈ C2p+1
P (Rd ,R), the space of 2p+1 times continuously differentiable functions

mapping fromRd toRwhich, together with their partial derivatives up to order 2p+1
have polynomial growth.As test functions, it is usually enough to consider polynomials
up to order 2p + 1.

In the aforementioned literature, the q-th order stochastic modified equation for a
weakly convergent numerical method is the modified SDE

d X̃ = A(X̃)dt +
m∑

r=1

Γr (X̃)dWr (t) (2.3)

with

A(X̃) = a(X̃) + a1(X̃)h + a2(X̃)h2 + · · · + aq(X̃)hq

Γr (X̃) = σr (X̃) + σr,1(X̃)h + · · · + σr,q(X̃)hq ,
(2.4)

where the functions ai and σr,i are to be determined such that for any T > 0 with
T = hNT

|E(φ(XNT )) − E(φ(X̃(T )))| = O(h p+q ′
), (2.5)

for some q ′ > 0, meaning that the solution of (2.3) is weakly q ′-order ’closer’ to the
numerical solution than the SDE (2.1) does. In the ODE case, the modified equation
can fit its corresponding numerical method with high accuracy [13,36].

In [36], the functions ai and σr,i are found by using the Taylor expansion of
E(φ(X)|X (0) = x), i.e., the Taylor expansion of the solution to the backward Kol-
mogorov equation associated with the SDE (2.1)

∂u

∂t
= L0u, u(x, 0) = φ(x), (2.6)
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1134 L. Wang et al.

where, in the case of d = m = 1 in (2.1),L0u := a(x) dudx + 1
2σ

2(x) d
2u

dx2
. The solution

of probabilistic sense of (2.6) is just [24]

u(x, t) = E(φ(x(t))|x(0) = x), (2.7)

for which it holds

u(x, h) − φ(x) =
N∑

k=0

hk+1

(k + 1)!L
k+1
0 φ(x) + O(hN+2) (2.8)

if u is N + 1 times differentiable with respect to t .
The expectation of φ of a one-step numerical approximation of weak order p,

E(φ(x(h))|x(0) = x) =: unum(x, h) should have expansion coinciding with (2.8)
up to terms of order O(h p) which corresponds a local error of order p + 1. On the
other hand, there is the backward Kolmogorov equation associated with the modified
equation (2.3)

∂umod

∂t
= L humod , umod(x, 0) = φ(x), (2.9)

with L hu = A(x) dudx + 1
2Γ

2(x) d
2u

dx2
for d = m = 1. To obtain a modified equation

which is q ′ order closer to the numerical method than the exact solution does, one
needs to equate the expansion of unum(x, h) which is known from the numerical
method itself, and the expansion of umod(x, h) which contains unknown functions
to be determined, up to terms of order O(h p+q ′

). In this way the assumed unknown
functions in the modified equations can be found [36].

In this paper, we construct the modified equations for the weakly convergent
stochastic symplectic methods, not based on the backward Kolmogorov equations
associated with the stochastic Hamiltonian systems, but via employing the stochastic
generating functions that produce the weakly convergent symplectic schemes, which
are introduced in the following section.

3 Generating functions for weakly convergent stochastic symplectic
methods

Given a stochastic Hamiltonian system

dP = −∂H

∂Q
dt −

m∑

r=1

∂Hr

∂Q
◦ dWr (t), P(0) = p,

dQ = ∂H

∂P
dt +

m∑

r=1

∂Hr

∂P
◦ dWr (t), Q(0) = q,

(3.1)
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where P, Q, p, q ∈ Rd , H(P, Q), Hr (P, Q) are Hamiltonian functions, and
(W1(t), . . . ,Wm(t))T is a m-dimensional standard Wiener process. The small circle
‘◦’ before dWr (t) denotes the SDEs of Stratonovich sense.

It is known that this system possesses the symplectic structure [19]

dP(t) ∧ dQ(t) = dp ∧ dq, ∀t ≥ 0. (3.2)

Anumerical discretization (Pn, Qn)n that preserves this structure is called a symplectic
method, characterized by

dPn+1 ∧ dQn+1 = dPn ∧ dQn, ∀n ∈ Z, n ≥ 0. (3.3)

Due to inheritation of the symplectic structure of the original systems, the sym-
plectic methods are in most cases superior to the non-symplectic ones in tracking
the phase trajectories of the underlying continuous Hamiltonian dynamical systems
in the long time simulation, both in the deterministic and the stochastic context, as
illustrated in [4,20], etc. Also from the viewpoint of structure preservation, symplectic
methods have, in general, good performance, although it is interesting to observe some
exceptions such as the example in [2] for the simulation of the invariant measure of
Langevin dynamics.

To construct symplectic methods, the stochastic generating function approach
was established [3,4,7,32,33]. It is based on the fact that each symplectic mapping
(Pn, Qn) 	→ (Pn+1, Qn+1) can be associatedwith a generating function [7,10,13,32],
e.g., the first kind of generating function S1(Pn+1, Qn, h), h = tn+1 − tn , such that

Pn+1 = Pn − ∂S1

∂Qn
,

Qn+1 = Qn + ∂S1

∂Pn+1
,

(3.4)

Note that such expressions as ∂S1
∂Q represent d-dimensional vectors. There are other

generating functions such as S2(pn, qn+1, h) and S3
(
pn+pn+1

2 ,
qn+qn+1

2 , h
)
, as illus-

tration we only consider S1 in this article. Methods based on the other generating
functions are similar.

It is given that [7,32,33], almost surely, the phase flowof the stochasticHamiltonian
system (3.1) can be generated by the generating function S1(P(t), q, t) via the relation

p = P(t) + ∂S1

∂q
(P(t), q, t), Q(t) = q + ∂S1

∂P
(P(t), q, t). (3.5)

S1(P(t), q, t) can be assumed to possess the series expansion

S1(P(t), q, t) =
∑

α

G1
α(P(t), q)Jα, (3.6)
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whereα = ( j1, j2, . . . , jl) denotes themulti-index of the stochasticmultiple integrals,
ji ∈ {0, 1, . . . ,m} (i = 1, . . . , l), l ≥ 1, and

Jα =
∫ t

0

∫ sl

0
· · ·

∫ s2

0
◦dWj1(s1) ◦ dWj2(s2) ◦ · · · ◦ dWjl (sl). (3.7)

For convenience denote ds = dW0(s). The upper index 1 in G1
α means that the

coefficient functions G belong to the first kind of generating function.
To determine the coefficients G1

α , the notations Λα1,...,αk are introduced, which
can be defined recursively as follows [3,7]. First, define the concatenation ′∗′ of the
indices α = ( j1, . . . , jl) and α′ = ( j ′1, . . . , j ′l ′) as α ∗ α′ = ( j1, . . . , jl , j ′1, . . . , j ′l ′).
The concatenation of a set of multi-indices Λ and α is Λ ∗ α = {β ∗ α|β ∈ Λ}. Then,
define

Λα1,α2
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{( j1, j ′1), ( j ′1, j1)}, if l = l ′ = 1
{Λ

( j1),α2− ∗ ( j ′l ′), α2 ∗ ( j1)}, if l = 1, l ′ �= 1
{Λ

α1−,( j ′1)
∗ ( jl), α1 ∗ ( j ′1)}, if l �= 1, l ′ = 1

{Λα1−,α2
∗ ( jl),Λα1,α2− ∗ ( j ′l ′)} if l �= 1, l ′ �= 1

(3.8)

For k > 2, define Λα1,...,αk = {Λβ,αk |β ∈ Λα1,...,αk−1}.
Denote H = H0. The G1

α are [3,7]

G1
α =

l(α)−1∑

i=1

1

i !
d∑

k1,...,ki=1

∂ i Hr

∂qk1 · · · ∂qki
∑

l(α1)+···+l(αi )=l(α)−1
α−∈Λα1,...,αi

∂G1
α1

∂Pk1
· · · ∂G1

αi

∂Pki

(3.9)

for α = (i1, . . . , il−1, r) with l > 1, i1, . . . , il−1, r ∈ {0, 1, . . . ,m}, and there is no
duplicate in α. If there are duplicates in α, one can still use the formula after assigning
different subscripts to the duplicates. For l(α) = 1, i.e., α = (r), then

G1
(r) = Hr . (3.10)

Note that, l(α) denotes the length of α, and α− is the multi-index resulted from
discarding the last index of α.

With the G1
α given in (3.9), replacing the t by h, P by pn+1, and q by qn in (3.6),

and truncating the series (3.6) to certain terms, a symplectic scheme of corresponding
order can be obtained via the relation (3.4).

Given the multi-index α = ( j1, j2, . . . , jl) and an adapted right continuous process
f with left hand limits, define the multiple Itô integral [16]

Iα :=
∫ t

0

∫ sl

0
· · ·

∫ s2

0
dWj1(s1)dWj2(s2) · · · dWjl (sl), (3.11)
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and

Iα[ f (·)]0.t :=
⎧
⎨

⎩

f (t), if l = 0,∫ t
0 Iα−[ f (·)]0,sds, if l ≥ 1 and jl = 0,∫ t
0 Iα−[ f (·)]0,sdW jl

s , if l ≥ 1 and jl ≥ 1.
(3.12)

Then it holds the following relationship between the multiple Stratonovich integrals
Jα and the multiple Itô integrals Iα [16]

Jα = I( jl )[Jα−] + χ{ jl= jl−1 �=0} I(0)
[
1

2
J(α−)−

]
, l(α) ≥ 2, (3.13)

where χA denotes the indicator function of set A and for l(α) = 1, Jα = Iα . To
obtain a symplectic scheme of weak convergence order k, one can firstly transform
the multiple Stratonovich integrals Jα (3.7) to the multiple Itô integrals Iα (3.11).
Then, one should include in the truncation of the series (3.6) all terms with index α

satisfying l(α) ≤ k [3,4,7,16].
In Sect. 5, some examples of weakly convergent symplectic schemes for stochastic

Hamiltonian systems produced by the generating functions are illustrated.

4 Modified equations for weakly convergent stochastic symplectic
schemes via their generating functions

Inspired by the modified equation (2.3) with (2.4), we prove the following theorem
about the modified equations of weakly convergent symplectic methods for stochastic
Hamiltonian systems (3.1).

Theorem 4.1 Given a stochastic Hamiltonian system (3.1) for which the noises
are additive, or the Hr (p, q), r ≥ 1 depend only on p or only on q. Suppose
it has the generating function S1(P(t), q, t), and a weakly convergent symplectic
scheme ψh : (p, q) 	→ (P, Q) produced by the generating function S1(P, q, h) =∑

α∈Λψ
F1

α (P, q) Ī hα , where F1
α (P, q) is defined on an open set D and can be a com-

bination of some functions G1
β(P, q) for appropriate multi-indices β when α is fixed,

and Ī hα are appropriate realizations of the multiple stochastic integrals I hα as in (3.11)
defined on (0, h). Λψ is the set of indices associated with ψh. Then the modified
equation of the weakly convergent symplectic scheme ψh is a stochastic Hamiltonian
system

d P̃ = −∂ H̃0

∂ Q̃
dt −

m∑

r=1

∂ H̃r

∂ Q̃
◦ dWr (t), P̃(0) = p,

d Q̃ = ∂ H̃0

∂ P̃
dt +

m∑

r=1

∂ H̃r

∂ P̃
◦ dWr (t), Q̃(0) = q,

(4.1)

123
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where

H̃0 = H + H [1]
0 h + H [2]

0 h2 + · · · ,

H̃r = Hr + H [1]
r h + H [2]

r h2 + · · · ,
(4.2)

and H [i]
j (P̃, Q̃) are defined on D for j = 0, 1, 2, . . . ,m, and i = 1, 2, . . ..

Proof For convenience, denote H = H [0]
0 , Hr = H [0]

r . The proof is also the procedure

of finding the unknown functions H [i]
j , for j = 0, 1, 2, . . . ,m, and i = 1, 2, . . ..

Suppose the generating function that generates the stochastic Hamiltonian system
(4.1) is S̃1(P̃(t), q, t) which has the expansion

S̃1(P̃, q, t) =
∑

α

G̃1
α(P̃, q, h)Jα. (4.3)

According to the formula (3.9), we have for α = (i1, . . . , il−1, r), with l ≥ 2

G̃1
α =

l(α)−1∑

i=1

1

i !
d∑

k1,...,ki=1

∂ i H̃r

∂qk1 · · · ∂qki
∑

l(α1)+···+l(αi )=l(α)−1
α−∈Λα1,...,αi

∂G̃1
α1

∂ P̃k1
· · · ∂G̃1

αi

∂ P̃ki
, (4.4)

and G̃1
r = H̃r for α = (r). Now suppose

G̃1
α(P̃, q, h) = G1[0]

α (P̃, q) + G1[1]
α (P̃, q)h + G1[2]

α (P̃, q)h2 + · · · . (4.5)

Substituting the series of H̃r in (4.2), and that of G̃1
α j

( j = 1, . . . , i) as in (4.5) into
the right hand side of (4.4), using (4.5) as the left hand side of (4.4), and then compare
like powers of h on both sides of (4.4), we obtain for α = (i1, . . . , il−1, r) with l ≥ 2

G1[k]
α =

l(α)−1∑

i=1

1

i !
d∑

k1,...,ki=1

∑
j+ j1+···+ ji=k

∂ i H [ j]
r

∂qk1 · · · ∂qki

×
∑

l(α1)+···+l(αi )=l(α)−1
α−∈Λα1,...,αi

∂G1[ j1]
α1

∂ P̃k1
· · · ∂G1[ ji ]

αi

∂ P̃ki
, (4.6)

and for α = (r),

G1[k]
(r) = H [k]

r . (4.7)
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According to (4.3) and (4.5), replacing t in (4.3) by h, we get

S̃1(P̃, q, h) =
∑

α

∑

k=0,1,...

G1[k]
α (P̃, q)hk J hα =

∑

α

∑

k=0,1,...

G1[k]
α (P̃, q)

∑

β∈Λ0k ,α

k!Jhβ ,

(4.8)

where 0k denotes the index containing k zeros (0, . . . , 0)︸ ︷︷ ︸
k

. Since hk = k!J0k , the second

equality in (4.8) is due to the relation [3,7]

n∏

i=1

Jαi =
∑

β∈Λα1,...,αn

Jβ. (4.9)

Rearranging the summation terms in (4.8) according to different β, we have

S̃1(P̃, q, h) =
∑

β

⎛

⎜⎜⎜⎝
∑

k=0,...,l(β)−1,
β∈Λ0k ,α

k!τβ(0k, α)G1[k]
α (P̃, q)

⎞

⎟⎟⎟⎠ Jhβ ,

=:
∑

β

Ḡ1
β(P̃, q)Jhβ , (4.10)

where τβ(0k, α) denotes the number of β appearing in Λ0k ,α , and

Ḡ1
β(P̃, q) :=

∑

k=0,...,l(β)−1,
β∈Λ0k ,α

k!τβ(0k, α)G1[k]
α (P̃, q). (4.11)

For simplicity, we denote in the following P̃(h) = P̃ , Q̃(h) = Q̃, P(h) = P , and
Q(h) = Q. Then we have

P̃ = p − ∂ S̃1(P̃, q, h)

∂q
, Q̃ = q + ∂ S̃1(P̃, q, h)

∂ P̃
, (4.12)

which is equivalent to

(
P̃
Q̃

)
=
(
p
q

)
+ J−1∇ S̃1(P̃, q, h), (4.13)

with J =
(

0 1
−1 0

)
.
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Theoretically, the first kind of generating function for strongly convergent sym-
plectic schemes, denoted here by S1s (P, q, h) has the form

S1s (P, q, h) =
∑

β

G1
β(P, q)Jhβ . (4.14)

As is known from e.g. [4], the generating function for weakly convergent symplectic
schemes can be obtained by transforming the Jhβ in (4.14) to their equivalent Itô

integrals I hβ , choosing those terms with indices β satisfying l(β) ≤ k for a k-th order

weakly convergentmethod, and then approximating the chosen I hβ by some appropriate

Ī hβ . This can be expressed as the following, according to the transformation formula
(3.13).

S1(P, q, h) =
∑

β

G1
β(P, q)

∑

α
l(α)≤k

Cβ
α Ī

h
α

=
∑

α
l(α)≤k

⎛

⎝
∑

β

Cβ
αG

1
β(P, q)

⎞

⎠ Ī hα

:=
∑

α
l(α)≤k

F1
α (P, q) Ī hα , (4.15)

where Cβ
α are some constants resulting from the transformation

Jhβ =
∑

α

Cβ
α I

h
α , (4.16)

and F1
α (P, q) =: ∑β Cβ

αG1
β(P, q).

Suppose the symplectic method of weak convergence order k generated by the
S1(P, q, h) above is ψh : (p, q) 	→ (P, Q), that is

P = p − ∂S1(P, q, h)

∂q
, Q = q + ∂S1(P, q, h)

∂P
, (4.17)

which is equivalent to

(
P
Q

)
=
(
p
q

)
+ J−1∇S1(P, q, h). (4.18)

Now we want to let the solution of the modified equation (4.1) be globally weakly
k′ order closer to the numerical method ψh than the exact solution of the original
system (3.1) does, which means (see e.g. [36])

|Eφ(P, Q) − Eφ(P̃, Q̃)| = O(hk+k′+1). (4.19)

123



Modified equations for weakly convergent stochastic symplectic. . . 1141

According to (4.13) and (4.18), for each appropriate test functions φ we have

φ(P, Q) = φ(p, q) + ∇φ(p, q) · J−1∇S1

+ 1

2!∇
2φ(p, q)(J−1∇S1, J−1∇S1) + · · · , (4.20)

where the functions ∇S1 takes value at (P, q, h), and

φ(P̃, Q̃) = φ(p, q) + ∇φ(p, q) · J−1∇ S̃1

+ 1

2!∇
2φ(p, q)(J−1∇ S̃1, J−1∇ S̃1) + · · · , (4.21)

where the function ∇ S̃1 takes value at (P̃, q, h). Taking expectations on both sides of
(4.20), it follows that

E(φ(P, Q)) = φ(p, q) +
d∑

i=1

∂φ

∂pi
(p, q)E

(
−∂S1

∂qi

)
+

d∑

i=1

∂φ

∂qi
(p, q)E

(
∂S1

∂Pi

)

+1

2

d∑

i, j=1

∂2φ

∂pi∂p j
E
(

∂S1

∂qi

∂S1

∂q j

)
−

d∑

i, j=1

∂2φ

∂qi∂p j
E
(

∂S1

∂Pi

∂S1

∂q j

)

+1

2

d∑

i, j=1

∂2φ

∂qi∂q j
E
(

∂S1

∂Pi

∂S1

∂Pj

)
+ · · · . (4.22)

Similarly,

E(φ(P̃, Q̃)) = φ(p, q) +
d∑

i=1

∂φ

∂pi
(p, q)E

(
−∂ S̃1

∂qi

)
+

d∑

i=1

∂φ

∂qi
(p, q)E

(
∂ S̃1

∂ P̃i

)

+1

2

d∑

i, j=1

∂2φ

∂pi∂p j
E

(
∂ S̃1

∂qi

∂ S̃1

∂q j

)
−

d∑

i, j=1

∂2φ

∂qi∂p j
E

(
∂ S̃1

∂ P̃i

∂ S̃1

∂q j

)

+1

2

d∑

i, j=1

∂2φ

∂qi∂q j
E

(
∂ S̃1

∂ P̃i

∂ S̃1

∂ P̃j

)
+ · · · . (4.23)

Thus we have

Eφ(P, Q) − Eφ(P̃, Q̃)

=
d∑

i=1

∂φ

∂pi
(p, q)E

(
∂S1

∂qi
− ∂ S̃1

∂qi

)
+

d∑

i=1

∂φ

∂qi
(p, q)E

(
∂S1

∂Pi
− ∂ S̃1

∂ P̃i

)

+1

2

d∑

i, j=1

∂2φ

∂pi∂p j
E

(
∂S1

∂qi

∂S1

∂q j
− ∂ S̃1

∂qi

∂ S̃1

∂q j

)
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−
d∑

i, j=1

∂2φ

∂qi∂p j
E

(
∂S1

∂Pi

∂S1

∂q j
− ∂ S̃1

∂ P̃i

∂ S̃1

∂q j

)

+1

2

d∑

i, j=1

∂2φ

∂qi∂q j
E

(
∂S1

∂Pi

∂S1

∂Pj
− ∂ S̃1

∂ P̃i

∂ S̃1

∂ P̃j

)
+ · · · , (4.24)

and we need to let every item in the right hand side of (4.24) be not more than
O(hk+k′+1), with k + k′ ≥ 2. Note that, after taking expectations, the terms of order

h
1
2 , h

3
2 , etc. vanish, so we only need to consider terms of integer orders of h. Since the

lowest order of the Jα is 1
2 , the highest degree of the partial derivatives that can produce

h is 2. Analogously, the highest degree of the partial derivatives that can produce hs

is 2s where s is a positive integer.
Therefore, for the coefficients of h, we only need to let them be equal within each

of the following pairs, for i, j = 1, . . . , d,

E
∂S1

∂qi
and E

∂ S̃1

∂qi
; E

∂S1

∂Pi
and E

∂ S̃1

∂ P̃i
; E

(
∂S1

∂qi

∂S1

∂q j

)
and E

(
∂ S̃1

∂qi

∂ S̃1

∂q j

)
;

E
∂S1

∂qi

∂S1

∂Pj
and E

∂ S̃1

∂qi

∂ S̃1

∂ P̃j
; E

(
∂S1

∂Pi

∂S1

∂Pj

)
and E

(
∂ S̃1

∂ P̃i

∂ S̃1

∂ P̃j

)
, (4.25)

where the derivatives of S1 take value at (P, q, h), whereas those of S̃1 take value at
(P̃, q, h).

For instance, to compare the first pair in (4.25), we should performTaylor expansion
of the partial derives of S1(P, q, h) and those of S̃1(P̃, q, h) at (p, q, h) recursively,
and we get

E
∂S1

∂qi
(P, q, h)

=
∑

α∈Λψ

E

⎛

⎝∂F1
α

∂qi
(p, q, h) +

d∑

j=1

∂2F1
α

∂qi∂Pj
(p, q, h)

(
−∂S1

∂q j
(P, q, h)

)
+ · · ·

⎞

⎠ Ī hα

and

E
∂ S̃1

∂qi
(P̃, q, h)

=
∑

β

E

⎛

⎝∂Ḡ1
β

∂qi
(p, q, h) +

d∑

j=1

∂2Ḡ1
β

∂qi∂ P̃j
(p, q, h)

(
−∂ S̃1

∂q j
(P̃, q, h)

)
+ · · ·

⎞

⎠ Jhβ ,

where the partial derives of S1 and those of S̃1 inside the expectation E are to be
expanded at (p, q, h) in the same way once again and further on. In this way we can

compare like powers of h in E ∂S1
∂qi

(P, q, h) and E ∂ S̃1
∂qi

(P̃, q, h).
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It is worth mentioning that, the Ī hα are approximations of I hα , and the approximation
error can be controlled by choosing appropriate truncation boundary of the Gaussian
random variables so that it will affect neither the convergence order of the numerical
methods, nor the finding of the modified equation of desired order by comparing like
powers of h within each pair, as will be explained in more details in Appendix 1.

Notice that the pairs given in (4.25) contain all possible hi with i ≥ 1, so for the
coefficients of h2, the pairs in (4.25) still need to be compared, and in addition, we
also need to have the coefficients of h2 equal within each of the following pairs, for
i, j, l, s = 1, . . . , d,

E
(

∂S1

∂qi

∂S1

∂q j

∂S1

∂ql

)
and E

(
∂ S̃1

∂qi

∂ S̃1

∂q j

∂ S̃1

∂ql

)
;

E
(

∂S1

∂qi

∂S1

∂q j

)
∂S1

∂Pl
and E

(
∂ S̃1

∂qi

∂ S̃1

∂q j

)
∂ S̃1

∂ P̃l
;

E
∂S1

∂qi

(
∂S1

∂Pj

∂S1

∂Pl

)
and E

∂ S̃1

∂qi

(
∂ S̃1

∂ P̃j

∂ S̃1

∂ P̃l

)
;

E
(

∂S1

∂Pi

∂S1

∂Pj

∂S1

∂Pl

)
and E

(
∂ S̃1

∂ P̃i

∂ S̃1

∂ P̃j

∂ S̃1

∂ P̃l

)
;

E
(

∂S1

∂qi

∂S1

∂q j

∂S1

∂ql

∂S1

∂qs

)
and E

(
∂ S̃1

∂qi

∂ S̃1

∂q j

∂ S̃1

∂ql

∂ S̃1

∂qs

)
;

E
(

∂S1

∂qi

∂S1

∂q j

∂S1

∂ql

)
∂S1

∂Ps
and E

(
∂ S̃1

∂qi

∂ S̃1

∂q j

∂ S̃1

∂ql

)
∂ S̃1

∂ P̃s
;

E
(

∂S1

∂qi

∂S1

∂q j

)(
∂S1

∂Pl

∂S1

∂Ps

)
and E

(
∂ S̃1

∂qi

∂ S̃1

∂q j

)(
∂ S̃1

∂ P̃l

∂ S̃1

∂ P̃s

)
;

E
∂S1

∂qi

(
∂S1

∂Pj

∂S1

∂Pl

∂S1

∂Ps

)
and E

∂ S̃1

∂qi

(
∂ S̃1

∂ P̃j

∂ S̃1

∂ P̃l

∂ S̃1

∂ P̃s

)
;

E
(

∂S1

∂Pi

∂S1

∂Pj

∂S1

∂Pl

∂S1

∂Ps

)
and E

(
∂ S̃1

∂ P̃i

∂ S̃1

∂ P̃j

∂ S̃1

∂ P̃l

∂ S̃1

∂ P̃s

)
. (4.26)

Further on, for a modified equation of weak k + k′ order apart from the numerical
method, the coefficients in pairs up to those of 2(k + k′)-th power of the partial
derivatives of S1 and S̃1 need to be equated. In this process the unknown functions
H [i]

j for j = 0, 1, 2, . . . and i = 1, 2, . . . can be determined.
Meanwhile, we obtain the inequalities implying the boundary of the truncated

Gaussian random variables in Ī hα that guarantees the desired convergence order of the
modified equation not being affected by the error between Ī hα and I hα , See Appendix
1 for an illustrating explanation.
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Notice that, it is natural that we want to have the solution for the basic non-trivial
case where k = 1 and k′ = 1. In this case, as we compare the coefficients of h2 in e.g.

E
(

∂S1
∂qi

)2
and E

(
∂ S̃1
∂qi

)2
, we should have

(
∂

∂qi

(
G1

(0) + 1

2

m∑

r=1

G1
(r,r)

))2

=
(

∂

∂qi

(
Ḡ1

(0) + 1

2

m∑

r=1

Ḡ1
(r,r)

))2

+1

2

m∑

r=1

(
∂

∂qi
Ḡ(r,r)

)2

, (4.27)

where the functions take values at (p, q). Since

G1
(0)(p, q) = Ḡ1

(0)(p, q), G1
(r,r)(p, q) = Ḡ1

(r,r)(p, q),

we must have

∂

∂qi
Ḡ(r,r) = 0, r = 1, . . . ,m, i = 1, . . . , d. (4.28)

Analogously, it should hold

∂

∂pi
Ḡ(r,r) = 0, r = 1, . . . ,m, i = 1, . . . , d. (4.29)

(4.28), (4.29), (4.11), (4.6) and (4.7) imply that Hr (p, q), r = 1, . . . ,m should either
be linear functions of p and q, or they should depend only on p or only on q, where
the former means that the noises of the stochastic Hamiltonian system are additive,
while the latter includes also multiplicative noises. ��

5 Some examples

Example 1 Modified equation of weak order two apart from the symplectic scheme
of weak order 1 for the linear stochastic oscillator (5.1) i.e. k = 1 and k′ = 1

The linear stochastic oscillator [30]

dp = −qdt + σdW (t), p(0) = 0,

dq = pdt, q(0) = 1 (5.1)

is a stochastic Hamiltonian system with H = 1
2 (p

2 + q2), H1 = −σq. According to
(3.9) and (3.10), the coefficient functions G1

α of the generating function S1 associated
with this system are
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G1
(0) = H = 1

2
(P2 + q2), G1

(1) = H1 = −σq, G1
(1,1) = 0,

G1
(0,1) = −σ P, G1

(1,0) = 0, G1
(1,1,1) = 0, G1

(0,0) = Pq, . . . . (5.2)

To obtain a symplectic method of weak order 1, however, we only need to include in
the series of S1 those terms of Iα with l(α) ≤ 1. For this, we should use the relations

J(0) = I(0), J(1) = I(1), J(1,1) = I(1,1) + 1

2
I(0), (5.3)

to get the correct coefficient of I(0), which is then G1
(0) + 1

2G
1
(1,1), and that of I(1)

which is G1
(1). Thus, the generating function for a symplectic scheme of weak order 1

is

S1(P, q, h) = G1
(1)

√
hξ̄ +

(
G1

(0) + 1

2
G1

(1,1)

)
h, (5.4)

where

ξ̄ =
⎧
⎨

⎩

−Ah, ξ < −Ah,

ξ, |ξ | ≤ Ah,

Ah, ξ > Ah,

with ξ ∼ N (0, 1) and Ah = √
6 ln |h|, where the coefficient 6 is chosen according

to the analysis in Appendix 1.
Using the relation (3.4), the symplectic scheme of weak order 1 generated by (5.4)

is

pn+1 = pn − hqn + σ
√
hξ̄ ,

qn+1 = qn + hpn+1,
(5.5)

which is just the stochastic symplectic Eulermethod.We next find the S̃1 = ∑
α Ḡ1

α J
h
α

associatedwith thismethod.According to the formulae (4.11), (4.6) and (4.7), we have

Ḡ1
(0) = G1[0]

(0) = H [0]
0 = H = 1

2
(P̃2 + q2), Ḡ1

(1) = G1[0]
(1) = H [0]

1 = H1 = −σq,

Ḡ1
(1,1) = G1[0]

(1,1) = ∂H [0]
1

∂q

∂G1[0]
(1)

∂ P̃
= 0,

Ḡ1
(0,1) = G1[0]

(0,1) + G1[1]
(1) = ∂H [0]

1

∂q

∂G1[0]
(0)

∂ p̃
+ H [1]

1 = −σ P̃ + H [1]
1 ,

Ḡ1
(1,0) = G1[0]

(1,0) + G1[1]
(1) = ∂H [0]

0

∂q

∂G1[0]
(1)

∂ P̃
+ H [1]

1 = H [1]
1 ,

Ḡ1
(0,0) = G1[0]

(0,0) + 2G1[1]
(0) = ∂H [0]

0

∂q

∂G1[0]
(0)

∂ P̃
+ 2H [1]

0 = P̃q + 2H [1]
0 ,
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Ḡ1
(1,1,0) = G1[0]

(1,1,0) + G1[1]
(1,1)

= ∂H [0]
0

∂q

∂G1[0]
(1,1)

∂ P̃
+ ∂2H [0]

0

∂q2
∂G1[0]

(1)

∂ P̃

2

+ ∂H [0]
1

∂q

∂G1[1]
(1)

∂ P̃
+ ∂H [1]

1

∂q

∂G1[0]
(1)

∂ P̃

= −σ
∂H [1]

1

∂ P̃

Ḡ1
(0,1,1) = G1[0]

(0,1,1) + G1[1]
(1,1)

= ∂H [0]
1

∂q

∂G1[0]
(0,1)

∂ P̃
+ ∂2H [0]

1

∂q2
∂G1[0]

(1)

∂ P̃

∂G1[0]
(0)

∂ P̃
+ ∂H [0]

1

∂q

∂G1[1]
(1)

∂ P̃
+ ∂H [1]

1

∂q

∂G1[0]
(1)

∂ P̃

= σ 2 − σ
∂H [1]

1

∂ P̃
,

Ḡ1
(1,1,1) = G1[0]

(1,1,1) = ∂H [0]
1

∂q

∂G1[0]
(1,1)

∂ P̃
+ ∂2H [0]

1

∂q2
∂G1[0]

(1)

∂ P̃

2

= 0,

Ḡ1
(1,1,1,1) = G1[0]

(1,1,1,1) = ∂H [0]
1

∂q

∂G1[0]
(1,1,1)

∂ P̃
+ 3

∂2H [0]
1

∂q2
∂G1[0]

(1,1)

∂ P̃

∂G1[0]
(1)

∂ P̃
+ ∂3H [0]

1

∂q3
∂G1[0]

(1)

∂ P̃

3

= 0,
... (5.6)

It is easy to check that the coefficients of h within each pair in (4.25) are naturally
equal. Equating the coefficients of h2 within each pair in (4.25) and (4.26) gives

1

2
σ

∂2H [1]
1

∂p∂q
− ∂H [1]

0

∂q
= 1

2
p, (5.7)

1

2
σ

∂2H [1]
1

∂p2
− ∂H [1]

0

∂p
= 1

2
q, (5.8)

∂H [1]
1

∂q
= 0, (5.9)

∂H [1]
1

∂p
= 1

2
σ. (5.10)

Substituting (5.9) into (5.7) and (5.8) gives

∂H [1]
0

∂p
= −1

2
q,

∂H [1]
0

∂q
= −1

2
p. (5.11)

Thus, according to (4.1)–(4.2), the modified equation of weak second order apart from
the numerical method (5.5) is
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dp =
(
−q + h

p

2

)
dt + σdW (t),

dq =
(
p − h

q

2

)
dt + h

σ

2
dW (t), (5.12)

which coincides with the result (Eq. (4.16) in [36]) about the modified equation of the
symplectic Euler method for a Langevin equation (Eq. (4.14) in [36]) as V ′(q) = q
and γ = 0.

For the modified equation of weak third order apart from the numerical method
(5.5), we need to equate the coefficients of h3 within corresponding pairs to determine
more unknown coefficients H [i]

j , and so on and so forth for even higher orders.

Example 2 Modified equation for a symplectic scheme of weak order 2 for the linear
stochastic oscillator (5.1).

For obtaining a symplectic scheme of weak second order, we still need to calculate
the following G1

α in addition to those in (5.2)

G1
(1,1,0) = 0, G1

(0,1,1) = σ 2, G1
(1,0,1) = 0, G1

(1,1,1,1) = 0. (5.13)

Thus, the corresponding generating function is

S1(P, q, h) = −σq
√
hξ̄ + 1

2
(P2 + q2)h − σ P

(
ξ̄

2
−

√
3η̄

6

)
h

3
2

+
(
Pq + 1

2
σ 2
)
h2

2
, (5.14)

where η̄ is the truncation of the N (0, 1) random variable η which is independent
to ξ and has the same boundary Ah = √

8| ln h| as the random variable ξ̄ does (see

Appendix 1 for the choice of the value 8), and
(

ξ̄
2 −

√
3η̄
6

)
h

3
2 is the simulation of

I(0,1) (see e.g. [21]). The numerical scheme generated by it is

pn+1 = pn − hqn + σ
√
hξ̄ − pn+1

2
h2

qn+1 = qn + hpn+1 − σ

(
ξ̄

2
−

√
3η̄

6

)
h

3
2 + qn

2
h2.

(5.15)

In addition to the Ḡα in (5.6), we also need to have the following

Ḡ1
(0,0,1) = −σq + 2H [2]

1 , Ḡ1
(1,0,0) = 2H [2]

1 , Ḡ1
(0,1,0) = −σq + 2H [2]

1 ,

Ḡ1
(1,0,1,1) = Ḡ1

(1,1,0,1) = Ḡ1
(1,1,1,0) = Ḡ1

(0,1,1,1) = Ḡ1
(1,1,1,1,1) = 0,

Ḡ1
(0,0,0) = q2 + P̃2 + 6H [2]

0 ,

(5.16)

and all the other Ḡ1
αs needed for constructing the modified equation for the symplectic

scheme of weak second order, such as Ḡ1
(0,0,1,1), Ḡ

1
(1,1,1,1,0) and so on, are all equal
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to zero. Comparing coefficients of h, h2 within each pairs of (4.25) and (4.26), and
those of h3 within corresponding pairs, we obtain the following equations

∂H [1]
1

∂q
= 0,

∂H [1]
1

∂p
= 0,

∂H [1]
0

∂q
= 0,

∂H [1]
0

∂p
= 0,

2σ − 6
∂H [2]

1

∂q
= 0,

∂H [2]
1

∂p
= 0, 2q + 6

∂H [2]
0

∂q
= 0, 2p + 6

∂H [2]
0

∂p
= 0,

(5.17)

from which it results that

∂H [2]
0

∂q
= −q

3
,

∂H [2]
0

∂p
= − p

3
,

∂H [2]
1

∂p
= 0,

∂H [2]
1

∂q
= σ

3
. (5.18)

Therefore themodified equation third order apart from the the numericalmethod (5.15)
which is of weak order 2, is

dp =
(
−q + h2

q

3

)
dt +

(
σ − h2

σ

3

)
dW (t),

dq =
(
p − h2

p

3

)
dt. (5.19)

Example 3 Amodel for synchrotron oscillations of particles in storage rings oscillator
The model [20] is

dp = −ω2 sin qdt − σ1 cos q ◦ dW1(t) − σ2 sin q ◦ dW2(t),

dq = pdt, (5.20)

where p and q are scaler. It is a stochastic Hamiltonian system with

H0 = −ω2 cos q + 1

2
p2, H1 = σ1 sin q, H2 = −σ2 cos q. (5.21)

According to (3.9) and (3.10),

G1
(0) = H0 = −ω2 cos q + 1

2
P2, G1

(1) = H1 = σ1 sin q,

G1
(2) = H2 = −σ2 cos q, G1

(1,1) = G(2,2) = 0, . . . . (5.22)

Thus the generating function S1 for a symplectic scheme of weak order 1 is

S1(P, q, h) =
(
G1

(0) + 1

2
G1

(1,1) + 1

2
G1

(2,2)

)
h + G1

(1)

√
hξ̄ + G1

(2)

√
hη̄, (5.23)
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and the scheme generated by it via the relation (3.4) is

pn+1 = pn −
(
hω2 sin qn + √

hξ̄σ1 cos qn + √
hη̄σ2 sin qn

)
,

qn+1 = qn + hpn+1, (5.24)

where the bounds of the truncations ξ̄ and η̄ are both Ah = √
6| ln h|.

For the generating function S̃1(P̃, q, t) of the modified equation of (5.24) at t = h
we have S̃1(P̃, q, h) = ∑

α Ḡα(P̃, q)Jhα , where, according to the formulae (4.11),
(4.6) and (4.7),

Ḡ1
(0) = G1[0]

(0) = H [0]
0 = H0 = −ω2 cos q + 1

2
P̃2,

Ḡ1
(1) = G1[0]

(1) = H [0]
1 = H1 = σ1 sin q,

Ḡ1
(2) = G1[0]

(2) = H [0]
2 = H2 = −σ2 cos q, Ḡ1

(1,1) = G1[0]
(1,1) = ∂H [0]

1

∂q

∂G1[0]
(1)

∂ P̃
= 0,

Ḡ1
(1,2) = G1[0]

(1,2) = ∂H [0]
2

∂q

∂G1[0]
(1)

∂ P̃
= 0, Ḡ1

(2,1) = G1[0]
(2,1) = ∂H [0]

1

∂q

∂G1[0]
(2)

∂ P̃
= 0,

Ḡ1
(2,2) = G1[0]

(2,2) = ∂H [0]
2

∂q

∂G1[0]
(2)

∂ P̃
= 0,

Ḡ1
(0,1) = G1[0]

(0,1) + G1[1]
(1) = ∂H [0]

1

∂q

∂G1[0]
(0)

∂ P̃
+ H [1]

1 = σ1 P̃ cos q + H [1]
1 ,

Ḡ1
(0,2) = G1[0]

(0,2) + G1[1]
(2) = ∂H [0]

2

∂q

∂G1[0]
(0)

∂ P̃
+ H [1]

2 = σ2 P̃ sin q + H [1]
2 ,

Ḡ1
(1,0) = G1[0]

(1,0) + G1[1]
(1) = ∂H [0]

0

∂q

∂G[0]
(1)

∂ P̃
+ H [1]

1 = H [1]
1 ,

Ḡ1
(2,0) = G1[0]

(2,0) + G1[1]
(2) = ∂H [0]

0

∂q

∂G1[0]
(2)

∂ P̃
+ H [1]

2 = H [1]
2 ,

Ḡ1
(1,1,1) = G1[0]

(1,1,1) = ∂H [0]
1

∂q

∂G1[0]
(1,1)

∂ P̃
+ ∂2H [0]

1

∂q2

(
∂G1[0]

(1)

∂ P̃

)2

= 0,

Ḡ1
(1,1,2) = G1[0]

(1,1,2) = ∂H [0]
2

∂q

∂G1[0]
(1,1)

∂ P̃
+ ∂2H [0]

2

∂q2

(
∂G1[0]

(1)

∂ P̃

)2

= 0,

Ḡ1
(1,2,1) = G1[0]

(1,2,1) = ∂H [0]
1

∂q

∂G1[0]
(1,2)

∂ P̃
+ ∂2H [0]

1

∂q2
∂G1[0]

(1)

∂ P̃

∂G1[0]
(1)

∂ P̃
= 0,

Ḡ1
(1,2,2) = G1[0]

(1,2,2) = ∂H [0]
2

∂q

∂G1[0]
(1,2)

∂ P̃
+ ∂2H [0]

2

∂q2
∂G1[0]

(1)

∂ P̃

∂G1[0]
(2)

∂ P̃
= 0,
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Ḡ1
(2,1,1) = G1[0]

(2,1,1) = ∂H [0]
1

∂q

∂G1[0]
(2,1)

∂ P̃
+ ∂2H [0]

1

∂q2
∂G1[0]

(2)

∂ P̃

∂G1[0]
(1)

∂ P̃
= 0,

Ḡ1
(2,1,2) = G1[0]

(2,1,2) = ∂H [0]
2

∂q

∂G1[0]
(2,1)

∂ P̃
+ ∂2H [0]

2

∂q2
∂G1[0]

(2)

∂ P̃

∂G1[0]
(1)

∂ P̃
= 0,

Ḡ1
(2,2,1) = G1[0]

(2,2,1) = ∂H [0]
1

∂q

∂G1[0]
(2,2)

∂ P̃
+ ∂2H [0]

1

∂q2

(
∂G1[0]

(2)

∂ P̃

)2

= 0,

Ḡ1
(2,2,2) = G1[0]

(2,2,2) = ∂H [0]
2

∂q

∂G1[0]
(2,2)

∂ P̃
+ ∂2H [0]

2

∂q2

(
∂G1[0]

(2)

∂ P̃

)2

= 0,

Ḡ1
(0,0) = G1[0]

(0,0) + 2G1[1]
(0) = ∂H [0]

0

∂q

∂G1[0]
(0)

∂ P̃
+ 2H [1]

0 = ω2 P̃ sin q + 2H [1]
0 ,

Ḡ1
(1,1,0) = G1[0]

(1,1,0) + G1[1]
(1,1) = σ1 cos q

∂H [1]
1

∂ P̃
,

Ḡ1
(1,2,0) = G1[0]

(1,2,0) + G1[1]
(1,2) = σ2 sin q

∂H [1]
1

∂ P̃
,

Ḡ1
(2,1,0) = G1[0]

(2,1,0) + G1[1]
(2,1) = σ1 cos q

∂H [1]
2

∂ P̃
,

Ḡ1
(2,2,0) = G1[0]

(2,2,0) + G1[1]
(2,2) = σ2 sin q

∂H [1]
2

∂ P̃
,

Ḡ1
(0,1,1) = G1[0]

(0,1,1) + G1[1]
(1,1) = σ 2

1 cos2 q + σ1 cos q
∂H [1]

1

∂ P̃
,

Ḡ1
(0,1,2) = G1[0]

(0,1,2) + G1[1]
(1,2) = σ1σ2 sin q cos q + σ2 sin q

∂H [1]
1

∂ P̃
,

Ḡ1
(0,2,1) = G1[0]

(0,2,1) + G1[1]
(2,1) = σ1σ2 sin q cos q + σ1 cos q

∂H [1]
2

∂ P̃
,

Ḡ1
(0,2,2) = G1[0]

(0,2,2) + G1[1]
(2,2) = σ 2

2 sin2 q cos q + σ2 sin q
∂H [1]

2

∂ P̃
,

Ḡ1
(1,0,1) = G1[0]

(1,0,1) + G1[1]
(1,1) = σ1 cos q

∂H [1]
1

∂ P̃
,

Ḡ1
(1,0,2) = G1[0]

(1,0,2) + G1[1]
(1,2) = σ2 sin q

∂H [1]
1

∂ P̃
,

Ḡ1
(2,0,1) = G1[0]

(2,0,1) + G1[1]
(2,1) = σ1 cos q

∂H [1]
2

∂ P̃
,

Ḡ1
(2,0,2) = G1[0]

(2,0,2) + G1[1]
(2,2) = σ2 sin q

∂H [1]
2

∂ P̃
,

Ḡ1
(1,1,1,1) = G1[0]

(1,1,1,1) = ∂H [0]
1

∂q

∂G1[0]
(1,1,1)

∂ P̃
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+3
∂2H [0]

1

∂q2
∂G1[0]

(1,1)

∂ P̃

∂G1[0]
(1)

∂ P̃
+ ∂3H [0]

1

∂q3

(
∂G1[0]

(1)

∂ P̃

)3

= 0,

Ḡ1
(1,1,1,2) = G1[0]

(1,1,1,2) = 0, Ḡ1
(1,1,2,1) = G1[0]

(1,1,2,1) = 0,

Ḡ1
(1,1,2,2) = G1[0]

(1,1,2,2) = 0, Ḡ1
(1,2,1,1) = G1[0]

(1,2,1,1) = 0,

Ḡ1
(1,2,1,2) = G1[0]

(1,2,1,2) = 0, Ḡ1
(1,2,2,1) = G1[0]

(1,2,2,1) = 0,

Ḡ1
(1,2,2,2) = G1[0]

(1,2,2,2) = 0, Ḡ1
(2,1,1,1) = G1[0]

(2,1,1,1) = 0,

Ḡ1
(2,1,1,2) = G1[0]

(2,1,1,2) = 0, Ḡ1
(2,1,2,1) = G1[0]

(2,1,2,1) = 0,

Ḡ1
(2,1,2,2) = G1[0]

(2,1,2,2) = 0, Ḡ1
(2,2,1,1) = G1[0]

(2,2,1,1) = 0,

Ḡ1
(2,2,1,2) = G1[0]

(2,2,1,2) = 0, Ḡ1
(2,2,2,1) = G1[0]

(2,2,2,1) = 0,

Ḡ1
(2,2,2,2) = G1[0]

(2,2,2,2) = 0,

...

It can be easily derived that the coefficients of h in each pair of (4.25) are equal.
Equating the coefficients of h2 in each pair of (4.25) and (4.26), we obtain

∂H [1]
0

∂q
+ 1

2

(
−σ1 sin q

∂H [1]
1

∂p
+ σ1 cos q

∂2H [1]
1

∂p∂q

)

+1

2

(
σ2 cos q

∂H [1]
2

∂p
+ σ2 sin q

∂2H [1]
2

∂p∂q

)

= −1

2
ω2 p cos q + 1

2
σ 2
1 sin q cos q − 1

2
σ 2
2 sin q cos q, (5.25)

∂H [1]
0

∂p
+ 1

2
σ1 cos q

∂2H [1]
1

∂p2
+ 1

2
σ2 sin q

∂2H [1]
2

∂p2
= −1

2
ω2 sin q, (5.26)

2

(
σ1 cos q

∂H [1]
1

∂q
+ σ2 sin q

∂H [1]
2

∂q

)
= (σ 2

1 − σ 2
2 )p sin q cos q, (5.27)

2

(
σ1 cos q

∂H [1]
1

∂p
+ σ2 sin q

∂H [1]
2

∂p

)
= −σ 2

1 cos2 q − σ 2
2 sin2 q. (5.28)

Form (5.27) and (5.28) it follows that

∂H [1]
1

∂p
= −1

2
σ1 cos q,

∂H [1]
1

∂q
= 1

2
σ1 p sin q,

∂H [1]
2

∂p
= −1

2
σ2 sin q,

∂H [1]
2

∂q
= −1

2
σ2 p cos q. (5.29)
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Substituting (5.29) into (5.25) and (5.26), we get

∂H [1]
0

∂q
= −1

2
ω2 p cos q,

∂H [1]
0

∂p
= −1

2
ω2 sin q. (5.30)

Thus, the modified equation of weak second order apart from the numerical method
(5.24) is

dp =
(

−ω2 sin q + h

2
ω2 p cos q

)
dt −

(
σ1 cos q + h

2
σ1 p sin q

)
◦ dW1(t)

−
(

σ2 sin q − h

2
σ2 p cos q

)
◦ dW2(t),

dq =
(
p − h

2
ω2 sin q

)
dt − h

2
σ1 cos q ◦ dW1(t) − h

2
σ2 sin q ◦ dW2(t). (5.31)

For higher order modified equations, more Ḡα should be computed, and more equa-
tions should be satisfied, which increases the computational complexity.

Remark 1 Similar to Example 2, where a numerical method of weak convergence
order 2 finds the modified equation of weak third order apart from it, i.e., k = 2 and
k′ = 1, we can also construct the modified equation of weak third order apart from
the numerical method (5.5) which is of weak convergence order 1, that is, k = 1 and
k′ = 2. The details are given in Appendix 2.

Remark 2 For the Kubo oscillator [20]

dp = −aqdt − σq ◦ dW (t), p(0) = p0,

dq = apdt + σ p ◦ dW (t), q(0) = q0, (5.32)

where H1 = σ
2 (p2 + q2), which is non-linear and depends on both p and q, we can

not write the modified equations for weakly convergent symplectic methods using the
generating function approach. However, if we first transform theKubo oscillator (5.32)
to its equivalent Itô form, and then use the Milstein method instead of directly using
a weakly convergent symplectic method, it might be possible to obtain the modified
equation for the non-symplectic Milstein method, applying the procedure given in
[36].

The generating function approach for deriving modified equations for symplectic
methods is therefore subject to further investigation for more general cases, for which
the perturbed Hamiltonian functions H̃r (r ≥ 0) in (4.1) may have to possess a more
delicate formulation.

6 Numerical tests

In this section, we do some numerical experiments to test the validity of our theo-
retical analysis. For the linear stochastic oscillator considered in Example 1 and 2 in
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the previous section, we have constructed the symplectic methods of weak first and
second orders via the generating functions, and established their modified equations
one order closer to the numerical solution than the exact solution does, i.e., the weak
error between the modified equations and the numerical methods are of second and
third orders, for the weak first and second order numerical methods, respectively. For
convenience, we say in the following that the weak orders of the modified equations
are 2 and 3, accordingly. We observe these weak orders via numerical tests. On the
other hand, we draw the phase trajectories of the numerical schemes and that of their
modified equations, both in one sample and in sense of sample means together with
the sample mean trajectory of the exact solution, to testify their closeness. Finally, the
logarithm of the weak errors between the numerical solutions and the exact solution,
and that between the numerical solutions and their modified equations are illustrated
against time t .

The left panel of Fig. 1 plots the value ln |E(P(T ) + Q(T ))2 − E(PNT + QNT )2|
(red-dotted line) and ln |E(P̃(T ) + Q̃(T ))2 − E(PNT + QNT )2| (blue-dotted line)
against ln h for five different step sizes h = [0.1, 0.05, 0.04, 0.02, 0.01] at T = 5,
where NT is the subindex of one of the discrete time point such that tNT = T , and the
(P(T ), Q(T )), (PNT , QNT ) and (P̃(T ), Q̃(T )) represents the phase point of the exact
solution, the numerical method, and the modified equation at time T , respectively. It
can be seen that the weak order of the scheme (5.5) is 1, and the weak order of the
modified equation (5.12) is 2, as indicated by the reference lines of slope 1 and 2,
respectively. Here we take the function φ(P, Q) = (P + Q)2 as the test function
for weak convergence. The right panel plots the sample mean phase trajectories of the
exact solution (green-solid line), the numerical method (5.5) of weak order 1 (red-solid
line), and themodified equation (5.12) (blue-solid line). It can be seen that coincidence
between the numerical method and its modified equation is better than that between
the numerical method and the exact solution. The initial values are p = 0, q = 1, and
σ = 0.3. The expectation E is approximated by taking average over 1000 and 500
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Fig. 1 The weak order of the scheme (5.5) and of its modified equation (5.12) (left), and the sample mean
phase trajectories of (5.5), (5.12) and the exact solution (right)
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Fig. 2 A sample phase trajectory of the numerical solution (5.5) and its modified equation (5.12) (left
panel), and the logarithm of the weak error between the numerical solution (5.5) and the exact solution
(red line), as well as that between the numerical solution (5.5) and its modified equation (5.12) (blue line),
against time t (right panel) (color figure online)

realizations for the left and right panels, respectively, and h = 0.25, T = 50 for the
right panel.

The left panel of Fig. 2 draws one sample trajectory of the numerical method (5.5),
and that of its modified equation (5.12), where near coincidence can be seen. The
right panel illustrates the time evolution of the logarithm of the weak error |E(P(t) +
Q(t))2 −E(Pnt +Qnt )

2| and |E(P̃(t)+ Q̃(t))2 −E(Pnt +Qnt )
2| on the time interval

[0, 100], where nt denotes the subindex of one of the discrete time points such that
tnt = t . It is obvious that the numerical solution is closer to its modified equation than
to the exact solution in the weak sense. The time step size for the numerical method is
h = 0.01, the initial values are taken as p = 0, q = 1, and the coefficient is σ = 0.5.
Again 500 samples are applied to simulating the expectation E.

Note that, a slight drift of the error curves can be seen, in the right panel both
of Fig. 2, and of Fig. 4. The reference line (green solid) is the curve ln(t), which
indicates that the increase is about at the speed of ln(t) as t grows, meaning that the
errors |E(P(t)+Q(t))2−E(Pnt +Qnt )

2| and |E(P̃(t)+ Q̃(t))2−E(Pnt +Qnt )
2| have

the approximate tendency of linear growth with respect to time t . This might be caused
by the fact that the quantities E(P(t)+ Q(t))2, E(Pnt + Qnt )

2, and E(P̃(t)+ Q̃(t))2,
although oscillatory, all have a tendency of linear growth, as is observed in the left
panel of Fig. 5, but with slightly different slope relating to the time step size h. This
is similar to the result regarding the midpoint rule, a symplectic method, applied to
the same system which possesses the linear growth quantity E(P(t)2 + Q(t)2) =
1+ σ 2t with respect to time t , where the midpoint rule produces the numerical linear

growth E(P2
n + Q2

n) = 1 + 4σ 2tn
4+h2

(Theorem 3.2 in [15]). Thus for the midpoint rule,

E(P(t)2 + Q(t)2) − E(P2
nt + Q2

nt ) = h2σ 2

4+h2
t , i.e., a linearly growing mean-square

error.
Similar to the test for Fig. 1, we observe in the test for Fig. 3 the weak order of

the numerical method (5.15) and that of its modified equation (5.19), which is 2 and
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Fig. 3 The weak order of the scheme (5.15) and of its modified equation (5.19) (left), and the sample mean
phase trajectories of (5.15), (5.19) and the exact solution (right)
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Fig. 4 A sample phase trajectory of the numerical solution (5.15) and its modified equation (5.19) (left
panel), and the logarithm of the weak error between the numerical solution (5.15) and the exact solution
(red line), as well as that between the numerical solution (5.15) and its modified equation (5.19) (blue line),
against time t (right panel) (color figure online)

3, respectively, as illustrated by the left panel of Fig. 3. The data setting for the left
panel of Fig. 3 is p = 3, q = 1, σ = 0.3, T = 6, h = [0.5, 0.4, 0.3, 0.25, 0.2], and
φ(P, Q) = (P + Q)2 as the test function. The right panel draws the sample mean
phase trajectories of the exact solution (green-solid line), the numerical method (5.15)
(red-solid line) and the modified equation (5.19) (blue-solid line). Better coincidence
of the sample mean phase trajectory of the numerical method with that of its modified
equation than with that of the exact solution is also visible. The data here are the same
with that for the right panel of Fig. 1.

As can be seen from Fig. 4, the sample phase trajectory produced by the numerical
method (5.15) coincides visually with that of its modified equation (5.19), and the
solution of the modified equation is obviously closer to the numerical solution than
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Fig. 5 Evolution of E(P + Q)2 for the exact solution (green-dotted), the numerical method (5.15) (red-
solid) and the modified equation (5.19) (blue-solid) on the time interval [0, 15] (left panel), and the zoomed
in local observation of the three curves (right panel) (color figure online)

the exact solution of the original system (5.1) does. The data for the left panel are
the same with that for the left panel of Fig. 2. For the right panel, p = 3, q = 0,
σ = 0.3, T = 100, h = 0.1, and the test function is taken as φ(P, Q) = (P + Q)2.
The expectation E is approximated by taking average over 300 samples.

The left panel of Fig. 5 shows the evolution of the oscillatory quantity E(P + Q)2

for the exact solution, the numerical solution (5.15) and its modified equation (5.19),
which coincides visually. Meanwhile, a linear growth tendency with rate σ 2 can be
observed via the reference line (black-solid). The right panel is obtained by zooming in
the left figure, where the numerical solution is obviously closer to itsmodified equation
than to the exact solution. The data for this figure are p = 1, q = 0, σ = 0.3, h = 0.1,
T = 15, and 500 samples for approximating the expectation E.

7 Conclusion

Weconstructmodified equations forweakly convergent stochastic symplecticmethods
using their generating functions, for stochastic Hamiltonian systems with either linear
diffusion-related Hamiltonians, or non-linear ones which depend only on p or only
on q. Applications of the method to three examples succeed in rewriting the modified
equation obtained by anothermethod in existing literature, and in establishing a second
and a third weak order modified equation for a stochastic symplectic method of weak
order 1 and another ofweak order 2, respectively.Numerical experiments showvalidity
of this approach. However, for more general situations, such as the Kubo oscillator,
where the diffusion-related Hamiltonians are non-linear and rely on both p and q,
our method can not work. The reason for and solution to this problem need further
investigation.
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Appendix 1: An illustrating explanation regarding influence of the
approximation error of Ī hα

For example, given a two-dimensional (d = 2) stochastic Hamiltonian system with
additive noise, or the Hr (p, q), r ≥ 1 depend only on p or only on q, and its sym-
plectic scheme of weak order 1, i.e. k = 1. Suppose the generating function of the
scheme is

S1(P, q, h) =
∑

α
l(α)≤1

⎛

⎝
∑

β

Cβ
αG

1
β(P, q)

⎞

⎠ Ī hα ,

and the generating function for the modified equation of the numerical scheme is

S̃1(P̃, q, h) =
∑

α

⎛

⎝
∑

β

Cβ
α Ḡ

1
β(P̃, q)

⎞

⎠ I hα ,

where, for convenience of comparison, we have transformed the Jhβ in S̃1 into com-

bination of some I hα according to (4.16). By definition of Ḡ1
β given in (4.11), we

have

Ḡ1
β(P̃, q) = G1

β(P̃, q) + M1
β(P̃, q),

where M1
β(P̃, q) denote all the other terms except for the first term G1

β(P̃, q) in

Ḡ1
β(P̃, q). A straightforward calculation gives

E
(

∂S1

∂q

)2

− E

(
∂ S̃1

∂q

)2

= E(�2
1) − E(�2 + �3)

2,

where

�1 = ∂

∂q

[
(G1

(0) + 1

2
G1

(1,1))h + G1
(1)ξ̄

√
h

]

�2 = ∂

∂q

[
(G1[0]

(0) + 1

2
G1[0]

(1,1))h + G1[0]
(1) ξ

√
h

]

�3 = ∂

∂q

[
G1[0]

(1,1) I(1,1) + (G1[0]
(1,0) + H [1]

1 )I(1,0)

+(G1[0]
(0,1) + H [1]

1 )I(0,1) + G1[0]
(1,1,1) I(1,1,1) + · · ·

]
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with all the appearing G1
α taking values at (P, q), and the functions coming from Ḡ1

α

taking values at (P̃, q). Thus,

E
(

∂S1

∂q

)2

− E

(
∂ S̃1

∂q

)2

= E(�2
1) − E(�2

2) − E(�2
3) − 2E(�2�3).

Performing Taylor expansion of G1
α(P, q) and those functions from Ḡ1

α(P̃, q) at
(p, q), we get

E(�2
1) − E(�2

2) = h

[
∂G1

(1)

∂q
(p, q)

]2
E(ξ̄2 − ξ2)

+h2
[
Ψ1

(
E(ξ̄2 − ξ2),E(ξ̄4 − ξ4), . . . ,E(ξ̄2(k+k′) − ξ2(k+k′))

)]

+h2
[
Ψ2

(
∂H [1]

(1)

∂q
(p, q),

∂H [1]
(0)

∂q
(p, q),

∂H [2]
(1)

∂q
(p, q),

∂H [2]
(0)

∂q
(p, q), . . .

)]
,

where [20]

ξ̄ =
⎧
⎨

⎩

−Ah, ξ < −Ah,

ξ, |ξ | ≤ Ah,

Ah, ξ > Ah,

with ξ ∼ N (0, 1) and Ah = √
2μ ln |h| with μ ≥ 1. Ψ1 is a linear function of

E(ξ̄2l − ξ2l) (1 ≤ l ≤ k + k′), and Ψ2 is a function of partial derivatives of the
unknown functions H [i]

j . Then,

E
(

∂S1

∂q

)2

− E

(
∂ S̃1

∂q

)2

=
⎡

⎣
(

∂G1
(1)

∂q
(p, q)

)2

E(ξ̄2 − ξ2)h

+h2
(
Ψ1

(
E(ξ̄2 − ξ2),E(ξ̄4 − ξ4), . . . ,E(ξ̄2(k+k′) − ξ2(k+k′))

))
⎤

⎦

+
[
h2
(

Ψ2

(
∂H [1]

(1)

∂q
,
∂H [1]

(0)

∂q
,
∂H [2]

(1)

∂q
,
∂H [2]

(0)

∂q
, . . .

))
− E(�2

3) − 2E(�2�3)

]

:= F1
(
E(ξ̄2 − ξ2),E(ξ̄4 − ξ4), . . . ,E(ξ̄2(k+k′) − ξ2(k+k′))

)

+ F2

(
∂H [1]

(1)

∂q
,
∂H [1]

(0)

∂q
,
∂H [2]

(1)

∂q
,
∂H [2]

(0)

∂q
, . . .

)
,
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where F2 is a function including partial derivatives of the unknown functions H
[i]
j but

without ξ̄ .

To make

∣∣∣∣E
(

∂S1
∂q

)2 − E
(

∂ S̃1
∂q

)2∣∣∣∣ ≤ O(hk+k′+1), we only need |F1| ≤ O(hk+k′+1)

which implies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E[ξ̄ (2k+2k′) − ξ (2k+2k′)] ≤ O(h),

E[ξ̄ (2k+2k′−2) − ξ (2k+2k′−2)] ≤ O(h2),
...

E[ξ̄2 − ξ2] ≤ O(h(k+k′)),

and |F2| ≤ O(hk+k′+1), from which we can derive some partial derivatives of the

unknown functions such as
∂H [i]

j
∂q for some i and j . Similar to the analysis in [20], we

can derive that μ ≥ k + k′ + 1 solves the group of inequalities above. In other words,
as long as we choose μ ≥ k + k′ + 1 in the approximation Ī h1 = ξ̄

√
h in which ξ̄ has

a boundary containing the parameter μ, the approximation error totally contained in
|F1| will be merged into the desired error order of the modified equation O(hk+k′+1),
and it will not affect the determination of the unknown functions H [i]

j which are all
included in the other term F2.

It can be derived similarly that, to guarantee the weakly convergent order k of the
numerical method not being affected by the truncation of the random variable, one
needs to choose μ ≥ k + 1. Therefore, considering both the matching between the
numerical method and its modified equation, and the weakly convergent order of the
numerical method, we choose μ ≥ max{k + k′ + 1, k + 1} = k + k′ + 1.

As long as the approximation error Ī hα can be at last due to truncations of the
Gaussian randomvariables, it can bemerged into the desired error order of themodified
equations via choosing sufficiently large values of μ, similar to the analysis given by
Milstein, Repin and Tretyakov, which implies the possibility of adapting the truncation
method to constructing implicit schemes of arbitrary desired root mean-square orders
s by choosing sufficiently large μ ≥ 2s [20].

Appendix 2: Modified equation with k = 1 and k′ = 2

Here we derive the modified equation that is globally weakly 2 order closer to the
numerical method (5.5) than the true solution of the stochastic system (5.1) does, i.e.
k=1, k′=2. We start by presenting the calculations for finding the functions Ḡ1

α in
addition to those in (5.6),

Ḡ1
(1,0,1) = G1[0]

(1,0,1) + G1[1]
(1,1) = G1[1]

(1,1),

Ḡ1
(0,0,1) = G1[0]

(0,0,1) + 2G1[1]
(0,1) + 2G1[2]

(1) = −σq + 2G1[1]
(0,1) + 2H [2]

1 ,

Ḡ1
(0,1,0) = G1[0]

(0,1,0) + G1[1]
(0,1) + G1[1]

(1,0) + 2G1[2]
(1) = −σq + G1[1]

(0,1) + G1[1]
(1,0) + 2H [2]

1 ,

Ḡ1
(1,0,0) = G1[0]

(1,0,0) + 2G1[1]
(0,1) + 2G1[2]

(1) = 2G1[1]
(1,0) + 2H [2]

1 ,
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Ḡ1
(0,1,1,1) = G1[0]

(0,1,1,1) + G1[1]
(1,1,1) = G1[1]

(1,1,1),

Ḡ1
(1,0,1,1) = G1[0]

(1,0,1,1) + G1[1]
(1,1,1) = G1[1]

(1,1,1),

Ḡ1
(1,1,0,1) = G1[0]

(1,1,0,1) + G1[1]
(1,1,1) = G1[1]

(1,1,1),

Ḡ1
(1,1,1,0) = G1[0]

(1,1,1,0) + G1[1]
(1,1,1) = G1[1]

(1,1,1),

Ḡ1
(0,0,0) = G1[0]

(0,0,0) + 3G1[1]
(0,0) + 6G1[2]

(0) = P̃2 + q2 + 3G1[1]
(0,0) + 6H [2]

0 ,

Ḡ1
(1,1,1,1,0) = Ḡ1

(1,1,1,0,1) = Ḡ1
(1,1,0,1,1) = Ḡ1

(1,0,1,1,1) = Ḡ1
(0,1,1,1,1) = G1[1]

(1,1,1,1),

Ḡ1
(0,0,1,1) = G1[0]

(0,0,1,1) + 2G1[1]
(0,1,1) + 2G1[2]

(1,1) = 2G1[1]
(0,1,1) + 2G1[2]

(1,1),

Ḡ1
(0,1,0,1) = G1[0]

(0,1,0,1) + G1[1]
(0,1,1) + G1[1]

(1,0,1) + 2G1[2]
(1,1) = G1[1]

(0,1,1)+G1[1]
(1,0,1)+2G1[2]

(1,1),

Ḡ1
(0,1,1,0) = G1[0]

(0,1,1,0) + G1[1]
(0,1,1) + G1[1]

(1,1,0) + 2G1[2]
(1,1) = G1[1]

(0,1,1)+G1[1]
(1,1,0)+2G1[2]

(1,1),

Ḡ1
(1,1,0,0) = G1[0]

(1,1,0,0) + 2G1[1]
(1,1,0) + 2G1[2]

(1,1) = 2G1[1]
(1,1,0) + 2G1[2]

(1,1),

Ḡ1
(1,0,1,0) = G1[0]

(1,0,1,0) + G1[1]
(1,0,1) + G1[1]

(1,1,0) + 2G1[2]
(1,1) = G1[1]

(1,0,1)+G1[1]
(1,1,0)+2G1[2]

(1,1),

Ḡ1
(1,0,0,1) = G1[0]

(1,0,0,1) + 2G1[1]
(1,0,1) + 2G1[2]

(1,1) = 2G1[1]
(1,0,1) + 2G1[2]

(1,1).

...

Based on the functions Ḡ1
α listed above, we can reattain the equations (5.7), (5.8),

(5.9) and (5.10) when we compare coefficients of h and h2,

1

2
σ

∂2H [1]
1

∂p∂q
− ∂H [1]

0

∂q
= 1

2
p,

1

2
σ

∂2H [1]
1

∂p2
− ∂H [1]

0

∂p
= 1

2
q,

∂H [1]
1

∂q
= 0,

∂H [1]
1

∂p
= 1

2
σ.

Substituting (5.9) into (5.7) and (5.8), and comparing the coefficients of h3, we get
the following

∂H [1]
0

∂p
= −1

2
q,

∂H [1]
0

∂q
= −1

2
p,

G1[1]
(1,1) = ∂H [1]

1

∂q

∂G[0]
1

∂ P̃
+ ∂H [0]

1

∂q

∂G[1]
1

∂ P̃
= −1

2
σ 2,

G1[1]
(0,1) = ∂H [1]

1

∂q

∂G[0]
0

∂ P̃
+ ∂H [0]

1

∂q

∂G[1]
0

∂ P̃
= 1

2
σq,

G1[1]
(1,0) = ∂H [1]

0

∂q

∂G[0]
1

∂ P̃
+ ∂H [0]

0

∂q

∂G[1]
1

∂ P̃
= 1

2
σq,

G1[1]
(1,1,1) = 0, Ḡ1

(0,0,1) = Ḡ1
(0,1,0) = 2H [2]

1 ,

Ḡ1
(1,0,0) = σq + 2H [2]

1 ,
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∂H [2]
1

∂p
= 0,

∂H [2]
1

∂q
= −1

6
σ, G1[1]

(1,1,1,1) = 0,

G1[1]
(0,1,1) = G1[1]

(1,0,1) = G1[1]
(1,1,0) = G1[1]

(1,1,1,1) = G1[2]
(1,1) = 0,

G1[1]
(0,0) = ∂H [1]

0

∂q

∂G[0]
0

∂ P̃
+ ∂H [0]

0

∂q

∂G[1]
0

∂ P̃
= −1

2
(P̃2 + q2),

Ḡ1
(0,0,0) = −1

2
(P̃2 + q2) + 6H [2]

0 ,

∂H [2]
0

∂p
= 1

6
p,

∂H [2]
0

∂q
= 1

6
q.

According to the definition of the modified equation in Theorem (4.1), the modified
equation of weak third order apart from the numerical method (5.5) is

dp =
(
−q + h

p

2
− h2

q

6

)
dt +

(
σ + h2

σ

6

)
dW (t),

dq =
(
p − h

q

2
+ h2

p

6

)
dt + h

σ

2
dW (t).
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