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Abstract The advection equation is studied in a completely general two domain set-
tingwith differentwave-speeds and a time-independent jump-condition at the interface
separating the domains. Well-posedness and conservation criteria are derived for the
initial-boundary-value problem. The equations are semi-discretized using a finite dif-
ference method on Summation-By-Part (SBP) form. The relation between the stability
and conservation properties of the approximation are studied when the boundary and
interface conditions are weakly imposed by the Simultaneous-Approximation-Term
(SAT) procedure. Numerical simulations corroborate the theoretical findings.
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1 Introduction

Interfaces with discontinuous conditions are present in many applications involving
wave propagation through differentmaterials. Typical examples include problems gov-
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erned by Maxwell’s equations [15,19], as well as earthquake simulations with faults
governed by the elastic wave equations [4,10]. Discontinuous solutions involving
jumps at shocks are also present in many non-linear problems [5,14].

In this paper we study fundamental properties such as well-posedness, stability and
conservation for a discontinuous linear advection equationwhichweuse as a simplified
model for the problems mentioned above. In our problem, the wave-speed changes
at an interface separating two spatial domains. We also impose a time-independent
jump-condition, which makes the solution discontinuous.

We extend the analysis in [2,3,7] for the case of identical velocities, by varying the
parameters related to the wave-speed and the jump-condition in a controlled manner.
We derive new and completely general conditions for well-posed, stable, conservative
and non-conservative interface treatments.

The main focus of the analysis in on the relation between stability and conservation
in a completely general mathematical setting. Spectral analysis is used in order to com-
pare convergence properties of the spectra of the conservative and non-conservative
semi-discrete operators. The convergence to the spectrum of the continuous problem
is investigated with and without the use of artificial dissipation.

As our numerical approximation we use high-order finite difference methods based
on Summation-By-Part (SBP) form [1,12,21]. The boundary and interface conditions
are imposed using the Simultaneous-Approximation-Term (SAT) techniques [1,3,7].
For a comprehensive review of the SBP–SAT development so far, see [22].

The rest of the paper proceeds as follows. In Sect. 2 we study well-posedness and
conservation properties of the continuous problem. Section 3 deals with the semi-
discrete case. In Sect. 4 we discuss the relation between the stability and conservation
conditions of the schemes. A spectral analysis is performed in Sect. 5. Numerical
calculations and verifications are presented in Sect. 6. Finally, in Sect. 7, we summarize
the findings and draw conclusions.

2 The discontinuous interface problem

Consider the Cauchy problem for the advection equation with two different real con-
stant advection velocities

ut + aux = 0, x ≤ 0, t ≥ 0,
ut + bux = 0, x > 0, t ≥ 0,

u(x, 0) = f (x), x ∈ R, t = 0.
(2.1)

Without loss of generality we assume that a and b are positive (opposite signs for the
velocities decouples the domains). Continuous solutions of (2.1) at the interface point
x = 0 require

lim
x→0+ u(x, t) := u+(0, t) = u−(0, t) =: lim

x→0− u(x, t), t ≥ 0.

However this is a specific choice among many possible coupling conditions. We will
consider the more general case
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Well-posedness, stability and conservation for a. . . 683

u+(0, t) = cu−(0, t), t ≥ 0, (2.2)

where c is a real constant which makes the solution discontinuous at the interface
whenever c �= 1.

2.1 Well-posedness

We divide problem (2.1) into the following two coupled problems:

ut + aux = 0, x ≤ 0, t ≥ 0,
u(x, 0) = fl(x), x ≤ 0,

(2.3)

vt + bvx = 0, x > 0, t ≥ 0,
v(x, 0) = fr (x), x > 0,
v(0, t) = cu(0, t), t ≥ 0,

(2.4)

and define the following norm

‖u, v‖2αc
= ‖u‖2 + αc‖v‖2. (2.5)

Here, αc is a positive free weight and ‖·‖ indicate the standard L2−norm.
Our first result is

Proposition 2.1 The coupled problem (2.3)–(2.4) is well-posed for any real constant
c and advection velocities satisfying sgn(a)=sgn(b).

Proof The problem (2.3)–(2.4) is well-posed if a solution exists, is unique and has a
bounded temporal growth. See [8,17,20] for more details about well-posedness. We
apply the energy method by multiplying both sides of Eqs. (2.3) and (2.4) with u and
v, respectively. By considering only the boundary terms at the interface, integration
by parts leads to

d

dt
‖u, v‖2αc

= u(0, t)2(−a + αcbc2). (2.6)

In order to obtain an energy estimate we require that −a + αcbc2 ≤ 0, which gives

0 < αc ≤ a/bc2. (2.7)

Time-integration of (2.6) with condition (2.7) leads to

‖u, v‖2αc
≤ ‖ fl‖2 + αc‖ fr‖2. (2.8)

Uniqueness of the solution can be proved by using the same technique. Suppose
that two pairs of solutions of (2.3)–(2.4), exist with the same boundary and initial
data, namely u(1), v(1) and u(2), v(2). By linearity of the problem, the functions ū =
u(1)−u(2) and v̄ = v(1)−v(2) are also a solution pair of (2.3)–(2.4) with homogeneous
boundary, interface and initial conditions. Using the energy-estimate (2.8) with zero
data we find (ū, v̄) ≡ (0, 0), i.e. the solution of (2.3)–(2.4) is unique.
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Existence can be proved by using the Laplace transform technique for the initial
boundary value problem, see [9,11,18] for details. The Laplace transform of the cou-
pled problem (2.3)–(2.4) is

sû + aûx = fl(x)

sv̂ + bv̂x = fr (x)

v̂(0, s) = cû(0).
(2.9)

The general solutions of (2.9) are û = ûh+û p and v̂ = v̂h+v̂p,where ûh = cl(s)e− s
a x

and v̂h = cr (s)e− s
b x are the general solutions of the homogeneous problems. û p =

û p( fl(x)) and v̂p = v̂p( fr (x)) are the particular solutions determined by the initial
data, which we consider as known. To determine cl and cr , we also need to introduce
a boundary condition for the left equation. We choose u(−1, t) = g(t) which in
Laplace space becomes û(−1, s) = ĝ. Then the boundary and interface conditions
can be written in matrix-vector form as

E(s)c =
[

e
s
a 0

c −1

] [
cl

cr

]
=

[
û p(−1) − g
cû p(0) − v̂p(0)

]
. (2.10)

Solving the non-singular linear system (2.10) gives

û(x, s) = (
ĝ − û p(−1, s)

)
e− s

a (x+1) + û p(x, s)

v̂(x, s) =
[
c
(
ĝ − û p(−1, s)

)
e− s

a + (
cû p(0, s) − v̂p(0, s)

)]
e− s

b x + v̂p(x).

Finally, by taking the inverse Laplace transform of û and v̂, which can be done since
no singularities exist, we have proved existence. This concludes the proof. 	


2.2 Conservation

The conservation properties of the coupled problem (2.3)–(2.4) can be discussed in
the context of conservation laws, see [5,14] for a complete description. A conservation
law in one space dimension is defined as

wt + F(w)x = 0, x ∈ R, t > 0. (2.11)

Here F is the flux function andw = w(x, t) is the unknown variable. In a conservation
law the total quantity of w in R = [x1, x2] changes only as a result of the fluxes at the
boundaries of the region. More precisely, the evolution of the total quantity is given
by

∂

∂t

∫
R

w(x, t)dx = −F(w(x2, t)) + F(w(x1, t)), ∀t > 0. (2.12)

If the right hand side in (2.11) is identically zero, then the total quantity does not
change in time and w is conserved in the region R. With a slight abuse of notation,
we say that w is conserved even if the fluxes do not balance out. This case is the only
practically interesting one.
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Well-posedness, stability and conservation for a. . . 685

From (2.11), conservation can be interpreted as the property of the flux to “tele-
scope” across a domain to the boundaries. This property does not necessarily exist in
the presence of an interface, as we will show later.

Motivated by the fact that the coupled problem (2.3)–(2.4) is a linear version of a
conservation law with the flux given by

F(w) =
{

au, x ≤ 0, t ≥ 0,
bv, x > 0, t ≥ 0,

where w =
{

u, x ≤ 0,
v, x > 0,

(2.13)

we reformulate (2.3)–(2.4) as (2.11) with F defined by (2.13). Following the concept
of conservation described by (2.12), we integrate (2.11) in space between [x1, 0] and
[0, x2] and get

∂

∂t

∫
R

w(x, t)dx = −F(w(x2, t)) + F(w(x1, t)) + u(0, t)[a − bc], ∀t > 0.

(2.14)
In (2.14), we replace v by u at x = 0 using (2.2). Hence, in the presence of an interface,
the total quantity ofw is conserved in R = [x1, x2] in the sense of (2.11) if the last term
on the right hand side is zero. We summarize the result in the following proposition.

Proposition 2.2 The solution to the conservation law (2.11) with the flux function
defined in (2.13) is conserved if the jump condition satisfies

c = a

b
. (2.15)

We conclude by defining a conservative interface problem:

Definition 2.1 The interface problem (2.3)–(2.4) is a conservative problem if the
parameter a, b and c satisfy the jump condition (2.15).

3 The semi-discrete approximation

The spatial derivative is discretized using the technique based on SBP finite difference
operators introduced in [12,21,22]. In this paper we use the standard SBP opera-
tor, even though more general formulations exist, see for instance [6] and references
therein. To be consistent with the continuous case in the following analysis we will
ignore the outer boundary terms. The first derivative in space is approximated using

ux ≈ Du = P−1Qu, (3.1)

where u = (. . . , ui , . . .)
T is the discrete grid function approximating the solution. P is

a symmetric positive definitematrix, Q is almost skew-symmetric and satisfies the SBP
property Q + QT = diag[−1, 0, . . . , 0, 1]. From now on we indicate the difference
operator with P−1

l,r Ql,r , where the subscripts l and r refer to the left and right spatial
intervals, respectively. We also introduce the grid vectors xl = [. . . , xi , . . . , xN = 0]
and xr = [y0 = 0, . . . , yi , . . .], that coincide at the interface point, xN = y0 = 0.
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With this notationwe canwrite the approximation of the system (2.3)–(2.4) together
with the SAT procedure [1,2], for boundary and interface conditions as

ut + a P−1
l Qlu = P−1

l σL(cuN − v0)eN ,

vt + bP−1
r Qr v = P−1

r σR(v0 − cuN )e0,
(3.2)

where, the vectors u and v indicate the solution in the left and right domain, respec-
tively. The vectors eN = (0, . . . , 0, 1)T and e0 = (1, 0, . . . , 0)T have the length of
the left and right mesh, respectively. Note that v0 ≈ cuN .

Remark 1 The penalty term defined by the coefficient σL determines the amount of
dissipation at the interface [2]. It can vary in a range of values which guarantee stability
at the interface and provide different levels of dissipation.

3.1 Stability of the semi-discrete approximation

Similarly to the continuous case, we consider two discrete L2 norms

‖w‖2Pl
= wT Plw, ‖w‖2Pr

= wT Prw

and combine them to form the following norm

‖u,v‖2αd
= ‖u‖2Pl

+ αd‖v‖2Pr
. (3.3)

In (3.3), αd is a positive weight [not necessarily the same as in the continuous norm
(2.5)]. We multiply both sides of (3.2) with uT Pl , vT Pr respectively and add the
corresponding transposes. From the SBPproperties of the discrete operators, we obtain

d

dt
‖u,v‖2αd

= IT, (3.4)

where

IT = u2
N (−a + 2cσL) + v20αd(b + 2σR) − 2σLunv0 − 2αdσRcu0vN .

Next, we rewrite IT as a quadratic form given by

IT =
(

uN

v0

)T

H

(
uN

v0

)
, H =

[
(−a + 2cσL) −(σL + αdcσR)

−(σL + αdcσR) αd(b + 2σR)

]
. (3.5)

We have IT ≤ 0 if H is a negative semi-definite matrix. Hence, we need conditions on
σL and σR such that this is ensured. The characteristic equation related to (3.5) is

det(H − λI ) = λ2 − λ(h11 + h22) + (h11h22 − h2
12) = 0,
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where hi j , in which i, j ∈ {1, 2}, are the elements of H . By the properties of solutions
to quadratic equations, we know that

h11 + h22 = λ1 + λ2, (h11h22 − h2
12) = λ1λ2.

Then λ1,2 ≤ 0 if and only if h11 + h22 ≤ 0 and (h11h22 − h2
12) ≥ 0. We summarize

the results as

Proposition 3.1 The semi-discrete scheme (3.2) for the coupled advection equations
(2.3)–(2.4) has a stable interface treatment, with respect to the norm (3.3), when the
penalty coefficients σL ,R satisfy the inequalities

(−a + 2cσL) + αd(b + 2σR) ≤ 0,

(−a + 2cσL)αd(b + 2σR) − (σL + αdcσR)2 ≥ 0.
(3.6)

Remark 2 In the continuous case,well-posedness is proved in Proposition 2.1 by using
a modified L2 norm defined by the weight αc. Similarly, in the semi-discrete case, the
stability conditions depend on the weight αd which defines the discrete L2 norm used
for the energy method in (3.4). In Sect. 4, we derive explicit stability intervals for σL ,R

from (3.6) using values of αd that renders them real.

3.2 Conservation properties of the semi-discrete approximation

The semi-discrete form of the conservation law (2.11) is

wt + P−1QF(w) = 0, (3.7)

where the variable w = (. . . , wi , . . .)
T and the flux F(w) = (. . . , Fj , . . .)

T are
vectors. The spatial derivative of the flux has been replaced by an SBP operator of type
(3.1). Multiplying (3.7) by 1T P , where 1T = (1, 1, . . . , 1, 1), (the discrete analogous
of spatial integration), we obtain

1T Pwt + 1T (QF) = d

dt

(
1T Pw

)
+ 1T (QF)

= d

dt

(
1T Pw

)
+ 1T ([−QT + B]F) = 0. (3.8)

Here, B = (Q + QT ) and B = diag[−1, 0, . . . , 0, 1]. Since 1T QT = 0, (3.8) yields

d

dt

(
1T Pw

)
= −FN + F0, (3.9)

where F0 and FN are the discrete fluxes at the boundaries. Note that (1T Pw) ≈∫ x2
x1

w dx , i.e. it is a high order accurate approximation of the integral in (2.12). This

means that relation (3.9) implies that (1T Pw) is conserved. It also shows that the

123



688 C. La Cognata, J. Nordström

properties of P and Q matrices mimic the conservation property of the continuous
differential operator in a domain without interface.

Unfortunately, the equivalence of the conservation property of the continuous and
semi-discrete operators does not necessarily apply at an interface coupling [2,3,7].
More precisely, the approximation (3.2) requires additional conditions to be conserv-
ative in the sense of (3.9).

We follow the path of the continuous analysis in Sect. 2.2 by considering the vector
functionsuT = (u0, . . . , uN ) andvT = (v0, . . . , vM ) evaluatedon thediscrete regions
xl = [x0, .., xN ] and y = [y0, .., yM ], where xN = y0. Multiplying the equations in
(3.2) by the 1T Pl and 1T Pr , respectively, leads to

1T Plut + a1T Qlu = σL(cuN − v0),

1T Pr vt + b1T Qr v = σR(v0 − cuN ).
(3.10)

Using again Bl,r = (Ql,r + QT
l,r ) and Ql,r 1 = 0, we rewrite (3.10) as

1T Pl ut = −a(uN − u0) + σL(cuN − v0),

1T Pr vt = +b(v0 + vN ) + σR(v0 − cuN ).

Rearranging the terms on the right hand side and adding the equations, we obtain

1T Pl ut + 1T Pr vt = au0 − bvM + [uN (−a + cσL − cσR) + v0(b + σR − σL)] .
(3.11)

Similarly to the continuous case, we indicate withwT = (uT , vT ) the discrete variable
and FT = (auT , bvT ) the discrete flux of (3.2). Then, (3.11) becomes

1T Pwt = F0 − FM + [uN (−a + cσL − cσR) + v0(b + σR − σL)] , (3.12)

where P = diag (Pl , Pr ). The quantity (1T Pw) in (3.12) is conserved in the sense of
(3.9) if the interface terms at the points xN and y0 vanish, which require

− a + cσL − cσR = 0 and b + σR − σL = 0 (3.13)

We have proved

Proposition 3.2 The quantity (1T Pw) is conserved by the approximation (3.2) in the
region x = [xr , xr ] if the jump condition satisfies the condition (2.15) and

σR = σL − b. (3.14)

In the rest of the paper we will use the following definition of conservative scheme
for the interface problem (2.3)–(2.4).

Definition 3.1 The semi-discrete scheme (3.2) with the continuous conservation con-
dition (2.15) is a conservative approximation of the coupled problem (2.3)–(2.4) in
the sense of (3.9) if the penalty coefficients σL and σR satisfy the condition (3.14).
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Remark 3 Semi-discrete conservation for our problem requires a conservative contin-
uous problem, since otherwise the system (3.13) has no solution. This is natural since
any other result would have suggested an error of order one.

4 The relation between stability and conservation

In Sect. 2 we have shown well-posedness and derived the conservation condition for
the interface problem (2.3)–(2.4) in the continuous case. In Sect. 3 we have derived
stability and conservation conditions for the semi-discrete approximation of the same
problem. All conditions are summarized below:
The continuous case:

– well-posedness ∀c ∈ R (A1),
– conservation c = a/b (A2),

The semi-discrete case:

– stability
(−a + 2cσL) + αd(b + 2σR) ≤ 0, (B1.a)

(−a + 2cσL)αd(b + 2σR) − (σL + αdcσR)2 ≥ 0, (B1.b)
– conservation σR − σL + b = 0. (B2)

We recall that problem (2.3)–(2.4) is well-posed since (A1) always holds. The semi-
discrete approximation (3.2) is stable with respect to the norm (3.3) when (B1.a–b)
are both satisfied. The approximation is stable and conservative if (B2) holds together
with (B1.a–b). In this section we derive explicit conditions for σL ,R from (B1.a–b)
as functions of the weight αd in the norm (3.3) for different type of problems and
approximations.

4.1 The non-conservative interface problem

We start by considering the most general well-posed interface problem and investigate
stability without conservation. To have (B1.a) valid at the same time as (B1.b), we
require (−a + 2cσL) ≤ 0 and (b + 2σR) ≤ 0. This leads to

σL ≤ a

2c
(a) and σR ≤ −b

2
(b). (4.1)

Remark 4 (B1.a) is also satisfied for |(−a + 2cσL)| ≤ − |αd(b + 2σR)| but then
(B1.b) cannot hold.

By adopting the variable θ = 1/(αdc), (B1.b) can be rewritten as the following second
order inequality

− θ2σ 2
L + 2θ(b + σR)σL +

[
−θ

ab

c
− 2θ

a

c
σR − σ 2

R

]
≥ 0. (4.2)

The inequality (4.2) can be associated to a second order equation for σL which is
well-defined when the discriminant (b +2σR) (b − θa/c) is non-negative. According
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690 C. La Cognata, J. Nordström

to (4.1), this is true when (b − θa/c) ≤ 0. Since the weight αd is a positive free
parameter we can always make the choice αd ≤ a/bc2 such that θ ≥ bc/a holds.
Then, the inequality (4.2) is valid for

b + σR −
√

(b + 2σR)(b − θ
( a

c

)
)

θ
≤ σL ≤

b + σR +
√

(b + 2σR)
(
b − θ

( a
c

))
θ

.

(4.3)
Next, we must compare (4.1.a) and (4.3) by letting σR = −b/2− k/2 with k ≥ 0. We
find

a

2c
−

b + σR +
√

(b + 2σR)(b − θ( a
c ))

θ
=

(
θ

a

c
− b

)
+ k − 2

√
k

(
θ

a

c
− b

)

2θ
≥ 0,

where we have used that x + y ≥ 2
√

xy for any x, y ≥ 0.
We conclude that conditions (4.1.b) and (4.3) are the relevant conditions and sum-

marize the result in

Proposition 4.1 The semi-discrete approximation (3.2) is stable with respect to the
norm (3.3) defined by 0 < αd ≤ a/bc2 and for all parameters a, b and c when the
penalty coefficients σL , σR satisfy (4.1.b) and (4.3) with θ ≥ bc/a.

Remark 5 The values of αd for which it is possible to derive real expressions for σL ,R

from the stability conditions (3.6), are the same ones needed in (2.7) for showing
well-posedness in the continuous case. This makes the stability results of Proposition
4.1 consistent with the well-posed analysis of Proposition 2.1.

4.2 The conservative continuous and non-conservative semi-discrete problem

Consider now the stability analysis for a conservative continuous interface problem by
assuming that also condition (A2) is valid. Then, by letting c → a/b, (4.1.b) remains
unchanged while (4.3) becomes

b + σR − √
b(b + 2σR)(1 − θ)

θ
≤ σL ≤ b + σR + √

b(b + 2σR)(1 − θ)

θ
. (4.4)

In (4.4) we have used θ = b/(aαd). As in Sect. 4.1, we can always choose αd ≤ b/a
such that θ ≥ 1 holds. In particular if αd = b/a then θ = 1 and (4.4) becomes
identical to (B2), i.e. the discrete conservation condition.

We have proved

Proposition 4.2 The continuous conservation condition (A2) leads to a stable semi-
discrete approximation with respect to the norm (3.3) defined by 0 < αd ≤ b/a, if the
penalty parameters σL , σR satisfy (4.1.b) and (4.4) with θ ≥ 1.

Remark 6 Note that conservation and stability are two independent properties of the
approximation (3.2). We have a stable and non-conservative semi-discretization if the
assumptions of Proposition 4.2 are satisfied.
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4.3 The conservative continuous and semi-discrete problem

Consider the fully conservative case by assuming that (A2) and (B2) are both valid.
Then (B1.a) leads to

σL ≤ b

2
. (4.5)

By substituting (A2), (B2) and (4.5) into (B1.b) and following the same techniques as
in the previous section, we obtain

b

1 − √
θ

≤ σL ≤ b

1 + √
θ
, (4.6)

where θ = b/aαd . We can again choose αd ≤ b/a such that θ ≥ 1 holds. Note that
as θ → 1+, (4.6) converges from below to (4.5). Again (4.6) is more strict than (4.5).
We have proved

Proposition 4.3 The conditions (A2), (B2) and (4.6)with θ ≥ 1 lead to a conservative
scheme and stable approximation with respect to the norm (3.3) defined by 0 < αd ≤
b/a.

Remark 7 The choice θ = 1 makes (4.6) identical to (4.5), which becomes the only
relevant stability condition.

4.4 The special case with continuous velocities

The result for a continuous advection velocity follows directly by going to the limit
b → a in (4.1.b) and (4.3). Thus, we get

σR ≤ −a

2
(4.7)

and

a + σR −
√

a(a + 2σR)(1 − θ
c )

θ
≤ σL ≤

a + σR +
√

a(a + 2σR)(1 − θ
c )

θ
,

(4.8)

respectively, with θ = 1/(αdc) and αd ≤ 1/c2. Furthermore, when c = 1 then
αd = θ = 1 and (4.8) becomes σL = σR + a, which is the conservation condition
(B2) for a constant advection velocity derived in [2,3,7].

5 Spectrum analysis for stability at the interface

In this section we study the effect of the interface treatment on the continuous and
semi-discrete spectra. First, we restrict the problem to a finite domain for enabling the
numerical computations which will be presented in Sect. 6. This restriction requires
the introduction of boundary conditions which we choose such that the dissipative
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effect on the outer boundaries is negligible with respect to the interface treatment in
the semi-discrete approximation. In the rest of the section we derive the spectrum of
the continuous and semi-discrete problem using the derived non-dissipative boundary
conditions.

5.1 Non-dissipative semi-discrete boundary conditions

Consider the discontinuous interface problem (2.3)–(2.4). To calculate the spectrum
of the problem we must restrict ourselves to a finite spatial domain. Without any loss
of generality, we choose [−1, 1]. To isolate the effect of the interface treatment, we
introduce a boundary closure of the form

u(−1, t) = dv(1, t), t ≥ 0, (5.1)

where the scalar d has to be chosen such that the dissipative effect of the outer boundary
terms is removed.

Consider the SBP–SAT approximation of (2.3)–(2.4), including condition (5.1)

ut + a P−1
l Qlu = P−1

l [σBL(u0 − dvN )e0 + σL(cuN − v0)eN ] ,
vt + bP−1

r Qr v = P−1
r [σB R(dvN − u0)eN + σR(v0 − cuN )e0] .

(5.2)

Now the discrete energy method leads to

d

dt
‖u, v‖2αd

= IT + BT,

where IT is equal to the previously analyzed (3.5) and

BT = u2
0(a + 2σBL) − 2u0vN (dσBL + αdσB R) + v2N αd(−b + 2dσB R).

With the choice

σBL = −a

2
, σB R = 1

2

b

d
and d =

√
αd

(
b

a

)
, (5.3)

we obtain BT=0. This implies that the boundary terms do not influence the semi-
discrete energy estimate.

5.2 The spectrum of the continuous and semi-discrete operator

Todetermine the spectrumof the continuous operator of (2.3)–(2.4),weuse theLaplace
transformas in [9,11,18]. The initial conditions are omitted since theydonot contribute
to the spectral analysis. We obtain
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sû + aûx = 0, −1 ≤ x ≤ 0 and sv̂ + bv̂x = 0, 0 < x ≤ 1,

which have the general solutions

û = cle− s
a x and v̂ = cr e− s

b x .

The boundary and interface conditions lead to

E(s)c =
[

e
s
a −de− s

b

c −1

] [
cl

cr

]
= 0. (5.4)

The system (5.4) has a non-trivial solution when the determinant of E(s) is zero, i.e.
when det (E(s)) = −es/a + cde−s/b = 0. For cd �= 0 we get

s = ab

a + b
[log(|cd|) + 2iπk] , k ∈ Z. (5.5)

The infinite sequence (5.5) defines the spectrum of (2.3)–(2.4) in combination with
(5.1). In particular

– if |cd| = 1 then we have a purely imaginary spectrum,
– if |cd| > 1 we have eigenvalues in the right half plane,
– if |cd| < 1 we have eigenvalues in the left half plane.

Remark 8 We are interested in the non-growing cases for the continuous problem, i.e.
the ones where |cd| ≤ 1.

Remark 9 Note that the possibility of having a purely imaginary spectrum for the
continuous problem is independent of the type of problem. Therefore, there exist
combinations of boundary and interface conditions defined by the coefficients c and
d which lead to |cd| = 1 both for conservative or non-conservative problems.

To determine the corresponding semi-discrete spectrum we rewrite (5.2) in matrix
form as (

u
v

)
t
= P−1 Q̃

(
u
v

)
, (5.6)

where

P =
[

Pl 0
0 Pr

]
, Q̃ = −QΛ + Σ and QΛ =

[
aQl 0
0 bQr

]
.

The penalty matrix Σ , which is zero everywhere except at the boundary and interface
points, is given by
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Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σBL −dσBL
. . .

cσL −σL

−cσR σR
. . .

−σB R dσB R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The semi-discrete spectrum is given by the eigenvalues of P−1 Q̃.
By multiplying both sides of (5.6) with P̄ = diag(Pl , αd Pr ) and adding the trans-

pose we have

d

dt
‖u, v‖2αd

=
(

u
v

)T [ ¯̃Q + ¯̃QT
] (

u
v

)
,

where ¯̃Q = P̄ P−1 Q̃. By considering σBL ,B R and d as in (5.3), the matrix ¯̃Q + ¯̃QT is
non zero only at the interface block, which is the 2 × 2 matrix given in (3.5). We can
prove

Proposition 5.1 The conditions (B1.a–b), (5.3) and |cd| ≤ 1 imply that P−1 Q̃ in
(5.6) has eigenvalues with negative semi-definite real parts.

Proof Let x be a complex eigenvector of the spatial operator P−1 Q̃. Then

x∗ ¯̃Qx = x∗ P̄ P−1 Q̃x = x∗ P̄λx = λx∗ P̄x, (5.7)

where λ is the corresponding eigenvalue relative to x. By applying the same procedure

to ¯̃QT we get

x∗ ¯̃QT x = λ̄x∗ P̄x. (5.8)

Summing (5.7) and (5.8) and recalling that P̄ > 0 and diagonal, it follows that

x∗ [ ¯̃Q + ¯̃QT
]

x = (
λ + λ̄

)
x∗ P̄x = 2Re(λ)x∗ P̄x. (5.9)

Hence, Re(λ) ≤ 0 since ¯̃Q + ¯̃QT ≤ 0. 	


6 Numerical results

In this section we present numerical tests concerning various aspects of the interface
treatment focusing on the accuracy and spectral analysis of the approximation (5.2).

As an example, we first present a wave solution propagating with different speeds
in different domains. In Fig. 1 we show a few of the frames of the time-evolution
between the initial time T = 0 and T = 1.5 of the solution to a conservative problem
(2.3)–(2.4). The initial data is zero in both domains. The boundary data is given by the
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Fig. 1 Time-evolution of a conservative solution of (2.3)–(2.4) between the initial time T = 0 and T = 1.5
with a conservative approximation (Proposition 4.3). The boundary data is sin(4π (−1+ 3t)). The parameters
are: a = 2, b = 1 and c = 2. σL = 0.3, σR = 0.5 and θ = 1.3

function g(t) = sin(4π(−1 + 3t)) and it is weakly imposed at the inflow boundary
using SAT procedure. The wave is propagating with velocity a = 2 in the left domain
and b = 1 in the right domain. The jump condition satisfying (2.15) is c = 2.

For this test we have used the approximation (3.2) adding P−1
l [σBL(u0 − g(t))] e0

to the left domain equation as a SAT term for imposing the boundary condition. Here,
the penalty coefficient is set to be σBL = −a according to the stability condition
derived in [1,22]. Computations are performed using the 5th order accurate SBP84
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operator, see [21], with 300 grid points in each domain. The penalty σL ,R satisfy
the conservation conditions of Proposition 4.3. In particular we have chosen: σL =
0.3, σR = 0.5 and θ = 1.3. Here and for all the tests in this paper, we have used
the explicit standard fourth-order Runge-Kutta (RK4) scheme for integrating in time,
with Courant number C F L = 0.1. The relation determining the time step is

max(a, b)
Δt

Δx
= C F L ,

where Δt and Δx are the temporal and spatial step respectively.

6.1 Accuracy

Consider the semi-discrete approximation (5.2). We choose

ul(x, t) = sin(2π(x − t)),
ur (x, t) = cos(3π(x − 3t)),

−1 ≤ x ≤ 0, t ≥ 0,
0 ≤ x ≤ 1, t ≥ 0,

(6.1)

as manufactured solutions. They satisfy the forced equations

(ul)t + a(ul)x = Fl ,

(ur )t + b(ur )x = Fr ,

−1 ≤ x ≤ 0, t ≥ 0,
0 ≤ x ≤ 1, t ≥ 0,

(6.2)

where Fl and Fr are forcing terms obtained by inserting (6.1) in (2.3)–(2.4). The
solutions (6.1) are connected by the jump condition

u(0, t) − cv(0, t) = sin(−2π t) − c cos(−9π t) (6.3)

and the periodic boundary conditions

u(−1, t) − dv(1, t) = sin(2π(−1 + t)) − d cos(3π(1 + t)). (6.4)

We present the accuracy analysis for a non-conservative problem and approximation
with stability conditions from Proposition 4.1. Namely: a = 3, b = 2, c = 3 and
σL = 0.3, σR = −1.1 with θ = 6. We consider SBP21, SBP42, SBP63 and SBP84
operators (where the first number refers to the interior accuracy and the second to the
accuracy at the boundaries and interface) with 2nd, 3th, 4th and 5th overall expected
order of accuracy [21] respectively. The error is evaluated with respect to the discrete
L2 norm and computed as

‖u − ν(h)‖2 =
(

N∑
i=1

h|u(xi , T ) − ν
(h)
i |2

)1/2

,
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as well as the l∞ norm (or maximum norm) defined as

‖u − ν(h)‖∞ = max
i=1,...,N

|u(xi , T ) − ν
(h)
i |.

Here u is the analytic solution at the final time T = 1 and ν(h) the corresponding
numerical approximation calculated using N points and spatial step h. The rate of
convergence q is obtained as

q = log2

(
‖u − ν(2h)‖p

‖u − ν(h)‖p

)
,

where the index p indicates the type of norm considered. The actual errors and the
convergence rates are shown in Tables 1 and 2 respectively. The results agree well
with the design order of accuracy for the schemes. We obtain analogous results for a
conservative problem with both conservative and non-conservative approximation.

6.2 The spectrum

Given that our numerical scheme is accurate, we now return to the analysis of the
spectrum.We are interested in showing that the interface treatment produces a negative
semi-definite spectrum for P−1 Q̃ (as was stated in Proposition 5.1) which converges
to the continuous spectrum. We are also interested in knowing to what extent the
conservation conditions (B1.a–b) influence the spectrum.

We start with convergence of the discrete spectrum. Let λc
i denote the eigenvalues

from the spectrum of the continuous operator, and λi (N ) the eigenvalues of the semi-
discrete spectrum calculated with N grid-points. The index i refers to an ordering of
the magnitude of the imaginary parts of the eigenvalues, i.e. we have Im(λi (N )) <

Im(λi+1(N )). Note that not all the semi-discrete eigenvalues converge. Thus, we
consider indices i small enough such that the related numerical eigenvalues converge
to the continuous ones. For each convergent eigenvalue we compute

Error(N , i) = ∣∣λ(N )i − λc
i

∣∣ , for i = 1, . . . , N , where N = 40, 80, 160, and 320.

Theorder of convergenceofλi (N ) is givenby p = log2(Error(2N , i)/Error(N , i)).
In Table 3 we show the convergence rates for the semi-discrete spectra of the SBP21,
SPB42, SBP63 and SBP84 operators. The problem and the approximation are both
conservative with a = 3, b = 1, c = 3. The penalty coefficients are from Proposition
4.3, namely σL = 0.3, σR = −0.6 and θ = 1.8. The data in the table refer to one
specific eigenvalue of each spectrumwhich is indicative of the behavior of its operator.
Note that Table 3 shows that the convergence is the same as the order of the internal
approximation.

Now we show the validity of Proposition 5.1, which states that the stability con-
ditions (B1.a, b) make the operator (5.6) negative semi-definite. We have tested all
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Table 2 Convergence rate as a function of N grid points for the non-conservative interface problem (6.2)
and semi-discretization (5.2)

q(L2) SBP21 SBP42 SBP63 SBP84
N ul ur ul ur ul ur ul ur

40 1.9830 2.0915 3.2524 2.9650 5.2463 4.4964 5.8235 5.1834

80 2.0124 2.0267 3.0397 3.0096 3.6801 3.8770 4.5847 5.0897

160 2.0086 2.0102 3.0713 3.0083 3.8480 4.0149 4.7510 5.0624

320 2.0059 2.0044 3.0359 3.0068 3.9590 4.0052 4.9033 5.0176

q(l∞) SBP21 SBP42 SBP63 SBP84

N ul ur ul ur ul ur ul ur

40 1.9201 1.9203 3.3609 3.1873 5.3065 4.0257 5.2865 5.3296

80 1.9856 2.0137 2.7951 3.0009 3.6586 3.7306 4.8152 4.8680

160 2.0349 2.0086 3.1082 3.0208 3.8312 4.2597 4.3987 5.0232

320 1.9931 2.0423 3.1472 3.0002 3.9057 4.1312 5.4902 4.9732

The interface penalties σL ,R satisfy the stability conditions of Proposition 4.1. The parameter settings are:
a = 3, b = 2, c = 3 and σL = 0.3, σR = −1.1 with θ = 6

Table 3 Rate of convergence of semi-discrete eigenvalues of SBP21, SPB42, SBP63 and SBP84 operators

N SBP21 SBP42 SBP63 SBP84

40 2.4430 5.2086 6.1259 10.1153

80 2.0485 4.2217 6.9556 8.9885

160 2.0197 4.0813 5.9620 8.8797

320 2.0093 4.0369 6.0843 –

N indicates the number of grid points for each domain. The convergence is the same as the order of
the internal approximation. The last N = 320 result for SBP84 hit machine precision. The problem and
the approximation are both conservative with a = 3, b = 1, c = 3. The penalty coefficients are from
Proposition 4.3, namely σL = 0.3, σR = −0.6 and θ = 1.8.

the different interface treatments presented in Sect. 4 and different orders of accu-
racy for the spatial discretization. In Fig. 2a–c we present one example for each of
the interface cases using the 4th order accurate SBP63 operator. In all the figures
we plot the semi-discrete spectrum of the operator and the corresponding continuous
spectrum.

In Fig. 2a we have a non-conservative problem with a = 2, b = 1 and c = 0.5. The
penalty coefficients satisfy the stability conditions of Proposition 4.1: σL = 1.6, σR =
−1.6 and θ = 6. In Fig. 2b, c we have a conservative continuous problem with a = 2,
b = 1 and c = a/b. In Fig. 2b the penalty coefficients satisfy the non-conservative
stability conditions of Proposition 4.2: σL = 0.4, σR = −0.6 and θ = 1.3, while
in Fig. 2c, they satisfy the conditions of Proposition 4.3: σL = 0.3, σR = −0.7 and
θ = 1.3. We see that the spectra have eigenvalues with negative real parts, which
implies well-posedness for the continuous problem and a stable semi-discrete scheme
as stated in Proposition 5.1.

123



700 C. La Cognata, J. Nordström

−0.5 −0.4 −0.3 −0.2 −0.1 0

−80

−60

−40

−20

0

20

40

60

80

real part

Im
ag

 p
ar

t
Non−conservative problem and scheme

discrete
continuous

−0.5 −0.4 −0.3 −0.2 −0.1 0

−80

−60

−40

−20

0

20

40

60

80

real part

Im
ag

 p
ar

t

Conservative problem and non−conservative scheme

discrete
continuous

(a) (b)

−0.5 −0.4 −0.3 −0.2 −0.1 0

−80

−60

−40

−20

0

20

40

60

80

real part

Im
ag

 p
ar

t

Conservative problem and scheme 

discrete
continuous

(c)

Fig. 2 Continuous and semi-discrete spectrum of 4th order SBP–SAT approximation. Penalty coefficients
σL , σR as in Proposition 4.1 (a), Proposition 4.2 (b), Proposition 4.3 (c)

6.2.1 Strict stability and artificial dissipation

All the plots in Fig. 2a–c show that all the eigenvalues of the discrete spectra are
located in the left half plane, which was guaranteed by Proposition 5.1. On the other
hand, a few discrete eigenvalues are located to the right of the continuous spectrum.
According to the definition of strict stability, [8,9,11,18], the time growth rate of
a strictly stable approximation is bounded by the growth rate of the corresponding
continuous problem. We prefer that the eigenvalues of the semi-discrete spectrum lies
on the left side of the spectrum of the continuous operator. By adding suitable artificial
dissipation terms to the semi-discretization (5.2), we can move the discrete spectrum
to the left side of the continuous one without reducing the accuracy.

In our tests we have added artificial dissipation operators of the form

A2p = −P̃−1 D̃p
−T

Bp D̃p,

with accuracy of order 2p. Here Dp = (Δx )
−p D̃p is a consistent approximation of

d p/dx p with minimal width and spatial step Δx . P = (1/Δx )P̃ is the norm used for
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Fig. 3 Close-up of the continuous and the semi-discrete spectrum of 4th order SBP–SAT approximation
without dissipation (a), and with dissipation (b). Penalty coefficients σL , σR satisfy a conservative interface
treatment as in Proposition 4.3. Parameter setting: a = 2, b = 1, and c = 2

Table 4 Rate of convergence of semi-discrete eigenvalues of SBP21, SPB42, SBP63 and SBP84 operators
with artificial dissipation

N SBP21 SBP42 SBP63 SBP84

40 2.0831 4.0950 6.1852 8.2203

80 2.0384 4.0542 6.1113 8.1961

160 2.0186 4.0288 6.0520 8.0825

320 2.0091 4.0148 6.0240 8.0325

N indicates the number of grid points for each domain. The parameter setting is the same as in Table 3. The
order of convergence is not changed by introducing the artificial dissipation

a 2pth order accurate scheme [12,13,21]. Bp is a matrix with a positive semi-definite
symmetric part. For a discussion on how to build artificial dissipation operators for
SBP operators of the form just described, without loosing accuracy and stability, see
[16].

Figure 3 shows the spectrum of the conservative approximation (5.2) using the
SBP63 operator with and without artificial dissipation and the spectrum of the con-
tinuous operator. The semi-discrete eigenvalues in Fig. 3b converge from the left side
implying strict stability. We get similar results for SBP21 and SBP42 operators and
also for the non-conservative approximations. The rate of convergence is not changed
by introducing the artificial dissipation, as can be seen in Table 4.

The benefit of such operators on the spectrum has been also shown in [18].

6.2.2 The dissipative effect of a conservative scheme

Finallywe discuss the difference between a non-conservative and conservative approx-
imation for a conservative continuous problem.FromPropositions 4.2 and4.3weknow
that it is possible to obtain a stable approximation in both cases. Here we are inter-
ested in knowing what we gain or lose by choosing a conservative or non-conservative
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Fig. 4 Comparison between conservative, (a, c, e), and non conservative (b, d, f), semi-discrete spectra
for a conservative continuous problem

scheme. With this motivation in mind we show the spectra of conservative schemes
and spectra of a non-conservative type in Fig. 4a–f. In Fig. 4a, c, e the scheme is stable
and conservative, while in Fig. 4b, d, f) the scheme is stable and non-conservative. In
each row we have the same value of θ , i.e. the same norm αd . In all cases we use a
4th order accurate scheme.
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Fig. 5 Trend of the eigenvalues h1 (a), and h2 (b), of H in (3.5) for different values of θ . The pink and the
green markers correspond to the non-conservative and the conservative scheme respectively. These latter
are always below the former, indicating that the conservative approximation is more dissipative than the
non-conservative one (color figure online)

For θ = 1, Fig. 4a, b, the spectra are identical since the stability conditions imply
conservation, see (4.4) and (4.6). Note that in this case the scheme is automatically
strictly stable since the discrete spectrum is completely located on the left side of the
continuous one. In all the other examples we note that the non-conservative approx-
imation has a few more eigenvalues on the right side of the continuous spectrum
compared with the conservative approximation. This observation suggests that a non-
conservative approximation is less dissipative than a conservative one.

We can check how dissipative the interface treatment is by considering the energy
rate (3.4).We recall that IT represents the effect of the interface treatment on the energy
growth. We can measure how the interface treatment contributes to the estimate by
computing the eigenvalues of H in (3.5) which define the quadratic form IT. In Fig. 5
we show the eigenvalues h1 and h2 for different values of θ for a non-conservative
scheme (pink line) and a conservative scheme (green line). Note that the eigenvalues
of the latter are always below those of the former. This indicates that the conservative
approximation is more dissipative than the non-conservative one.

7 Conclusions

We have presented a complete analysis of the discontinuous interface problem. It has
been shown that such a problem is always well-posed and we have investigated when
it is conservative.

We have derived stable SBP–SAT schemes for a conservative and non-conservative
continuous problem. The schemes have been tested for accuracy and stability using
numerical simulations with the method of manufactured solutions and spectral
analysis.

It has been proved that for a conservative continuous problem one can choose
between a conservative or non-conservative scheme with respect to a modified L2

norm. It has also been proved that a unique norm exists for which stability lead to
conservation.
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In the spectral analysis we have shown that the spectrum of the semi-discrete oper-
ator converges to the spectrum of the continuous problem. Furthermore, the numerical
approximations can be made strictly stable by adding artificial dissipation without
reducing the accuracy. Finally, the dissipative properties of a conservative and non-
conservative scheme have been compared. The results indicate that the conservative
scheme is more dissipative.
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