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Abstract The dynamics of a holonomically constrained rigid body can be modeled
by Newton-Euler equations subjected to geometric constraints. This is frequently
formulated as a differential-algebraic equation (DAE) system of index 1. In multibody
system (MBS) dynamics it is common (1) to numerically solve this system bymeans of
integration schemes for ordinary differential equations, and (2) to treat the rigid body
motion on the direct product Lie group SO (3)×R

3, although rigid bodymotions form
the semidirect product Lie group SE (3). It is has been observed that the constraint
satisfaction depends on which Lie group is used as configuration space (c-space).
In this paper the problem is considered from a geometric perspective. It is shown
that the constraints are exactly satisfied by a numerical integration scheme if they
define a subgroup of the c-space. The subgroups of SE (3) have a significance for
modeling mechanical systems, including lower kinematic (Reuleaux) pairs and are
implicitly used in MBS modeling. It is concluded that SE (3) is the appropriate c-
space for numerical DAE modeling of a constrained rigid body. This result does not
immediately apply to MBS, however.
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1 Introduction

Technical systems are modeled as constrained or restrained systems of rigid or flexible
bodies, i.e. as amultibody system (MBS). An approach frequently used is the so-called
’absolute coordinate formulation’ where the Newton-Euler equations of individual
bodies are formulated and subjected to constraint and interaction forces [1,29,31]. The
corresponding numerical model is a system of differential-algebraic equations (DAE)
of index 3 that is commonly transformed to an index 1 DAE and solved numerical
using ODE integration methods. This inevitably leads to constraint violation that are
of the order of the accuracy of the integration scheme. Various constraint stabilization
methods were introduced to remedy this problem [4,20].

In MBS dynamics [1,29,31] the configuration space (c-space) of the rigid body
is historically treated as the direct product Lie group SO (3) × R

3. This may not
be stated explicitly but is implied by the decoupled parameterization of rotations
and translations. Rigid body motions are screw motions, however. Hence the proper
rigid body c-space is the semidirect product SE (3) = SO (3) � R

3—the group of
isometric and orientation preserving transformations of Euclidean space, called the
special Euclidean group in three dimensions. Moreover, only this c-space ensures
frame invariance of the motion equations [9].

There is a recent awareness that the use of an appropriate geometric model of
rigid body motions is crucial for the numerical performance, mainly motivated by the
development of Lie group integration schemes forMBS [12]. It has also been observed
that the constraint satisfaction varies dramatically for either choice of c-space [23] .
Moreover, it is crucial to observe that this applies to any integration scheme, i.e.
equally to the (vector space) integration schemes commonly used in MBS dynamics.
This issue has not yet been addressed systematically. In [23] the consequences of
using the direct and semidirect product group has been analyzed for MBS by means
of numerical simulations. It is important to notice that this

In this note the case of a single constrained rigid body is considered, which allows
for a concrete statement. It will be shown that constraints are exactly satisfied, if they
constrain the body’s motion to a c-space subgroup. Noting that only subgroups of
SE (3) are relevant for MBS modeling, including lower kinematic (Reuleaux) pairs,
SE (3) is deemed the appropriate c-space for numerical analysis.

2 Problem statement

The motion of a rigid body can be represented as a curve C (t) in a 6-dimensional Lie
group G –the body’s c-space. Its velocity can be defined as left-invariant vector field
V = C−1Ċ ∈ g. The latter can be represented by a vector V ∈ R

6 comprising the
angular and translational velocity (see Sect. 3). The momentum vector� = MV ∈ g∗
is then defined with the body-fixed inertia matrix M. The velocity as well as the
corresponding Hamiltonian is left-invariant. The dynamics of a free rigid body is thus
governed by the Euler-Poincaré equations [22]

�̇ − adT
V� = 0 (1)
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on g∗. These are theNewton-Euler equations according to the geometricmodel of rigid
bodymotions encoded in G. The solution of (1) is the velocity respectivelymomentum
evolution. The actual motion is the solution of the (left) Poisson equations Ċ = CV ,
that will be referred to as the kinematic reconstruction equations [22].

Let the body be subjected to m geometric constraints h (C) = 0, with constraint
mapping h : G → R

m . The corresponding velocity constraints can be expressed
as J (C)V = 0, where J is the left-trivialized tangent mapping of h referred to as
constraint Jacobian. The equations of motion (EOM) of the constrained rigid body
attain the form

�̇ − adT
V� + JT λ = W (C) (2a)

Ċ = CV (2b)

h (C) = 0 (2c)

with applied forcesW ∈ g∗ and Lagrange multipliers λ ∈ g∗. This is an index 3 DAE
system on the state space G × g (using C and V as variables).

In many practically significant situations the constraints define a subgroup, i.e.
H = h−1 (0) is a subgroup of G. In this case H can be used as c-space and the
dynamics is governed by the unconstrained equations

�̇ − adT
V� = W (C) (3a)

Ċ = CV (3b)

on the state space H × h. A prominent example is the heavy top where H = SO (3).
This has been the standard example for Lie group integration schemes applied to the
rigid body [24,25,27].

The solution of (2b) has the form C (t) = C0 expX (t), where X (t) is a curve in
g, and C0 ∈ G the initial value. Thus the kinematic reconstruction equations (2b) on
G can be replaced by the system V = dexp−X(Ẋ) on g. This is the basic idea behind
the Munthe-Kaas (MK) method [17,19,24,25], for instance.

It is a common approach in MBS dynamics [1,31] to transform the system (2a–2c)
to an index 1 DAE (see (18) below) that gives rise to an ODE of the form

V̇ = F (X,V) (4a)

Ẋ = dexp−1
−X(V). (4b)

This is an ODE on the vector space R
6 × R

6 (identifying g with R
6), which can be

solved with any numerical integration method. Moreover it splits into the system (4a)
on R

6 and the system (4b) on the Lie algebra g.
So far no particular c-space Lie group G is specified. The c-space Lie group, i.e.

the geometric model of rigid body motions, determines (1) the explicit form of the
Euler-Poincaré equations, and (2) the dexp mapping, i.e. the kinematic reconstruction
equations. Moreover, (4b) is a system on the Lie algebra g, and thus specific to the
c-space. The following question is addressed in the remainder of this note:
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Problem How does the choice of c-space Lie group affect the preservation of the
constraint manifold h−1 (0) when numerically integrating the rigid body model (4a,
4b)?

3 Two choices of configuration space

The configuration of a rigid body is given byC = (R, r), whereR ∈ SO (3) represents
the orientation of a body-fixed reference frame (RFR) w.r.t. a spatial inertial frame
(IFR), and r ∈ R

3 is the position vector expressed in this frame. Two choices for the
c-space are used in the literature that will be considered: (1) the direct product Lie
group SO (3)×R

3, and (2) the semidirect product SE (3) = SO (3)�R
3 –the special

Euclidean group in three dimensions [30].
In the following ̂ξ ∈ so (3) denotes the skew symmetric matrix associated to the

vector ξ ∈ R
3.With slight abuse of notation the vector will be referred to as an element

of so (3). The right-translated differential dexp : g×g → g of the expmapping on G is
defined as dexpX(Ẋ) = ĊC−1, with C = expX, which implies dexp−X(Ẋ) = C−1Ċ .

3.1 Direct product lie group SO (3) × R
3

The direct product group is traditionally used as c-space in MBS dynamics [31].
This stems from the notion that rotations and translations are independent, and is
also reflected by the decoupled parameterization of C in terms of rotation parameters
(angles, angle-axis) and position vector. The group multiplication is

C1 · C2 = (R1R2, r1 + r2) (5)

and the inverse element is C−1 = (RT ,−r). The group is generated by its Lie algebra
so (3) × R

3, with elements X = (ξ , r), via the exponential mapping

X = (ξ , r) �−→ expX = (exp̂ξ , r), (6)

where exp̂ξ is the exponential on SO (3) [30]. The configuration of a rigid body is
thus parameterized by the scaled rotation axis ξ and the displacement vector r. The
Lie bracket on so (3) × R

3 is

[X1,X2] = (

ξ1 × ξ2, 0
)

. (7)

This can be expressed as adX1X2 with matrix

adX =
(

̂ξ 0
0 0

)

. (8)

The rigid body velocity Vm := C−1Ċ ∈ so (3) × R
3, that reads in vector form

Vm = (ωb, ṙ), is referred to as the mixed velocity since it consists of the body-fixed
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angular velocity ωb and the translational velocity ṙ expressed in the spatial IFR. This
is commonly used in MBS dynamics [31].

The right-translated differential of the exp mapping is in matrix form

dexpXẊ =
(

dexpξ 0
0 I

)

(9)

so that Vm = dexp−XẊ for C = expX ∈ SO (3) × R
3. Therein

dexpξ = 1

‖ξ‖2
[

(I − exp̂ξ)̂ξ + ξξ T ]

(10)

is the matrix form of the dexp mapping on SO (3) [30]. The inverse, required in (4b),
is

dexp−1
ξ

= I − 1

2
̂ξ +

(

1 − ‖ξ‖
2

cot
‖ξ‖
2

)

̂ξ
2

‖ξ‖2 . (11)

In order to decouple the Newton and Euler equations, the RFR is located at the center

of mass (COM). With the body-fixed inertia matrix M =
(

�0 0
0 mI

)

, where �0

is the inertia tensor w.r.t. the COM, the mixed momentum vector is �m = MVm =
(

�0ω
b, mṙ

) ∈ so∗ (3) × R
3. The corresponding Euler-Poincaré equations (1) are,

with (8), explicitly

�0ω̇
b + ωb × �0ω

b = 0

mṙ = 0. (12)

These are indeed the decoupled Newton-Euler equations w.r.t. the COM. This decou-
pling of rotations and translations prevails as apparent from (5), (8), and (9).

The mixed velocity and momentum are left-invariant w.r.t. actions of SO (3)×R
3.

The latter are not proper frame transformations.Moreover, the equations (12) cannot be
transformed to another RFR by means of actions SO (3) × R

3. This already indicates
that the latter is not a proper rigid body c-space.

3.2 Special euclidean group SE (3)

Although being independent, rigid body rotations and translations are not decou-
pled. Moreover a rigid body motion is a screw motion belonging to SE (3), and this
is hence the proper rigid body c-space. This is reflected in the group multiplica-
tion C2 · C1 = (R2R1, r2 + R2r1) that describes frame transformations. The inverse
element is C−1 = (

R,−RT r
)

. The Lie algebra se (3) = so (3) � R
3 consists of

elements of the form X = (ξ , η), and is equipped with the Lie bracket (screw prod-
uct) [X1,X2] = (

ξ1 × ξ2, ξ1 × η2 − ξ2 × η1
)

[30]. The latter can be expressed as
[X1,X2] = adX1X2, with the matrix

adX =
(

̂ξ 0
η̂ ̂ξ

)

. (13)
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The exponential mapping attains, with (10), the explicit form

X = (ξ , η) �−→ exp̂X = (exp̂ξ ,dexpξη). (14)

Therewith the rigid body configuration is parameterized in terms of screw coordinates
X ∈ se (3).

The velocity V b = C−1Ċ ∈ se (3) is called the body-fixed velocity screw (also
called body-twist). In vector form Vb = (ωb, vb), where vb = RT ṙ is the body-fixed
translational velocity.

The right-translated differential of exp possesses different representations in matrix
form as e.g. reported in [8,28], so that Vb = dexp−XẊ for C = expX ∈ SE (3). The
inverse of dexp in matrix form has been derived in [30]. A computationally efficient
form is reported in [8,28]

dexp−1
X =

(

dexp−1
ξ

0

U dexp−1
ξ

)

(15)

with

U (X) = 1 − γ

‖ξ‖2
(

η̂̂ξ +̂ξ η̂
)

+ p

‖ξ‖3
(

1

β
+ γ − 2

)

̂ξ
2 − 1

2
η̂ (16)

and γ := 2
‖ξ‖ cot

‖ξ‖
2 , α := 2

‖ξ‖ sin
‖ξ‖
2 cos ‖ξ‖

2 , β := 4
‖ξ‖2 sin

2 ‖ξ‖
2 . Here p := ξ ·

η/ ‖ξ‖2 is the pitch of the screw.
With the left-invariant body-fixedmomentumscrew�b = MVb = (�0ω

b, mvb) ∈
se∗ (3a, 3b) the dynamics of the rigid body is governed by the Euler-Poincaré equations
(1) that, with (13), are the body-fixed Newton-Euler equations

�0ω̇
b + ωb × �0ω

b = 0

mv̇b + mω × vb = 0. (17)

4 Constraint satisfaction in numerical time integration of the index 1
DAE

4.1 The associated index 1 DAE

Consider the single rigid body with motion equations (2a–2c). Following the standard
method in MBS dynamics, this is reformulated as index 1 DAE [1,29,31]

(

M JT

J 0

) (

V̇
λ

)

=
(

adT
V� + W

η

)

(18)

by complementing (2a) with the acceleration constraints, J (C) V̇ = η (C,V). Then
the system (18) is solved for V̇ (and λ as by-product), which yields an ODE of the
form (4a). Then the ODE (4) is solved with a numerical (vector space) integration
scheme.
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4.2 Constraint satisfaction for a general C-space lie group

The constraints are satisfied during the integration as long as the configuration update
step of the applied numerical integration scheme returns a configuration in h−1 (0).
It is well-known, however, that numerically solving (4a, 4b) with ODE integration
schemes generally leads to violations of the (now hidden) geometric constraints (2c).
To reduce this numerical drift, constraint stabilization methods have been proposed
that either amend the motion equations [3,20] or correct the numerical solution by
projecting it to the constraint manifold h−1 (0) [2,4,11,32]. All these methods aim at
minimizing or correcting, rather than avoiding, constraint violations.

The subsequent analysis of the constraint satisfaction makes use the parameteriza-
tion of the rigid body configuration in terms of X ∈ g. Denoting with X(i) := X (ti ),
the configuration at time step ti is C (ti ) = expX(i), with X(i) = X(i−1) + �(i). The
increment �(i) ∈ g is found by numerically solving (4). To this end any explicit or
implicit vector space integration scheme can be used.

A (possibly implicit) numerical integration scheme determines �(i) by (usually)
linear combination of the right hand side of (4b) evaluated at s intermediate time
steps. The right hand side is given by the inverse of dexp, which possesses the series
expansion

dexp−1
X (Y) =

∑

i≥0

Bi

i ! ad
i
X (Y) (19)

with the Bernoulli numbers Bi . Hence the following assumption is feasible for the
general class of integration schemes that construct the solution as linear combination
of the right hand side of (4b).

Assumption 1 The configuration update increment is determined as

�(i) =
s

∑

j=1

∑

r≥0

αi jadr
V( j)V

(i) (20)

denoting V( j) := V(ti−1 + c jΔt,q j ) with some real coefficients αi j and c j specific
to the integration scheme.

Also the numerically obtained solution V (t) of (4) does not necessarily satisfy
the velocity constraints J (C)V = 0. This linear condition can be easily satisfied,
however.

Assumption 2 It is assumed that the velocity V( j) satisfies the kinematic constraints
at all time steps t j = ti−1 + c jΔt .

This gives rise to the following.

Theorem 1 The kinematic motion constraints of a rigid body are satisfied by a con-
figuration update step in terms of linear combinations of velocity samples V( j), if the
constraints restrict the body’s motion to a subgroup of its c-space Lie group.
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Proof With Assumption 2, the body velocities at the intermediate configurations
belong to the subspace of g defined by the velocity constraints. The r -fold nested
Lie brackets adr

V( j)V(i), r ≥ 0, in the construction (20) of �(i) form a basis for the

smallest Lie subalgebra of g comprising allV(i) at intermediate time steps ti−1+c jΔt .
If the constraints restrict the motion to a subgroup H = h−1 (0) ⊂ G, and thus the
velocities to the corresponding subalgebra of g, the brackets in terms of feasible veloc-
ities in (20) form a basis for this subalgebra. Consequently,�(i) belongs to the smallest
Lie subalgebra of g containing the constrained body velocity V, and the configuration
increment C (ti ) belongs to the corresponding subgroup of the c-space Lie group G,
(occasionally called the completion group). Hence the constraints are satisfied regard-
less of the order and accuracy of the integration scheme. 	


4.3 Constraint satisfaction for SE (3) and SO (3) × R
3

The above theorem applies to arbitrary c-space Lie groups. Clearly the two c-space
Lie groups of interest have different subgroups, and it is important to analyze which
subgroups do actually correspond to practically relevant constraints. This is vital since
traditionally all formulations for rigid body MBS use SO (3) × R

3 as c-space (at
least implicitly by treating rotations and translations decoupled), whereas only a few
formulations for flexible bodies employ SE (3) such as [6–9]. Hence a legitimate
question is whether using a proper rigid body c-space Lie group will alleviate or even
eliminate constraint violations.

The motion of a rigid body is represented by the motion of its body-fixed RFR
relative to the IFR, summarized as C = (R, r).

The 10 subgroups of SE (3) are listed in Table 1 (adopted from [30]), where also the
corresponding lower kinematic pairs (Reuleaux pairs) are indicated. SE (3) represents
rigid body motions, i.e. screwmotions, respecting the coupling of rotation and transla-
tion. This motion representation is invariant w.r.t. the change of RFR. For instance, if
the RFR is located at the center of rotation, elements of SO (3), as a SE (3) subgroup,
have the form C = (R, 0). This is occasionally called the standard representation. For
a general location of RFR, SO (3) as a subgroup consists of elements C = (R, r) such
that there is a M ∈ SE (3) that transforms them to the standard form via MCM−1.

The 10 subgroups of the direct product SO (3)×R
3 are listed in Table 2. It does not

represent frame transformations. The translations are decoupled from the rotations.
For instance, elements of the subgroup of rotations about a fixed pole have necessarily
the form C = (R, 0), which is not a frame-invariant representation. That is, the RFR
origin is always the center of rotation. The subscript ‘0’ in SO0 (3) in Table 2 signifies
that pure rotations are always about the RFR origin. Consequently, the direct product
cannot describe the screw motion of a body-fixed RFR at a generic location. Recall
that commonly in MBS dynamics it is used as c-space model even though!

MBS models of technical systems predominantly comprise lower pair joints. Such
joints constrain the motion to subgroups of SE (3) (not of SO (3)×R

3), corresponding
to lower-dimensional screw motions. Then, if SE (3) is used as c-space Lie group,
H = h−1 (0) is in fact a subgroup of the c-space. H is the isotropy group of the joint,
i.e. the subgroup of motions leaving the contact surface of the joints invariant. Each
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Table 1 n-Dimensional subgroups of SE (3)

n Subgroup Kinematic meaning Lower kinematic pair?

1 R 1-dim. translation along some
axis

Yes (prismatic joint)

1 SO (2) 1-dim. rotation about arbitrary
fixed axis

Yes (revolute joint)

1 Hp Screw motion about arbitrary
axis with finite pitch

Yes (screw joint)

2 R
2 2-dim. planar translation No

2 SO (2) � R Translation along arbitrary axis
and rotation along this axis

Yes (cylindrical joint)

3 R
3 Spatial translations No

3 SO (3) Spatial rotations about arbitrary
fixed point

Yes (spherical joint)

3 Hp � R
2 Translation in a plane + screw

motion ⊥ to this plane (pitch p)
No

3 SO (2) � R
2 = SE (2) Planar motions Yes (planar joint)

4 SO (2) � R
3 = SE (2) � R Planar motions + spatial

translations (Schönflies motion)
No

6 SE (3) Spatial motion No

It is indicated whether the subgroup corresponds to a lower kinematic pair

of the six types of lower pairs corresponds to such a subgroup as indicated in Table
1. Consequently the joint constraints are satisfied by an SE (3) update step if a rigid
body is connected to the ground by a lower pair joint.

Corollary 1 The geometric constraints imposed on a rigid body by lower pair joints
(and general restrictions to SE (3) subgroups) are satisfied by a configuration update
step in terms of linear combinations of velocity samples V( j), if SE (3) is used as
c-space. Using SO (3) × R

3 the update satisfies constraints restricting to SE (3)
subgroups that are, as manifolds, identical to subgroups of SO (3) × R

3, i.e. planar
motions, Schönflies motions, and pure translations.

Remark 1 Given the velocity of a motion in a SE (3) subgroup. The SO (3) × R
3

update does not yield a configuration in that subgroup. For instance, the update step
with a velocity V = (ω, v) ∈ so (3) ⊂ se (3) leads to an independent rotational and
translational increment, i.e. not in SO (3).
There are, however, two special cases where the update with both groups perform
equal: planar and Schönflies motions. This is so because in SO (2) � R

2 (planar
motions) and SO (2) � R

3 (Schönflies motions), the action of SO (2) leaves R
2 and

R
3 invariant, so that as manifolds they are identical to SO0 (2)×R

2 and SO0 (2)×R
3,

respectively. Thus, for constraints restricting to these subgroups, updates with both
c-spaces perform equally (see Sect. 5.4). The same applies to pure translations.
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Table 2 n-Dimensional subgroups of SO(3) × R
3

n Subgroup Kinematic meaning Typical element

1 R 1-dim. translation C = (I, r), r ∈ R

1 SO0 (2) 1-dim. rotation about RFR origin C = (R, 0) ,R ∈ SO (2)

2 R
2 2-dim. planar translation C = (I, r), r ∈ R

2

2 SO0 (2) × R 1-dim. rotation about RFR origin
and decoupled 1-dim.
translation

C = (R, r),R ∈ SO (2) , r ∈ R

3 R
3 3-dim. translation C = (I, r), r ∈ R

3

3 SO0 (3) spatial rotation about RFR origin C = (R, 0),R ∈ SO (3)

3 SO0 (2) × R
2 1-dim. rotation about RFR origin

and decoupled 2-dim.
translation

C = (R, r),R ∈ SO (2), r ∈ R
2

4 SO0 (2) × R
3 1-dim. rotation about RFR origin

and decoupled 3-dim.
translation

C = (R, r) ,R ∈ SO (2), r ∈ R
3

4 SO0 (3) × R Spatial rotation about RFR origin
and decoupled 1-dim.
translation

C = (R, r),R ∈ SO (3), r ∈ R

5 SO0 (3) × R
2 Spatial rotation about RFR origin

and decoupled 2-dim.
translation

C = (R, r),R ∈ SO (3), r ∈ R
2

6 SO0 (3) × R
3 Spatial rotation about RFR origin

and decoupled 3-dim.
translation

C = (R, r),R ∈ SO (3), r ∈ R
3

The subscript ‘0’ in SO0(3) indicates that the rotations are about the RFR origin

Remark 2 Corollary 1 does not regard the accuracy of the integration scheme. It rather
says that the constraints are exactly satisfied regardless of the accuracy of the integra-
tion scheme or step size.

Remark 3 (Parameterization of SE (3)) It was concluded that SE (3) shall be used as
c-space. The semidirect product requires according parameterization in terms of screw
coordinatesX in (14). This is different to what is currently used inMBSmodeling. The
main difference is that the translation vector is not used as coordinate but is determined
by the screw coordinates.

Remark 4 (Relevance for Lie group integration methods) The ODE system (4) arose
from replacing Ċ = CV by dexp−XẊ, in order to analyze the standard vector space
integration schemes used in MBS dynamics. Resorting to the original equation leads
to the ODE

V̇ = F (X,V) (21a)

Ċ = CV . (21b)
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This is an ODE on the state space Lie group G × R
6. Hence Lie group integration

schemes like the MK scheme [24,25], or the schemes adopting the Newmark and
generalized α scheme to the Lie group setting of constrained rigid body dynamics
[12,13] can be applied. Since these schemes use (local) canonical coordinates (of
first kind) to express the configuration update via the exponential mapping, the above
corollary also apply to the Lie group integration methods. In particular, MK schemes
solve the substitute Eq. (4b).

5 Examples

A few examples are presented that illustrate the above discussion. In all exam-
ples the rigid body is a rectangular aluminum solid with side lengths 0.3 ×
0.15 × 0.05 m. The body-fixed RFR is located at the COM, as shown in Fig. 1a).
Its mass is m = 6.075 kg, and its inertia tensor w.r.t. the COM is �0 =
diag (0.0126563, 0.0468281, 0.0569531)kgm2. In the following results are presented
for some lower pair joints and a higher kinematic pair. The respective joint connects
the body to the IFR at the ground. The joint is located on the body at the point
p = (−0.15, 0.0375, 0)m expressed in the body-fixed RFR.

The EOM (4a, 4b) are evaluated by solving (18). The Newton-Euler equations
therein depend on the c-space. These are (12) for the direct product (using mixed
velocities), and (17) for the semidirect product c-space (using body-fixed twists). The
constraints Jacobian J is joint specific.

The EOM (4a, 4b) were integrated for 10 s with an explicit 4th order Runge-Kutta
(RK4) method using the three step sizes Δt = 10−2s, 10−3s, 10−4s. For all examples
the initial configuration was C0 = (I,−p), as in Fig. 1a).

5.1 Spherical joint–heavy top

Connecting the body to the ground with a spherical joint (ball-and-socket joint) yields
the model of a heavy top. The heavy top became the standard example for Lie group
modeling and integration methods [5,12–17].

(a) (b)
Fig. 1 Assignment of IFR and RFR, and kinematics of the a spherical joint, and b revolute joint
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The spherical joint imposes the system of three position constraints

h (C) := r + Rp = 0. (22)

Differentiating twice w.r.t. time yields the acceleration constraints in terms of body-
fixed twists Vb = (ωb, vb)

JV̇b = R(ω̂ω̂p + ω̂v), with J = (

Rp̂ −R
)

(23)

used in the SE (3) model, and in terms of mixed velocities Vm = (ωb, ṙ)

JV̇m = Rω̂ω̂p, with J = (

Rp̂ −I
)

(24)

used in the SO (3) × R
3 model. The EOM were integrated with initial velocity ωb

0 =
(2π, π, 0.2π)rad/s.

The geometric constraints define the 3-dimensional constraint manifold H =
h−1 (0). This is the manifold of spherical displacements around the IFR origin. In
SE (3) this is the subgroup H = SO (3) ⊂ SE (3). But H is not a subgroup of
SO (3) × R

3. It can only be a subgroup of the latter, if the body-fixed RFR is located
at the rotation center. According to Corollary 1 the SE (3) update should lead to exact
constraint satisfaction while SO (3) × R

3 could not. This is confirmed by the posi-
tion error ε := ‖h‖ shown in Fig. 2. The constraint satisfaction of the direct product
formulation is dictated by the 4th order accuracy of the integration scheme.

5.2 Revolute joint

With the orientation of RFR shown in Fig. 1b, the joint axis is aligned with the 2-axis,
and the revolute joint imposes the five geometric constraints

r + Rp = 0 (25)

R12 = 0 (26)

R23 = 0 (27)

whereR = (Ri j ). The system of acceleration constraints in terms of body-fixed twists
consists of (23) and the two constraints

ω̈b
1 = 0 (28)

ω̈b
3 = 0 (29)

whereωb = (ωb
1, ω

b
2, ω

b
3). In terms of the mixed velocities the acceleration constraints

consists of (24) and the two constraints (28), (29). TheEOMwere integratedwith initial
velocity ωb

0 = (0, 2π, 0)rad/s.
The revolute joint constraints define the subgroup H = SO (2) ⊂ SE (3) of

rotations about a fixed axis. Since the axis does not pass through the origin of the RFR
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it is not a SO (3)×R
3 subgroup. The consequences are apparent in Fig. 3. Both exactly

satisfy the rotation constraints, since a solution of (18) only has non-zero components
for rotations about the rotation axis.

5.3 Cylindrical joint

Acylindrical joint allows for rotation about and translation along a fixed axis. TheRFR
is allocated as for the revolute joint in Fig. 1a. The according system of four geometric
constraints consists of the first and third equation of (25) and the two equations (26),
(27). The system of acceleration constraints in terms of body-fixed twists consists of
the first and third equation of (23) and the two constraints (28), (29). Using mixed
velocities these are the first and third equation of (24) and (28), (29).

The EOMwere integrated with initial velocity ωb
0 = (0, 2π, 0) rad/s and vb0 = ṙ =

p×ωb
0 + (0, 1, 0) m/s. The numerical results are the same as in Fig. 3 for the revolute

joint. This is clear since the constraints define the direct product subgroup SO (2)×R

of SE (3).

5.4 Planar joint

A 3 degree-of-freedom (DOF) ’planar joint’ restricts the body to move on a plane,
i.e. it can perform translations in the plane and independent rotations about an axis
normal to the plane. Assigning the joint and RFR as in Fig. 4a, the body can move in
the 1-2-plane of the IFR. The three geometric constraints are hence the third equation
of (25) and the equations (26, 27). Accordingly, in terms of body-fixed twists, the
acceleration constraints are the third equation of (23) together with (28, 29). In terms
of mixed velocities, these are the third equation in (24) together with (28, 29).

The submanifold H , defined by the planar joint constraints, consists of all config-
urations the body can attain when it can be freely located in the plane. As explained
in Remark 1 the update steps of both formulations shall lead to exact constraint sat-
isfaction. This is confirmed by the simulation results. The constraints are satisfied
regardless of the integration step size (therefore not shown here).

5.5 Hook joint

Ahook joint allows for successive rotations about two (usually perpendicular) rotation
axes.With the joint assignment in Fig. 4b the condition is that the 3-axis of the IFR and
2-axis of the body-fixed RFR are perpendicular, and these two define the rotation axes.
The corresponding four geometric constraints are the three equations (25) and R23 = 0.
The acceleration constraints are omitted for brevity. The EOM were integrated with
initial velocity ωb

0 = (0, π, 0.2π)rad/s.
The hook joint defines a 2-dimensional submanifold H of the subgroup of rotations

about the IFR origin. There is no 2-dimensional subgroup of SO (3). Thus H cannot
be a subgroup of SE (3) nor of SO (3) × R

3.
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(a) (b) (c)
Fig. 4 Kinematics of the a planar joint, b hook joint, and c pin-in-slot joint

Figure 5 shows the expected dependence of the rotation error εr := |R23| on the
step size. This dependence is also observed for the position constraints when using the
SO (3) × R

3 formulation (Fig. 6a). The SE (3) update does, however, exactly satisfy
position constraint (Fig. 6b). This can be explained by noting that points on the body
are constrained to move on spheres centered at the intersection of the joint axes. In
SE (3) the completion group of the constrained rigid body velocities, i.e. the smallest
subgroup containing H , is K = SO (3). The orbit Ox = {Cx |C ∈ K } of a point
x ∈ E3 on the body by K is a sphere centered at the joint center. Hence, the position
constraints are respected.

5.6 Pin-in-slot joint

The pin-in-slot joint is a 2 DOF higher kinematic pair. According to the RFR in Fig. 4c
the four geometric constraints are the second and third equation of (25) together with
the equations (26, 27). The acceleration constraints for the body-fixed twist formulation
are the second and third equation of (23) and the constraints (28, 29). Inmixed velocity
formulation, the acceleration constraints are the second and third equation of (24)
together with the two equations (28, 29).

The joint does not define a motion subgroup, so that the SE (3) update cannot
respect the constraints. This also holds for SO (3) × R

3 if a general RFR is used.
This is confirmed in Fig. 7 where numerical results are shown for the initial velocities
ωb
0 = (0, π, 0.2π) rad/s and vb0 = p × ωb

0 + (1, 0, 0) m/s.
In order to clarify the significance of RFR for the SO (3)×R

3 formulation, consider
the case where the translation axis defined by the joint passes through the RFR at the
COM, i.e. p = 0. Then the motions in fact define the subgroup SO0 (2) × R of
SO (3) × R

3, and the constraints are exactly satisfied. The trivial numerical results
are omitted.
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6 Conclusion

Constrained MBS comprising rigid bodies are frequently modeled by a system of
Newton-Euler equations subjected to the constraints due to geometric interconnec-
tions. This is commonly treated as index 1 DAE system, and numerically solved using
ODE integration schemes. The classical MBS formulation uses decoupled rotation
and translation parameters. The underlying geometric model is that of SO (3) × R

3,
although rigid body motions form the Lie group SE (3). A major problem when inte-
grating the index 1 formulation is the violation of constraints. It has been observed,
however, that the c-space Lie group significantly affects the constraint satisfaction.
This problem was here addressed for the single rigid body constrained to an iner-
tial system. For the practically important case of lower pair joints, it is concluded
that the constraints are exactly satisfied (independently of the integration scheme and
accuracy) if SE (3) is used as c-space Lie group. The practical implication of using
SE (3) as c-space is the use of screw coordinates X = (ξ , η) as parameters, and
coefficient matrices of the form (15) in the kinematic equations (4b) of the model.
Although already thoroughly investigated and published [6,8,9,21], the use of screw
coordinates for MBS modeling has not yet found due attention.

The presented result is valid for the single rigid body constrained to an inertial
frame. It cannot be immediately carried over to MBS. This shall be the topic of further
research.
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