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Abstract We consider interpolatory quadrature formulae relative to the Legendre
weight function w(t) = 1 on the interval [−1, 1]. On certain spaces of analytic func-
tions the error term of these formulae is a continuous linear functional. We obtain new
estimates for the norm of the error functional when the latter does not keep a constant
sign at the monomials. Subsequently, the derived estimates are applied into the case
of the Clenshaw–Curtis formula, the Basu formula and the Fejér formula of the first
kind.
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1 Introduction

We consider the interpolatory quadrature formula relative to the Legendre weight
function w(t) = 1 on the interval [−1, 1]

∫ 1

−1
f (t)dt =

N∑
ν=1

wν f (τν) + RN ( f ), (1.1)
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706 S. E. Notaris

where the nodes τν = τ
(N )
ν , ordered decreasingly, are all in the interval [−1, 1], and

the weights wν = w
(N )
ν are real numbers. Formula (1.1) has degree of exactness d at

least N − 1, i.e., RN ( f ) = 0 for all f ∈ PN−1.
For functions f ∈ Cd+1[−1, 1], the error term of formula (1.1) can be estimated

by

|RN ( f )| ≤ cd max−1≤t≤1
| f (d+1)(t)|, cd =

∫ 1

−1
|Kd(t)|dt, (1.2)

where Kd is the dth Peano kernel (cf. [3, Section 4.3]). Estimate (1.2), although
frequently quoted, is of limited use. For one reason, higher order derivatives of a
function are not readily available, and, even if they are, the resulting error bound
cannot be applied to functions of lower-order continuity. Furthermore, estimates like
(1.2) do not lend themselves for comparing quadrature formulae with different degrees
of exactness.

A more practical estimate can be obtained by means of a Hilbert space method
proposed by Hämmerlin in [5]. If f is a single-valued holomorphic function in the
disc Cr = {z ∈ C : |z| < r}, r > 1, then it can be written as

f (z) =
∞∑

k=0

ak zk, z ∈ Cr .

Define
| f |r = sup

{
|ak |rk : k ∈ N0 and RN (tk) �= 0

}
, (1.3)

which is a seminorm in the space

Xr = { f : f holomorphic in Cr and | f |r < ∞}. (1.4)

Then it can be shown that the error term RN of formula (1.1) is a continuous linear
functional in (Xr , | · |r ), and its norm is given by

‖RN ‖ =
∞∑

k=0

|RN (tk)|
rk

. (1.5)

If, in addition, for an ε ∈ {−1, 1},
εRN (tk) ≥ 0, k ≥ 0, (1.6i )

or

ε(−1)k RN (tk) ≥ 0, k ≥ 0, (1.6i i )

then, letting

πN (t) =
N∏

ν=1

(t − τν),

we can derive the representations
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The error norm of Clenshaw–Curtis and related quadrature formulae 707

‖RN ‖ = r

∣∣∣∣ 1

πN (r)

∫ 1

−1

πN (t)

r − t
dt

∣∣∣∣ , (1.7i )

or

‖RN ‖ = r

∣∣∣∣ 1

πN (−r)

∫ 1

−1

πN (t)

r + t
dt

∣∣∣∣ , (1.7i i )

respectively (cf. [11, Section 2]). The error norm can lead to estimates for the error
functional itself. If f ∈ X R , then

|RN ( f )| ≤ ‖RN ‖| f |r , 1 < r ≤ R,

which, optimized as a function of r, gives

|RN ( f )| ≤ inf
1<r≤R

(‖RN ‖| f |r ). (1.8)

Furthermore, if | f |r is estimated by max|z|=r | f (z)|, which exists at least for r < R
(cf. [11, Equation (2.9)]), we get

|RN ( f )| ≤ ‖RN ‖max|z|=r
| f (z)|, 1 < r < R,

|RN ( f )| ≤ inf
1<r<R

(
‖RN ‖max|z|=r

| f (z)|
)

. (1.9)

The latter can also be derived by a contour integration technique on circular contours
(cf. [4]).

Representations (1.7i ) and (1.7i i ) have been successfully applied for computing the
norm of the error functional for many well-known quadrature formulae, among them
theGauss, Gauss–Lobatto, Gauss–Radau andGauss–Kronrod quadrature formulae for
various weight functions as well as the Fejér formula of the second kind also known
as Filippi rule.

However, how do we proceed if the error term of formula (1.1) does not satisfy one
of conditions (1.6i ) and (1.6i i ), in particular, if RN (tk) does not keep a constant sign
for all k ≥ 0? This is the case with a number of well-known formulae, such as the
Clenshaw–Curtis formula, the Basu formula and the Fejér formula of the first kind
also known as Pólya rule. In the present paper, we show that if RN (tk) changes sign,
only once, at some specific k = kN (cf. (3.2) and (3.16) below), then ‖RN ‖ can still be
effectively estimated by means of (1.5). We do this in Sect. 3. Our approach is new and
general, and in that sense it could likely be applied to interpolatory quadrature formulae
whose error term at the monomials changes sign more than once, although this case
would require a more delicate handling. In Sect. 4, we apply the estimates derived in
Sect. 3 to the Clenshaw–Curtis formula, the Basu formula and the Fejér formula of
the first kind. A detailed numerical example, depicting the quality of our bounds, is
given in Sect. 5. Our exposition begins in Sect. 2, with some integral formulas for the
Chebyshev polynomials of the first and second kind useful in our development.
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2 Integral formulas for Chebyshev polynomials

The formulas presented in this section, besides been important in their own right, are
also useful in deriving the error norm of Clenshaw–Curtis and Basu formulae.

Throughout this and all subsequent sections, by [·] we denote the integer part of a
real number, while the notation

∑′ means that the last term in the sum must be halved
when n is odd.

Let Tn and Un be the nth degree Chebyshev polynomials of the first and second
kind, respectively, expressed by

Tn(cos θ) = cos nθ, (2.1)

Un(cos θ) = sin (n + 1)θ

sin θ
. (2.2)

Both satisfy the three-term recurrence relation

pk+1(t) = 2tpk(t) − pk−1(t), k = 1, 2, . . . , (2.3)

where
p0(t) = 1, p1(t) = t if pn = Tn,

p0(t) = 1, p1(t) = 2t if pn = Un .
(2.4)

Proposition 2.1 Let r ∈ R with |r | > 1.
(i) We have

∫ 1

−1

(t2 − 1)Tn(t)

r − t
dt = (r2 − 1)Tn(r) ln

(
r + 1

r − 1

)
− 4(r2 − 1)

[(n+1)/2]∑′

k=1

Tn−2k+1(r)

2k − 1

+
{ 2r

n2−1
, n even,

2
n2−4

, n odd.
(2.5)

Moreover, ∫ 1

−1

(t2 − 1)Tn(t)

r + t
dt = (−1)n

∫ 1

−1

(t2 − 1)Tn(t)

r − t
dt. (2.6)

(ii) We have

∫ 1

−1

(t2−1)Un(t)

r − t
dt = (r2 − 1)Un(r) ln

(
r +1

r−1

)
− 4(r2−1)

[(n+1)/2]∑
k=1

Un−2k+1(r)

2k−1

−
{ 2r

n+1 , n even,
2(n+1)
n(n+2) , n odd.

(2.7)

Moreover, ∫ 1

−1

(t2 − 1)Un(t)

r + t
dt = (−1)n

∫ 1

−1

(t2 − 1)Un(t)

r − t
dt. (2.8)
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The error norm of Clenshaw–Curtis and related quadrature formulae 709

Proof (i) Writing

∫ 1

−1

(t2 − 1)Tn(t)

r − t
dt =

∫ 1

−1

(t2 − r2 + r2 − 1)Tn(t)

r − t
dt,

splitting the integral on the right-hand side in two, and using

tTn(t) = 1

2
Tn+1(t) + 1

2
Tn−1(t)

(cf. (2.3) and (2.4)), we get

∫ 1

−1

(t2 − 1)Tn(t)

r − t
dt = (r2 − 1)

∫ 1

−1

Tn(t)

r − t
dt

−1

2

∫ 1

−1
Tn+1(t)dt − r

∫ 1

−1
Tn(t)dt − 1

2

∫ 1

−1
Tn−1(t)dt.

(2.9)
Now,

∫ 1

−1

Tn(t)

r − t
dt = Tn(r) ln

(
r + 1

r − 1

)
− 4

[(n+1)/2]∑′

k=1

Tn−2k+1(r)

2k − 1

(cf. [10, Proposition 2.2, Equation (2.8)]), and

∫ 1

−1
Tm(t)dt =

{− 2
m2−1

, m even,

0, m odd

(cf. [8, Equation (2.43)]), which, inserted into (2.9), give (2.5).
To prove (2.6), all we have to do is to set −t for t into the integral on the left-hand

side and take into account that Tn(−t) = (−1)nTn(t) (cf. (2.1)).
(ii) The proof of (2.7) and (2.8) is similar to that of (2.5) and (2.6), respectively,

except that here we use

∫ 1

−1

Un(t)

r − t
dt = Un(r) ln

(
r + 1

r − 1

)
− 4

[(n+1)/2]∑
k=1

Un−2k+1(r)

2k − 1

(cf. [10, Proposition 2.2, Equation (2.9)]),

∫ 1

−1
Um(t)dt =

{
2

m+1 , m even,

0, m odd
(2.10)

(cf. [8, Equation (2.46)]), and Un(−t) = (−1)nUn(t) (cf. (2.2)). 	
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3 Estimates for the error norm of interpolatory quadrature formulae

In the present section, we assume that the error term of formula (1.1) does not satisfy
one of conditions (1.6i ) and (1.6i i ), but instead RN (tk) changes sign, once, at some
specific k = kN . Then, based on (1.5), we obtain estimates for the error norm, which
are both efficient and easy to apply.

Theorem 3.1 Consider the quadrature formula (1.1) satisfying

N∑
ν=1

|wν | ≤ M (3.1)

and

RN (tk)

{≥ 0, 0 ≤ k ≤ kN ,

≤ 0, k > kN ,
(3.2)

where M > 0 and kN = k(N )
N are constants. Then

‖RN ‖ ≤ r

πN (r)

∫ 1

−1

πN (t)

r − t
dt + 2M

rkN (r − 1)

−2r

⎧⎨
⎩ln

(
r + 1

r − 1

)
− 2

[kN /2]+1∑
k=1

1

(2k − 1)r2k−1

⎫⎬
⎭ . (3.3)

Proof From (1.5), we have, in view of (3.2),

‖RN ‖ =
kN∑

k=0

RN (tk)

rk
−

∞∑
k=kN +1

RN (tk)

rk

=
∞∑

k=0

RN (tk)

rk
− 2

∞∑
k=kN +1

RN (tk)

rk
. (3.4)

The first part on the right-hand side of the last line in (3.4), using the continuity of
RN on (C[−1, 1], ‖ · ‖∞), and proceeding as in the proof of Theorem 2.1(a) in [11],
computes to

∞∑
k=0

RN (tk)

rk
= r

πN (r)

∫ 1

−1

πN (t)

r − t
dt. (3.5)

The second part, on the other hand, again by the continuity of RN on (C[−1, 1], ‖·‖∞),
can be written as

− 2
∞∑

k=kN +1

RN (tk)

rk
= −2RN

⎛
⎝ ∞∑

k=kN +1

(
t

r

)k
⎞
⎠ = − 2

rkN
RN

(
tkN +1

r − t

)
, (3.6)
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The error norm of Clenshaw–Curtis and related quadrature formulae 711

and, setting f (t) = tkN +1/(r − t) in formula (1.1), (3.6) takes the form

− 2
∞∑

k=kN +1

RN (tk)

rk
= 2

rkN

(
N∑

ν=1

wν

τ
kN +1
ν

r − τν

−
∫ 1

−1

tkN +1

r − t
dt

)
. (3.7)

Given that

tkN +1 = (r − t)
(
−tkN − r tkN −1 − · · · − rkN

)
+ rkN +1,

the integral on the right-hand side of (3.7) computes to

∫ 1

−1

tkN +1

r − t
dt = −

kN∑
k=0

rkN −k
∫ 1

−1
tkdt + rkN +1

∫ 1

−1

dt

r − t

= rkN +1

⎧⎨
⎩ln

(
r + 1

r − 1

)
− 2

[kN /2]+1∑
k=1

1

(2k − 1)r2k−1

⎫⎬
⎭ . (3.8)

Moreover, by means of |τν | ≤ 1, ν = 1, 2, . . . , N , and (3.1),

N∑
ν=1

wν

τ
kN +1
ν

r − τν

≤
N∑

ν=1

|wν | |τν |kN +1

r − τν

≤ M

r − 1
, (3.9)

which inserted, together with (3.8), into (3.7), gives

−2
∞∑

k=kN +1

RN (tk)

rk
≤ 2M

rkN (r − 1)
−2r

⎧⎨
⎩ln

(
r + 1

r−1

)
−2

[kN /2]+1∑
k=1

1

(2k − 1)r2k−1

⎫⎬
⎭ .

(3.10)

Now, (3.4), together with (3.5) and (3.10), yields (3.3). 	

An immediate consequence is the following

Corollary 3.2 (a) Consider the quadrature formula (1.1) having all weights nonneg-
ative and satisfying condition (3.2). Then

‖RN ‖ ≤ r

πN (r)

∫ 1

−1

πN (t)

r − t
dt + 4

rkN (r − 1)

−2r

⎧⎨
⎩ln

(
r + 1

r − 1

)
− 2

[kN /2]+1∑
k=1

1

(2k − 1)r2k−1

⎫⎬
⎭ . (3.11)
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712 S. E. Notaris

(b) Consider the quadrature formula (1.1) being symmetric, having all weights
nonnegative and satisfying condition (3.2). Then

‖RN ‖ ≤ r

πN (r)

∫ 1

−1

πN (t)

r − t
dt + 4

rkN (r2 − 1)

−2r

⎧⎨
⎩ln

(
r + 1

r − 1

)
− 2

[kN /2]+1∑
k=1

1

(2k − 1)r2k−1

⎫⎬
⎭ . (3.12)

Proof (a) If all weights of formula (1.1) are nonnegative, then

N∑
ν=1

|wν | =
N∑

ν=1

wν =
∫ 1

−1
dt = 2,

hence, M = 2 (cf. (3.1)), which, in view of (3.3), implies (3.11).
(b) Formula (1.1) is symmetric if

τN−ν+1 = −τν, wN−ν+1 = wν, ν = 1, 2, . . . , N , (3.13)

and as, for N odd, τ(N+1)/2 = 0, we have

N∑
ν=1

wν

τ
kN +1
ν

r − τν

=
[N/2]∑
ν=1

wν

τ
kN +1
ν

r − τν

+
[N/2]∑
ν=1

wν

(−τν)
kN +1

r + τν

. (3.14)

Furthermore, by symmetry,

RN

(
t2l−1) = 0, l ≥ 1,

consequently, kN in (3.2) is even, and (3.14), by virtue of |τν | ≤ 1, ν = 1, 2, . . . , N ,
takes the form

N∑
ν=1

wν

τ
kN +1
ν

r − τν

= 2
[N/2]∑
ν=1

wν

τ
kN +2
ν

r2 − τ 2ν

≤ 2
[N/2]∑
ν=1

wν

1

r2 − 1
≤ 1

r2 − 1

N∑
ν=1

wν = 2

r2 − 1
. (3.15)

Now, following the proof of Theorem 3.1, and replacing (3.9) by (3.15), we obtain
(3.12). 	


A case similar to that of Theorem 3.1 is presented in the following
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Theorem 3.3 Consider the quadrature formula (1.1) satisfying condition (3.1) and

RN (tk)

{≤ 0, 0 ≤ k ≤ kN ,

≥ 0, k > kN ,
(3.16)

where kN = k(N )
N is a constant. Then

‖RN ‖ ≤ 2r

⎧⎨
⎩ln

(
r + 1

r − 1

)
− 2

[kN /2]+1∑
k=1

1

(2k − 1)r2k−1

⎫⎬
⎭ + 2M

rkN (r − 1)

− r

πN (r)

∫ 1

−1

πN (t)

r − t
dt. (3.17)

Proof From (1.5), we have, in view of (3.16),

‖RN ‖ = −
kN∑

k=0

RN (tk)

rk
+

∞∑
k=kN +1

RN (tk)

rk

= −
∞∑

k=0

RN (tk)

rk
+ 2

∞∑
k=kN +1

RN (tk)

rk
.

Then, proceeding as in the proof of Theorem 3.1, we obtain (3.17). 	

Also, in a like manner as in Corollary 3.2, we derive the following consequence of

Theorem 3.3.

Corollary 3.4 (a) Consider the quadrature formula (1.1) having all weights nonneg-
ative and satisfying condition (3.16). Then

‖RN ‖ ≤ 2r

⎧⎨
⎩ln

(
r + 1

r − 1

)
− 2

[kN /2]+1∑
k=1

1

(2k − 1)r2k−1

⎫⎬
⎭

+ 4

rkN (r − 1)
− r

πN (r)

∫ 1

−1

πN (t)

r − t
dt. (3.18)

(b) Consider the quadrature formula (1.1) being symmetric, having all weights
nonnegative and satisfying condition (3.16). Then

‖RN ‖ ≤ 2r

⎧⎨
⎩ln

(
r + 1

r − 1

)
− 2

[kN /2]+1∑
k=1

1

(2k − 1)r2k−1

⎫⎬
⎭

+ 4

rkN (r2 − 1)
− r

πN (r)

∫ 1

−1

πN (t)

r − t
dt. (3.19)
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4 Estimates for the error norm of the Clenshaw–Curtis formula, Basu
formula and Fejér formula of the first kind

We treat each case separately.

4.1 The Clenshaw–Curtis formula

This is the quadrature formula

∫ 1

−1
f (t)dt = w

∗(2)
0 f (1) +

n∑
ν=1

w∗(2)
ν f (τ (2)

ν ) + w
∗(2)
n+1 f (−1) + R∗(2)

n ( f ), (4.1)

with
τ (2)
ν = cos θ(2)

ν , θ (2)
ν = ν

n + 1
π, ν = 1, 2, . . . , n, (4.2)

the zeros of the nth degree Chebyshev polynomial of the second kind Un (cf. (2.2)),
and

w
∗(2)
ν = 2

n + 1

⎛
⎝1 − 2

[(n+1)/2]∑′

k=1

cos 2kθ
(2)
ν

4k2 − 1

⎞
⎠ , ν = 1, 2, . . . , n,

w
∗(2)
0 = w

∗(2)
n+1 =

⎧⎪⎪⎨
⎪⎪⎩

1

(n + 1)2
, n even,

1

n(n + 2)
, n odd.

(4.3)

The weights w
∗(2)
ν , ν = 1, 2, . . . , n, are all positive, and formula (4.1) has precise

degree of exactness d = n + 1 if n is even and d = n + 2 if n is odd, i.e., d =
2[(n + 1)/2] + 1 (cf. [9]).

In order to obtain an estimate for ‖R∗(2)
n ‖, we need to get an assessment for the

sign of R∗(2)
n (tk), k ≥ 0. Our findings are summarized in the following

Lemma 4.1 The error term of the Clenshaw–Curtis quadrature formula (4.1), when
n ≥ 2, satisfies

R∗(2)
n (tk)

{
≥ 0, 0 ≤ k ≤ k∗(2)

n ,

≤ 0, k > k∗(2)
n ,

(4.4)

where k∗(2)
n > 2[(n + 1)/2] + 2 is a constant.

For n = 1, there holds
R∗(2)
1 (tk) ≤ 0, k ≥ 0. (4.5)

Proof First of all,

R∗(2)
n (tk) = 0, k = 0, 1, . . . ,

{
n + 1, n even,
n + 2, n odd.

(4.6)
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The error norm of Clenshaw–Curtis and related quadrature formulae 715

Moreover, formula (4.1) is symmetric (cf. (3.13)), hence,

R∗(2)
n (t2l−1) = 0, l ≥ 1. (4.7)

Thus, we have to look at the sign of R∗(2)
n (t2l). Let n(even) ≥2. Then, by (4.6) and

(4.1),

R∗(2)
n (tn+2) = R∗(2)

n

(
(t2 − 1)

1

2n
Un(t)

)
= 1

2n

∫ 1

−1
(t2 − 1)Un(t)dt,

from which, in view of

(t2 − 1)Un(t) = 1

4
Un+2(t) − 1

2
Un(t) + 1

4
Un−2(t)

(cf. (2.3) and (2.4) or [8, Equation (2.42)]), we get, by means of (2.10),

R∗(2)
n (tn+2) = 1

2n

(
1

4

∫ 1

−1
Un+2(t)dt − 1

2

∫ 1

−1
Un(t)dt + 1

4

∫ 1

−1
Un−2(t)dt

)

= 1

2n−2(n − 1)(n + 1)(n + 3)
.

In a like manner, we obtain, for n(odd) ≥ 3,

R∗(2)
n (tn+3) = n + 1

2n−2(n − 2)n(n + 2)(n + 4)
.

Hence, all together
R∗(2)

n (t2[(n+1)/2]+2) > 0, n ≥ 2. (4.8)

Furthermore, setting f (t) = t2l in (4.1), we have

R∗(2)
n (t2l) = 2

2l + 1
− w

∗(2)
0 −

n∑
ν=1

w∗(2)
ν (τ (2)

ν )2l − w
∗(2)
n+1, (4.9)

and, as 2
2l+1 is decreasing with l while w

∗(2)
0 = w

∗(2)
n+1 > 0 are independent of l,

R∗(2)
n (t2l) < 0, l > k∗(2)

n /2, (4.10)

for some constant k∗(2)
n > 2[(n + 1)/2] + 2. Combining (4.6)–(4.8) and (4.10), we

obtain (4.4).
For n = 1, the Clenshaw–Curtis formula (4.1) is Simpson’s rule on the interval

[−1, 1],
∫ 1

−1
f (t)dt = 1

3
f (1) + 4

3
f (0) + 1

3
f (−1) + R∗(2)

1 ( f ),
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716 S. E. Notaris

with
R∗(2)
1 ( f ) = − 1

90
f (4)(ξ), −1 < ξ < 1. (4.11)

From (4.11), there follows that

R∗(2)
1 (t2l) ≤ 0, l ≥ 2,

which, combined with (4.6) and (4.7), yields (4.5). 	


From (4.9), in view of (4.2) and (4.3), we can compute the precise values of k∗(2)
n .

It suffices to find the highest value of l = l∗(2) such that R∗(2)
n (t2l∗(2)

) > 0; then
k∗(2)

n = 2l∗(2). The values of k∗(2)
n , 2 ≤ n ≤ 40, are given in Table 1.

Based on the previous lemma, we can derive estimates for ‖R∗(2)
n ‖.

Theorem 4.2 Consider the Clenshaw–Curtis quadrature formula (4.1). For n ≥ 2,
we have

‖R∗(2)
n ‖ ≤ 4r

[k∗(2)
n /2]+1∑

k=1

1

(2k − 1)r2k−1 + 4

rk∗(2)
n (r2 − 1)

− r ln

(
r + 1

r − 1

)

− 4r

Un(r)

[(n+1)/2]∑
k=1

Un−2k+1(r)

2k − 1
−

⎧⎨
⎩

2r2

(n+1)(r2−1)Un(r)
, n even,

2(n+1)r
n(n+2)(r2−1)Un(r)

, n odd.
(4.12)

On the other hand, for n = 1, we have

‖R∗(2)
1 ‖ = 2(3r2 − 2)

3(r2 − 1)
− r ln

(
r + 1

r − 1

)
. (4.13)

Proof The Clenshaw–Curtis formula (4.1) is the case of the quadrature formula (1.1)
with N = n + 2, τ1 = 1, τν+1 = τ

(2)
ν , ν = 1, 2, . . . , n, and τn+2 = −1.

Table 1 Values of
k∗(2)

n , 2 ≤ n ≤ 40 n k∗(2)
n n k∗(2)

n n k∗(2)
n n k∗(2)

n

2 6 12 150 22 472 32 974

3 12 13 172 23 514 33 1034

4 22 14 200 24 558 34 1096

5 30 15 226 25 604 35 1160

6 42 16 258 26 652 36 1226

7 54 17 288 27 700 37 1292

8 72 18 322 28 752 38 1362

9 86 19 356 29 804 39 1432

10 108 20 394 30 860 40 1506

11 126 21 432 31 916
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For n ≥ 2, in view of (4.4), we get, from Eq. (3.12) in Corollary 3.2(b),

‖R∗(2)
n ‖ ≤ r

(r2 − 1)Un(r)

∫ 1

−1

(t2 − 1)Un(t)

r − t
dt + 4

rk∗(2)
n (r2 − 1)

−2r

⎧⎨
⎩ln

(
r + 1

r − 1

)
− 2

[k∗(2)
n /2]+1∑

k=1

1

(2k − 1)r2k−1

⎫⎬
⎭ ,

and, inserting (2.7), we obtain (4.12).
On the other hand, for n = 1, in view of (4.5) (cf. (1.6i ) with ε = −1), we have,

from (1.7i ),

‖R∗(2)
1 ‖ = − r

(r2 − 1)U1(r)

∫ 1

−1

(t2 − 1)U1(t)

r − t
dt,

and, again by (2.7), we get (4.13). 	

Remark 4.1 The value of Um(r) in (4.12) can be computed by either the three-term
recurrence relation (2.3) and (2.4) or directly as

Um(r) = 1 − τ 2m+2

2τm+1
√

r2 − 1
, m ≥ 0,

where τ = r − √
r2 − 1 (cf. [8, Equation (1.52)]).

4.2 The Basu formula

This is the quadrature formula
∫ 1

−1
f (t)dt = w

∗(1)
0 f (1) +

n∑
ν=1

w∗(1)
ν f (τ (1)

ν ) + w
∗(1)
n+1 f (−1) + R∗(1)

n ( f ), (4.14)

with
τ (1)
ν = cos θ(1)

ν , θ (1)
ν = 2ν − 1

2n
π, ν = 1, 2, . . . , n, (4.15)

the zeros of the nth degree Chebyshev polynomial of the first kind Tn (cf. (2.1)), and

w∗(1)
ν =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

n

⎛
⎝1 − 2

n/2∑
k=1

cos 2kθ
(1)
ν

4k2 − 1
+ (−1)ν−1 cot θ(1)

ν

n2 − 1

⎞
⎠ , n even,

2

n

⎛
⎝1 − 2

(n−1)/2∑
k=1

cos 2kθ
(1)
ν

4k2 − 1
+ (−1)ν−1 csc θ

(1)
ν

n2 − 4

⎞
⎠ , n odd,

ν = 1, 2, . . . , n,

w
∗(1)
0 = w

∗(1)
n+1 =

⎧⎪⎪⎨
⎪⎪⎩

− 1

n2 − 1
, n even,

− 1

n2 − 4
, n odd.

(4.16)
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The weights w
∗(1)
ν , ν = 1, 2, . . . , n, are all positive, and formula (4.14) has precise

degree of exactness d = n + 1 if n is even and d = n + 2 if n is odd, i.e., d =
2[(n + 1)/2] + 1 (cf. [9]).

As in the case of the Clenshaw–Curtis formula, we need an assessment for the sign
of R∗(1)

n (tk), k ≥ 0.

Lemma 4.3 The error term of the Basu quadrature formula (4.14), when n ≥ 4,
satisfies

R∗(1)
n (tk)

{
≤ 0, 0 ≤ k ≤ k∗(1)

n ,

≥ 0, k > k∗(1)
n ,

(4.17)

where k∗(1)
n > 2[(n + 1)/2] + 2 is a constant.

For n = 1, 2 or 3, there holds

R∗(1)
1 (tk) ≤ 0, k ≥ 0, (4.18)

R∗(1)
2 (tk) ≥ 0, k ≥ 0, (4.19)

R∗(1)
3 (tk) ≥ 0, k ≥ 0. (4.20)

Proof First of all,

R∗(1)
n (tk) = 0, k = 0, 1, . . . ,

{
n + 1, n even,
n + 2, n odd,

(4.21)

and, as formula (4.14) is symmetric (cf. (3.13)),

R∗(1)
n (t2l−1) = 0, l ≥ 1. (4.22)

Moreover, proceeding exactly as in the case of the Clenshaw–Curtis formula, we find,
for n(even) ≥ 4,

R∗(1)
n (tn+2) = − 3

2n−3(n2 − 1)(n2 − 9)
,

and, for n(odd) ≥ 5,

R∗(1)
n (tn+3) = − 3

2n−3(n2 − 4)(n2 − 16)
,

i.e.,
R∗(1)

n (t2[(n+1)/2]+2) < 0, n ≥ 4. (4.23)

Furthermore, from (4.14),

R∗(1)
n (t2l) = 2

2l + 1
− w

∗(1)
0 −

n∑
ν=1

w∗(1)
ν (τ (1)

ν )2l − w
∗(1)
n+1, (4.24)
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and, as w
∗(1)
0 = w

∗(1)
n+1 < 0 while |τ (1)

ν | < 1, ν = 1, 2, . . . , n, and therefore∑n
ν=1 w

∗(1)
ν (τ

(1)
ν )2l is decreasing with l,

R∗(1)
n (t2l) > 0, l > k∗(1)

n /2, (4.25)

for some constant k∗(1)
n > 2[(n +1)/2]+2. Now, combining (4.21)–(4.23) and (4.25),

we obtain (4.17).
For n = 1, the Basu formula (4.14) is Simpson’s rule, hence, (4.18) follows as in

Lemma 4.1.
For n = 2, formula (4.14) has the form
∫ 1

−1
f (t)dt = −1

3
f (1) + 4

3
f

(√
2

2

)
+ 4

3
f

(
−

√
2

2

)
− 1

3
f (−1) + R∗(1)

2 ( f ),

and, after a simple computation,

R∗(1)
2 (t2l) = 2

{
1

2l + 1
+ 1

3

(
1 − 1

2l−2

)}
> 0, l ≥ 2,

which, combined with (4.21) and (4.22), yields (4.19).
Similarly, for n = 3, formula (4.14) is

∫ 1

−1
f (t)dt = −1

5
f (1) + 32

45
f

(√
3

2

)
+ 44

45
f (0)

+32

45
f

(
−

√
3

2

)
− 1

5
f (−1) + R∗(1)

3 ( f ),

hence,

R∗(1)
3 (t2l) = 2

{
1

2l + 1
+ 1

5

(
1 − 2

(
3

4

)l−2
)}

> 0, l ≥ 3,

and, as in the previous case, gives (4.20). 	

From (4.24), in view of (4.15) and (4.16), we can compute, in a like manner as in

the Clenshaw–Curtis formula, the constants k∗(1)
n ; their values, for 4 ≤ n ≤ 40, are

given in Table 2.
We are now in a position to derive estimates for ‖R∗(1)

n ‖.
Theorem 4.4 Consider the Basu quadrature formula (4.14). For n ≥ 4, we have

‖R∗(1)
n ‖ ≤ r ln

(
r + 1

r − 1

)
− 4r

[k∗(1)
n /2]+1∑

k=1

1

(2k − 1)r2k−1 + 4

rk∗(1)
n (r2 − 1)

+ 4r

Tn(r)

[(n+1)/2]∑′

k=1

Tn−2k+1(r)

2k − 1
−

⎧⎨
⎩

2r2

(n2−1)(r2−1)Tn(r)
, n even,

2r
(n2−4)(r2−1)Tn(r)

, n odd.
(4.26)
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Table 2 Values of
k∗(1)

n , 4 ≤ n ≤ 40 n k∗(1)
n n k∗(1)

n n k∗(1)
n n k∗(1)

n

4 8 14 120 24 356 34 714

5 12 15 136 25 384 35 754

6 22 16 158 26 416 36 800

7 28 17 176 27 448 37 844

8 38 18 200 28 484 38 892

9 48 19 220 29 518 39 938

10 60 20 246 30 556 40 988

11 72 21 270 31 592

12 88 22 298 32 632

13 102 23 324 33 670

On the other hand, we have, for n = 1,

‖R∗(1)
1 ‖ = 2(3r2 − 2)

3(r2 − 1)
− r ln

(
r + 1

r − 1

)
, (4.27)

for n = 2,

‖R∗(1)
2 ‖ = r ln

(
r + 1

r − 1

)
− 2r2(6r2 − 7)

3(r2 − 1)(2r2 − 1)
, (4.28)

and, for n = 3,

‖R∗(1)
3 ‖ = r ln

(
r + 1

r − 1

)
− 2r(60r4 − 85r2 + 22)

15(r2 − 1)(4r3 − 3r)
. (4.29)

Proof The Basu formula (4.14) is the case of the quadrature formula (1.1) with N =
n + 2, τ1 = 1, τν+1 = τ

(1)
ν , ν = 1, 2, . . . , n, and τn+2 = −1.

For n ≥ 4, in view of (4.17), and in spite ofw∗(1)
0 andw

∗(1)
n+1 being negative, a minor

modification of Corollary 3.4(b), together with (2.5), yields (4.26).
On the other hand, the case n = 1 was treated in Theorem 4.2; while, for n = 2 or

3, in view of (4.19) and (4.20) (cf. (1.6i ) with ε = 1), we have, from (1.7i ),

‖R∗(1)
n ‖ = r

(r2 − 1)Tn(r)

∫ 1

−1

(t2 − 1)Tn(t)

r − t
dt,

which, by (2.5), gives (4.28) and (4.29). 	

Remark 4.2 As for Um(r) (cf. Remark 4.1), the value of Tm(r) in (4.26) can be com-
puted by either the three-term recurrence relation (2.3) and (2.4) or directly as

Tm(r) = 1 + τ 2m

2τm
, m ≥ 0

(cf. [8, Equation (1.49)]).
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4.3 The Fejér formula of the first kind

This is the quadrature formula

∫ 1

−1
f (t)dt =

n∑
ν=1

w(1)
ν f (τ (1)

ν ) + R(1)
n ( f ), (4.30)

with the τ
(1)
ν given by (4.15), and

w(1)
ν = 2

n

⎛
⎝1 − 2

[n/2]∑
k=1

cos 2kθ
(1)
ν

4k2 − 1

⎞
⎠ , ν = 1, 2, . . . , n. (4.31)

The weights w
(1)
ν , ν = 1, 2, . . . , n, are all positive, and formula (4.30) has precise

degree of exactnessd = n−1 ifn is even andd = n ifn is odd, i.e.,d = 2[(n+1)/2]−1
(cf. [9]).

As in the previous two cases, we begin our analysis by examining the sign of
R(1)

n (tk), k ≥ 0.

Lemma 4.5 The error term of the Fejér quadrature formula of the first kind (4.30),
when n ≥ 2, satisfies

R(1)
n (tk)

{
≤ 0, 0 ≤ k ≤ k(1)

n ,

≥ 0, k > k(1)
n ,

(4.32)

where k(1)
n > 2[(n + 1)/2] is a constant.

For n = 1, there holds
R(1)
1 (tk) ≥ 0, k ≥ 0. (4.33)

Proof First of all,

R(1)
n (tk) = 0, k = 0, 1, . . . ,

{
n − 1, n even,
n, n odd,

(4.34)

and, as formula (4.30) is symmetric (cf. (3.13)),

R(1)
n (t2l−1) = 0, l ≥ 1. (4.35)

Also, proceeding as in the case of the Clenshaw–Curtis formula, we find, for
n(even) ≥ 2,

R(1)
n (tn) = − 1

2n−2(n2 − 1)
,

and, for n(odd) ≥ 3,

R(1)
n (tn+1) = − 1

2n−2(n2 − 4)
,
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i.e.,
R(1)

n (t2[(n+1)/2]) < 0, n ≥ 2. (4.36)

Furthermore, from (4.30),

R(1)
n (t2l) = 2

2l + 1
−

n∑
ν=1

w(1)
ν (τ (1)

ν )2l = 1

2l + 1

{
2 −

n∑
ν=1

w(1)
ν (2l + 1)(τ (1)

ν )2l

}
,

(4.37)
and, as |τ (1)

ν | < 1, ν = 1, 2, . . . , n, hence,

lim
l→∞(2l + 1)(τ (1)

ν )2l = 0, ν = 1, 2, . . . , n,

we get
R(1)

n (t2l) > 0, l > k(1)
n /2, (4.38)

for some constant k(1)
n > 2[(n + 1)/2]. Now, combining (4.34)–(4.36) and (4.38), we

obtain (4.32).
For n = 1, the Fejér formula of the first kind (4.30) is the 1-point Gauss formula

for the Legendre weight function w(t) = 1 on [−1, 1],
∫ 1

−1
f (t)dt = 2 f (0) + R(1)

1 ( f ),

with

R(1)
1 ( f ) = 1

3
f ′′(ξ), −1 < ξ < 1,

consequently,

R(1)
1 (t2l) ≥ 0, l ≥ 1,

which, combined with (4.34) and (4.35), yields (4.33). 	


The constants k(1)
n are computed from (4.37), in view of (4.15) and (4.31); their

values, for 2 ≤ n ≤ 40, are given in Table 3.
We can now derive the estimates for ‖R(1)

n ‖.

Theorem 4.6 Consider the Fejér quadrature formula of the first kind (4.30). For
n ≥ 2, we have

‖R(1)
n ‖ ≤ r ln

(
r + 1

r − 1

)
− 4r

[k(1)
n /2]+1∑

k=1

1

(2k − 1)r2k−1 + 4

rk(1)
n (r2 − 1)

+ 4r

Tn(r)

[(n+1)/2]∑′

k=1

Tn−2k+1(r)

2k − 1
. (4.39)
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Table 3 Values of
k(1)

n , 2 ≤ n ≤ 40 n k(1)
n n k(1)

n n k(1)
n n k(1)

n

2 4 12 218 22 736 32 1562

3 12 13 256 23 806 33 1660

4 22 14 298 24 878 34 1762

5 36 15 342 25 952 35 1868

6 54 16 390 26 1030 36 1976

7 72 17 438 27 1110 37 2088

8 96 18 492 28 1194 38 2202

9 122 19 548 29 1282 39 2320

10 150 20 608 30 1372 40 2440

11 182 21 670 31 1464

On the other hand, for n = 1, we have

‖R(1)
1 ‖ = r ln

(
r + 1

r − 1

)
− 2. (4.40)

Proof The Fejér formula of the first kind (4.30) is the case of the quadrature formula
(1.1) with N = n and τν = τ

(1)
ν , ν = 1, 2, . . . , n.

For n ≥ 2, in view of (4.32), Corollary 3.4(b), together with [10, Proposition 2.2,
Equation (2.8)], yields (4.39).

On the other hand, for n = 1, in view of (4.33) (cf. (1.6i ) with ε = 1), we have,
from (1.7i ),

‖R(1)
1 ‖ = r

T1(r)

∫ 1

−1

T1(t)

r − t
dt,

which, again by [10, Proposition 2.2, Equation (2.8)], gives (4.40). 	


5 A numerical example

We choose the same example as in [10, Section 4], for the reader to be able to make
comparisons.

We want to approximate the integral

∫ 1

−1
eωt dt = eω − e−ω

ω
, ω > 0, (5.1)

by using either the Clenshaw–Curtis formula (4.1) or the Fejér formula of the first
kind (4.30).
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The function f (z) = eωz = ∑∞
k=0

ωk zk

k! is entire and, in view of (1.3) and (4.7), we
have

| f |∗(2)
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2([(n+1)/2]+1)r2([(n+1)/2]+1)

(2([(n + 1)/2] + 1))! , 1 < r ≤
√

(2[(n + 1)/2] + 3)(2[(n + 1)/2] + 4)

ω
,

ω2([(n+1)/2]+k+1)r2([(n+1)/2]+k+1)

(2([(n + 1)/2] + k + 1))! ,

√
(2[(n + 1)/2] + 2k + 1)(2[(n + 1)/2] + 2k + 2)

ω
< r

≤
√

(2[(n + 1)/2] + 2k + 3)(2[(n + 1)/2] + 2k + 4)

ω
,

k = 1, 2, . . . .

(5.2)

The above formula holds as it stands if
√

(2[(n + 1)/2] + 3)(2[(n + 1)/2] + 4) >

ω; otherwise, the formula for | f |∗(2)
r starts at the branch of (5.2) for which√

(2[(n + 1)/2] + 2k + 3)(2[(n + 1)/2] + 2k + 4) > ω. Similarly,

| f |(1)r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2[(n+1)/2]r2[(n+1)/2]

(2[(n + 1)/2])! , 1 < r ≤
√

(2[(n + 1)/2] + 1)(2[(n + 1)/2] + 2)

ω
,

ω2([(n+1)/2]+k)r2([(n+1)/2]+k)

(2([(n + 1)/2] + k))! ,

√
(2[(n + 1)/2] + 2k − 1)(2[(n + 1)/2] + 2k)

ω
< r

≤
√

(2[(n + 1)/2] + 2k + 1)(2[(n + 1)/2] + 2k + 2)

ω
,

k = 1, 2, . . . ,

under restrictions similar to those in (5.2). Hence, in both cases, f ∈ X∞ (cf. (1.4)).
Moreover,

max|z|=r
| f (z)| = eωr .

Therefore, by (1.8) and (1.9),

|R∗(2)
n ( f )| ≤ inf

1<r<∞

(
‖R∗(2)

n ‖| f |∗(2)
r

)
, (5.3)

|R(1)
n ( f )| ≤ inf

1<r<∞

(
‖R(1)

n ‖| f |(1)r

)
, (5.4)

and

|R∗(2)
n ( f )| ≤ inf

1<r<∞

(
‖R∗(2)

n ‖eωr
)

, (5.5)

|R(1)
n ( f )| ≤ inf

1<r<∞

(
‖R(1)

n ‖eωr
)

, (5.6)

with ‖R∗(2)
n ‖ and ‖R(1)

n ‖ estimated or given by (4.12) and (4.13) and (4.39) and (4.40),
respectively.

It is now worthwhile to see how (5.3) and (5.5) compare with already existing error
bounds.

First of all, estimates for ‖R∗(2)
n ‖ using Hämmerlin’s method (cf. Sect. 1) have

been obtained by Akrivis in his Ph.D. thesis; he did that by either Approximation
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Theory techniques or Chebyshev polynomials’ expansions (cf. [1, Sections 1.4–1.5
and 1.7, Equations (1.7.9), (1.4.35) and (1.5.58)–(1.5.59)]). From the three estimates
he derived, we choose the one that gives the best results in our case; setting m =
[(n + 1)/2] + 2 in Equation (1.7.9) in [1] and using Equation (1.5.58), we have

‖R∗(2)
n ‖ ≤ 2

{
dm

(
1− 2m(2m − 5)

(2m − 3)(2m + 1)
τ 2

)
+ 4(m + 1)2

4(m + 1)2−1

τ 3√
r2 − 1

}
rτ 2m−2

√
r2 − 1

+|R∗(2)
m (t2m−2)| − |RL

m(t2m−2)|
r2m−2 , (5.7)

where

dm = 24m−4m(m − 1)3((m − 2)!)4
(2m − 1)((2m − 2)!)2 , (5.8)

τ = r − √
r2 − 1 and RL

m is the error term of the m-point Gauss-Lobatto quadrature
formula for the Legendre weight function w(t) = 1 on the interval [−1, 1] (with the
end nodes ±1 included in the m points). Then, we apply (5.3) and (5.5) with ‖R∗(2)

n ‖
estimated by (5.7) and (5.8).

Also, a few years before Akrivis, a number of error bounds have been derived for
functions analytic on circular or elliptic contours.

If f is analytic on the disc Cr (cf. Sect. 1), Jayarajan obtained bounds for the
Chebyshev-Fourier coefficients of f , leading, in our case, to the estimate

|R∗(2)
n ( f )| ≤ inf

1<r<∞

{
64(n + 1)

(n − 2)n(n + 2)(n + 4)

rτ n+3

√
r2 − 1

eωr
}

, n odd (5.9)

(cf. [6, Equation (26)]).
If, on the other hand, f is analytic on the ellipseEρ = {z ∈ C : z = 1

2 (u+u−1), u =
ρeiθ , 0 ≤ θ ≤ 2π} with foci at z = ±1 and sum of semiaxes ρ, ρ > 1, error bounds
for R∗(2)

n have been given by Chawla (cf. [2]), Kambo (cf. [7]) and Riess and Johnson
(cf. [12]).We choose the latter, which is based onChebyshev polynomials’ expansions,
and, together with the estimate of Kambo, gives the best results and it is also very easy
to apply. It has the form

|R∗(2)
n ( f )| ≤ inf

1<ρ<∞

(
2

{
16(n + 1)

(n − 2)n(n + 2)(n + 4)
+ 1

ρ2

+ O

(
1

ρn+1

)}
1

ρn+3 max
z∈Eρ

| f (z)|
)

, n odd, (5.10)

and, as in our case,
max
z∈Eρ

| f (z)| = e
1
2ω(ρ+ρ−1), (5.11)
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Table 4 Error bounds and actual error in approximating the integral (5.1) using formula (4.1)

ω n ropt Bound (5.3) ropt Bound (5.5) Error

0.5 5 18.973 7.777(−11) 16.063 5.597(−10) 7.777(−11)

10 26.981 1.556(−18) 24.030 1.363(−17) 1.556(−18)

1.0 5 9.486 2.060(−8) 8.123 1.502(−7) 2.059(−8)

10 13.490 6.491(−15) 12.060 5.711(−14) 6.490(−15)

2.0 5 4.743 6.037(−6) 4.226 4.587(−5) 6.009(−6)

10 6.745 2.859(−11) 6.119 2.559(−10) 2.856(−11)

15 9.746 1.346(−18) 9.068 1.453(−17) 1.346(−18)

4.0 5 2.372 2.636(−3) 2.359 2.135(−2) 2.469(−3)

10 3.373 1.585(−7) 3.229 1.489(−6) 1.551(−7)

15 4.873 4.223(−13) 4.634 4.665(−12) 4.199(−13)

20 5.873 7.937(−18) 5.611 5.592(−17) 7.911(−18)

8.0 5 1.576 3.689(0) 1.550 3.257(+1) 2.746(0)

10 1.937 2.178(−3) 1.904 2.205(−2) 1.850(−3)

15 2.529 2.383(−7) 2.505 2.684(−6) 2.174(−7)

20 2.937 6.231(−11) 2.963 7.711(−10) 5.902(−11)

we get

|R∗(2)
n ( f )| ≤ inf

1<ρ<∞

(
2

{
16(n + 1)

(n − 2)n(n + 2)(n + 4)
+ 1

ρ2

+ O

(
1

ρn+1

)}
1

ρn+3 e
1
2ω(ρ+ρ−1)

)
, n odd (5.12)

(cf. [12, Equation (11)]).
Our results are summarized in Tables 4, 5 and 6 for formula (4.1) and in Table 7 for

formula (4.30); in particular, in Table 4, we present the results based on estimates (5.3)
and (5.5) with ‖R∗(2)

n ‖ estimated by (4.12); in Table 5, we give the corresponding esti-
mates but with ‖R∗(2)

n ‖ estimated by (5.7) and (5.8); finally, in Table 6, we present the
results based on estimates (5.9) and (5.12). (Numbers in parentheses indicate decimal
exponents.) All computations were performed on a SUN Ultra 5 computer in quad
precision (machine precision 1.93 ·10−34). The value of r and ρ, at which the infimum
in each of bounds (5.3)–(5.6), (5.9) and (5.12) was attained, is given in the column
headed ropt and ρopt , respectively, which is placed immediately before the column of

the corresponding bound. As n and r increase, ‖R∗(2)
n ‖ and ‖R(1)

n ‖ decrease and close
to machine precision they can even take a negative value. This actually happens, for
‖R∗(2)

n ‖ when ω = 0.5 and n ≥ 13, ω = 1.0 and n ≥ 15, and ω = 2.0 and n ≥ 19;
and for ‖R(1)

n ‖ when ω = 0.5 and n ≥ 15, and ω = 1.0 and n ≥ 17. The reason is
that, in all these cases, the infimums in bounds (5.3)–(5.6) are attained at rather high
values of r > 15.

Bounds (5.3) and (5.4) provide an excellent estimate of the actual error, and they
are always better than bounds (5.5) and (5.6), respectively. This is to be expected, as
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Table 5 Error bounds and actual error in approximating the integral (5.1) using formula (4.1)

ω n ropt Bound (5.3) ropt Bound (5.5) Error

0.5 5 18.973 8.606(−11) 16.546 6.403(−10) 7.777(−11)

10 26.982 3.548(−18) 26.312 3.364(−17) 1.556(−18)

1.0 5 9.487 2.920(−8) 8.742 2.289(−7) 2.059(−8)

10 13.491 3.939(−14) 13.689 3.747(−13) 6.490(−15)

2.0 5 4.744 1.533(−5) 4.724 1.242(−4) 6.009(−6)

10 6.752 5.866(−10) 6.994 5.536(−9) 2.856(−11)

15 9.747 2.885(−17) 9.981 3.250(−16) 1.346(−18)

4.0 5 2.872 1.394(−2) 2.575 1.144(−1) 2.469(−3)

10 3.873 1.026(−5) 3.582 9.949(−5) 1.551(−7)

15 5.373 3.141(−11) 5.052 3.581(−10) 4.199(−13)

20 6.373 2.285(−15) 6.045 2.844(−14) 7.911(−18)

8.0 5 1.607 2.867(+1) 1.542 2.535(+2) 2.746(0)

10 1.937 2.789(−1) 1.946 2.834(0) 1.850(−3)

15 2.687 4.536(−5) 2.626 5.351(−4) 2.174(−7)

20 3.187 5.002(−8) 3.101 6.381(−7) 5.902(−11)

Table 6 Error bounds and actual error in approximating the integral (5.1) using formula (4.1)

ω n ropt Bound (5.9) ρopt Bound (5.12) Error

0.5 5 16.039 1.112(−9) 32.107 5.605(−10) 7.777(−11)

1.0 5 8.078 2.932(−7) 16.206 1.510(−7) 2.059(−8)

2.0 5 4.152 8.423(−5) 8.366 4.678(−5) 6.009(−6)

15 9.061 2.885(−17) 18.870 2.468(−17) 1.346(−18)

4.0 5 2.284 3.349(−2) 4.543 2.268(−2) 2.469(−3)

15 4.621 9.086(−12) 9.820 1.661(−11) 4.199(−13)

8.0 5 1.471 4.002(+1) 2.666 3.642(+1) 2.746(0)

15 2.482 4.858(−6) 5.146 2.472(−5) 2.174(−7)

(5.5) and (5.6) can be derived from (5.3) and (5.4) if | f |∗(2)
r and | f |(1)r are estimated

by max|z|=r | f (z)| (cf. Sect. 1).
Furthermore, bounds (5.3) and (5.5) with ‖R∗(2)

n ‖ estimated by (4.12) are better
than the corresponding bounds with ‖R∗(2)

n ‖ estimated by (5.7) and (5.8), particularly
as ω and n increase. Estimate (5.7) was derived by approximating ‖R∗(2)

n ‖ by ‖RL
m‖

and then adding a correction factor, while (4.12) was obtained by a tailored made
process, which apparently explains the difference between the two estimates.

Similarly, bounds (5.3) and (5.5) are better than (5.9) and (5.12), particularly as ω

gets large, and this in spite of the fact that (5.12) is based on elliptical contours, which
have the advantage of shrinking around the interval [−1, 1] as ρ → 1. However, (5.10)
is reasonably good for large ρ (when the ellipse looksmore andmore like a circle), and
this cannot happen when ω is large, as then maxz∈Eρ

| f (z)| becomes exceedingly high
(cf. (5.11)), which is apparently the reason for (5.3) and (5.5) outperforming (5.12).
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Table 7 Error bounds and actual error in approximating the integral (5.1) using formula (4.30)

ω n ropt Bound (5.4) ropt Bound (5.6) Error

0.5 5 14.966 1.309(−7) 12.080 8.206(−7) 1.309(−7)

10 22.978 1.069(−14) 20.036 8.563(−14) 1.069(−14)

1.0 5 7.483 8.710(−6) 6.155 5.571(−5) 8.705(−6)

10 11.489 1.117(−11) 10.071 9.006(−11) 1.117(−11)

15 17.492 2.682(−20) 16.038 2.711(−19) 2.681(−20)

2.0 5 3.741 6.525(−4) 3.277 4.437(−3) 6.471(−4)

10 5.744 1.242(−8) 5.140 1.025(−7) 1.240(−8)

15 8.746 1.842(−15) 8.074 1.879(−14) 1.841(−15)

20 10.744 4.341(−21) 10.058 4.925(−20) 4.341(−21)

4.0 5 1.871 8.036(−2) 1.926 5.829(−1) 7.096(−2)

10 2.872 1.800(−5) 2.763 1.575(−4) 1.741(−5)

15 4.373 1.464(−10) 4.146 1.535(−9) 1.453(−10)

20 5.373 5.337(−15) 5.118 6.175(−14) 5.316(−15)

8.0 5 1.393 3.465(+1) 1.346 2.883(+2) 2.402(+1)

10 1.687 7.215(−2) 1.698 6.868(−1) 5.807(−2)

15 2.367 2.190(−5) 2.275 2.351(−4) 1.965(−5)

20 2.687 1.096(−8) 2.727 1.297(−7) 1.025(−8)
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