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Abstract We introduce nonlinear two-parameter eigenvalue problems and gener-
alize several numerical methods for nonlinear eigenvalue problems to nonlinear
two-parameter eigenvalue problems. As a motivation we consider the computation
of critical delays of delay-differential equations with multiple delays.
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1 Introduction

We consider the nonlinear two-parameter eigenvalue problem (N2EP)

Ti (%, wyx; =0, (.
(&, wxz =0, '

where 7; (A, 1) is an n; X n; complex matrix, whose elements are analytic functions
of A, u € C, and x; € C" fori = 1, 2. Matrices could be of different sizes, but to
keep things simple, from now on we assume that n| = np = n.
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We are searching for nonzero vectors x1, xo and values A, p such that (1.1) is
satisfied. In such case we say that the pair (A, ) is an eigenvalue and the tensor
product x| ® x is the corresponding (right) eigenvector. Similarly, if y; and y; are
nonzero vectors such that ylH Ti(A, ) = 0and y2H (A, nu) = 0, then y; ® y7 is the
corresponding left eigenvector.

The N2EP can be seen as a generalization of both the nonlinear eigenvalue problem
(NEP) and the two-parameter eigenvalue problem (2EP). The eigenvalues of (1.1) are
the solutions of the following system of bivariate characteristic functions

Si(h, p) i=det(T1(A, p)) =0,

So(h, ) i=det(T2 (A, ) = 0. (12

Similar as the NEP, the problem (1.1) can have zero, finite, or infinite number
of eigenvalues. We assume that the set of eigenvalues is zero-dimensional, i.e., each
eigenvalue (A, w) is an isolated point, so that the problem of numerical computation
of some or all of the eigenvalues is well defined.

The paper if organized as follows. In Sect. 2, some motivating problems are pre-
sented. In Sect. 3, some basic facts about a related linear two-parameter eigenvalue
problem are given. In Sect. 4 we give some theoretical results on N2EPs with simple
eigenvalues. The main part of the paper are numerical methods for the N2EP in Sect. 5,
which are followed by numerical examples in Sect. 6.

2 Motivating problems

An example of a N2EP is the quadratic two-parameter eigenvalue problem (Q2EP)
[15,22] of the form

Q1 (A, W) x1 := (Ao + AA10 + A1 + 22 Az + AnArr + u?Ag) x1 = 0,

2.1
02(h, 1) x2 := (Boo + ~B1o + Bo1 + A*Bao + AuB11 + 1> Bop) xa = 0,

where A;j, B;j are given n x n complex matrices. A Q2EP of a simpler form, with
some of the quadratic terms A2, Au, and p”> missing, appears in delay-differential
equations (DDEs) with the single delay [15].

The eigenvalues of the Q2EP (2.1) are the roots of the system of bivariate charac-
teristic polynomials det(Q; (A, n)) = Ofori = 1, 2. It follows from Bézout’s theorem
(see, e.g., [7]) that in the generic case the Q2EP (2.1) has 4n? eigenvalues.

As a Q2EP can be linearized as a singular linear two-parameter eigenvalue problem
[10,22], we cannot consider it entirely as a genuine nonlinear example. This is not
true for the following N2EP

(Ag — AL + Ay + u*Ax)x; =0,

(2.2)
(A1 +apl + pAg + ' = ¥Ax)xs =0,
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where o > 0 is not an integer. Problem (2.2) occurs in the study of critical delays of
DDEs with two or more non-commensurate delays. For more details about the problem
and its numerical solution, see Example 6.2.

3 Linear problem
A (linear) two-parameter eigenvalue problem (2EP) has the form

A1x1 = ABix1 + nCixy,

3.1
Apxy = ABaxy + uCoxp,
where A;, B;, and C; are n X n complex matrices. We can study (3.1) in the tensor
product space C" @ C" by defining the so-called operator determinants

Ag=B®Cr —C| ® By,
A=A1QC)—C; ® Ay,
Ay =B1®A— A1 ® B,

(for details see, e.g., [3]). We say that the 2EP (3.1) is nonsingular when A is nonsin-
gular. In this case the matrices A, YAy and Ay ' Ay commute and (3.1) is equivalent
to a coupled pair of generalized eigenvalue problems

A1z = AAoz,

(3.2)
Axz = Aoz
for a decomposable tensor z = x| & x3.

For an overview of numerical methods for 2EPs, see, e.g., [9]. If n is small, we can
solve the coupled pair (3.2). An algorithm of this kind, based on the QZ algorithm, is
presented in [9]. Its complexity is &' (n®) because the A-matrices are of size n> x n”.
Therefore, when 7 is large it is not feasible to compute all eigenpairs. Instead, we can
compute few eigenpairs with iterative methods. The Jacobi—Davidson type method
[9,13] with harmonic Ritz values can compute eigenvalues (A, 1) that are close to a
given target (A7, ur), while the Sylvester—Arnoldi type method [19] gives very good
results in applications from mathematical physics where we need the eigenvalues with
the smallest |u].

There are some iterative methods that can be applied to compute a solution close to a
good initial approximation. One such method is the tensor Rayleigh quotient iteration
(TRQI) from [24], which is a generalization of the standard Rayleigh quotient iteration
(see, e.g., [8]) and computes one eigenpair at a time.

4 Simple eigenvalues

In this section we give some theoretical results on simple eigenvalues of a N2EP and
discuss similarities and differences with the NEP.
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For a start we recall the situation in the one-parameter case. Let A, be an eigenvalue
of a NEP A(A)x = 0, where the elements of matrix A are analytic functions of 1. The
geometric multiplicity 24 (A+) of A4 is equal to the nullity of A(X,), and the algebraic
multiplicity m,(A«) is equal to the multiplicity of A, as a root of det(A(X)) = 0. We
know that mg(A«) < m4(As) holds for each eigenvalue 1.

If (A4, 4) is an eigenvalue of the N2EP (1.1), then its geometric multiplicity is

Mg (As, pxe) = nullity (77 (As, ps)) - nullity (T2 (A, ).

Algebraic multiplicity m, (A, ) is the multiplicity of (L., 4) as aroot of the system
(1.2). The Jacobian of (1.2) is nonsingular in an algebraically simple eigenvalue.
Following a proof for the NEP in [27, Proposition 2.1], we can show that also for the
N2EP the algebraic simplicity of an eigenvalue implies the geometric simplicity.

Proposition 4.1 Each algebraically simple eigenvalue of the N2EP (1.1) is geomet-
rically simple.

Proof Let (L4, 1«) be an algebraically simple eigenvalue of (1.1) and suppose that its
geometric multiplicity is mg > 2. Without loss of generality we can assume that in
this case k := nullity (77 (A«, 14)) > 2. Then there exist permutation matrices Py and
P, such that the (n — k) x (n — k) block A11(As, 4) is nonsingular, where

A, ) Ak, wp)

Ao ) A, u)] =t AG, ).

PyTy (A, )Pl = [

For (A, w) close to (A, 4), block A11(A, ) is nonsingular and we can write

LOw w)AG, R, 1) = [A“(é" 2 S(AO M)} — D),
where

_ Ik 0 e —AT L ARG, )
L()L’M)_[—AZI(A7M)A1_11()»7M) IJ’ m””‘[ 0 Y ]
and

SO 1) = An(h, 1) — Ao (0, WAL O 1) A (4, )

is the Schur complement of A1 (A, ).

Since rank (D (Ay, (4)) = n — k and Ajj (A, (y) 1S nonsingular, S(iy, py) = 0.
The determinant f1(A, n) := det(7T} (A, n)) agrees up to the sign with det(D(A, n)) =
det(A1 (A, w)) det(S(A, w)). Since S(Ay, ) = 0 and the size of the block S(A, w)
is at least 2 x 2, it follows that 3"7 det(S(Ay, py)) = 2 det(S(Ay, 4)) = 0 and thus

Em
W (e, ) = ?,—ﬂ(x*, ts) = 0. The Jacobian of f1(A, ) and f>(k, @) at (hg, fis) i
then singular and (L, 14) is a multiple eigenvalue, which is a contradiction. O
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If A, is an algebraically simple eigenvalue of the NEP A(A)x = 0, then A(o)
is nonsingular for o # A, sufficiently close to A,. On the contrary, if (A, (y) 18
an algebraically simple eigenvalue of the N2EP (1.1) then there always exist points
(0, T) # (M4, Wy) arbitrarily close to (L4, i«) such that one of the matrices T (o, T)
or T>(o, 7) is singular. In fact, it follows from the nonsingularity of the Jacobian of
(1.2) in (A4, uy) and the implicit function theorem that in a small neighbourhood
of (As, u4) there exists a parametric curve (A;(t), ui(t)), where t € (—e¢, ¢), such
that 4; (0) = A4, i (0) = s, and det(T;(X; (), u;(t))) = 0 fort € (—¢,¢) for
i = 1, 2. The eigenvalue (A, i4) is the only intersection of curves (1 (), w1 (¢)) and
(A2(1), 2 (1)).

If y and x are the left and the right eigenvector of an algebraically simple eigenvalue
AyofaNEP A(A)x = 0, thenitis well-known thatyHA’(A*)x # 0,see,e.g.,[2,23,27].
In [21] this relation is generalized to the following proposition for the N2EP.

Proposition 4.2 ([21, Proposition 3.2]) Let (A«, (+) be an algebraically simple eigen-
value of the N2EP (1.1), and let x1 ® x3 and y1 @ y» be the corresponding right and
left eigenvector. Then the matrix

HID HOTy @1

y{]%(k*» M) X1 yf’%(k*, M) X1
V3 7 (s, s)X2 Y B (R i) X2

is nonsingular.

The above result is used in the next section to show the quadratic convergence of
a generalization of the inverse iteration to the N2EP close to an algebraically simple
eigenvalue. It is also a part of the selection criteria that enables us to compute more
than one eigenvalue using the Jacobi—Davidson method [11].

5 Numerical methods

In this section we generalize some numerical methods for NEPs to N2EPs. For an
overview of numerical methods for the NEP, see, e.g., [20,26]. All methods in this
section can be applied to a truly N2EP, i.e, such that cannot be transformed into
a polynomial one. The methods can of course be applied to the polynomial two-
parameter eigenvalue problem (P2EP) as well, but let us remark that there are other
specific methods for P2EPs, like the linearization to a singular 2EP [10,22] and the
Jacobi—-Davidson method [11].

5.1 Inverse iteration
First of the methods that can be generalized to N2EP is the inverse iteration, introduced

by Ruhe [26]. In this method we choose nonzero vectors vy, v2 € C" and apply
Newton’s method to F (x1, x2, A, ) = 0, where
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Ti (A, w)xy

(A, W)x2
F(xp,xo, 0, p) =

v X1 — 1

vfxz -1

The vector v; is used to normalize the eigenvector x;, so it should not be orthogonal
tox; fori =1,2.If (xsz xékz Mk, k) 1s the current approximation for the eigenpair,
then we get the update from the linear system

k
Axfk) Ti (Mg, Mk)ka)
(k) T (n
*) k) Ax 2(Aks Mk)xg
JF(x,", x$ s Ay 2 = — 5.1
( 1 2 ks k) Aoy lexl 1 (5.1
(k)
Apg v2 Xy —1
with the Jacobian
k
TiGew) 0 Gemdx” S Gemx”
‘ k
TP W = | O T (hictue) BTZ 2 Guen) ey 52 G
le 0 0 0
0 vl 0 0
5.2)
Let us assume that the matrices T (A, ir) and T>(rk, ix) are nonsingular. We
can further assume that x( ) and x(k) are normalized, i.e., vfi ® _ vf ék) =11t

now follows from the bottom two rows of (5 1) that V] Axgk) =, Axék) = 0. By
multiplying the top two rows of (5.1) by v1 and v2 , respectively, we obtain a 2 x 2
linear system

_ k i

v Ty (ks k) laal{(?»k,uk)xf) VT Oy i)™ ”Tl i (s Mk)xl |:A)\kj| 3 [_1]
k k =|_

0 Ty (e 1) ™" 52 G i xs” o3 Ty, )™ l”zw o) | LA !

for Ay and Apy. Once Arg and Apy are known, we get the corrections
* _ —1 T L x®
Ax” = =T1 (g, i)™ | T1 (ks i) + Akk ()»k k) + Apg—— (g, (i) ,

Axo

a7 8
—T5(hges 1) ™! (Tz(?»k, i) + Akkﬂ()‘k, Mi) + Aﬂkﬁ(kk, Mk)) ngk)
(5.3)

from the top two rows of (5.1). This gives the approximation for the eigenvector

k+1 1971 k 40Ty X
Y = AT O i)™ T(Ak,uk)xf)—Aule(Ak,uk) ]m()»k,ﬂk)xi),

k+1 10T k 10T k
xg D = — AMT O ) IH(M, ,uk)xg ) — AT Gutey i) lm(lk, Mk)xg )
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The overall algorithm is presented in Algorithm 1. The complexity of one step is
O(n?). Note that Step 8 is just for precaution in numerical computation as in theory

vectors xka) and x§k+l) should already be normalized.

Algorithm 1 Inverse iteration (InvIter)

1: Start with Xq, ng, v, v2, x() andx()

2: for k=0,1,2,...until convergence do
_10T, k

3: Compute a; = T1 (Aks k) 'T)\'(Kk,uk)X§ Vand ag = Ty g, pu) ™2 ()\k Hi)Xy

—1 9T BT
4 Compute by = Ti (e i)~ Gk (i pa)xy”” and by = Ty i)~ ‘d,fuk i)xy
5

Solve
vifar vfby [Axk] B [—1]
Ué{ag v{lbz Apk -1

such that v (0) =vyx 50) =1

)
<k>'

6: Update Ay = Ak + Arg and g4 = g + Apg.

7:  Compute x§k+1) = —Alay — Apgby and x(k+1) = —Alay — Apgbs.

8:  Normalize x](kH) = x}kJrl)/( IH §k+1)) and §k+1) = x§k+l)/(v2Hx§k+l)).
9: end for

Steps 3 and 4 rely on the nonsingularity of 77 (Ag, ) and To (Ak, k). Let us show
that in practice this does not present a difficulty. When we are close to the solution,
T1 (A, i) and To (g, pg) are nearly singular and we can expect that vectors ay, az, by,
and b, have huge norm, which then also applies to the matrix in Step 5. However, the
condition number of this matrix stays bounded as in vicinity of the eigenpair it is close
to a diagonally scaled matrix (4.1), where the scaling factors are expected to be of a
similar magnitude. A rough justification is as follows.

Let (xsz xé@ M, k) becloseto (x1, x2, Ay, ty), Where (A, 1y ) is an algebraically
simple eigenvalue with the right and left eigenvectors x; ® x; and y; ® y;. Then the
smallest singular value o, of T; (Ag, ux) is close to zero and the corresponding right
and left singular vectors are close to x; and y;, respectively. It follows that

aT;
ylHaTl Ay s )X b A iH (M Hs) X

aj o L TR T i"'—xi
Oin Oin

fori = 1,2 and

YL s ety 8RO, 3

|:v1Ha1 v} b1i| |:01n1 ]i|
H —
vya V) b2 Oy )’{1 337)1 (M, s ) X2 yzH 322 (A, s )X2

In practice we do not have to worry if T; (Ag, ug) is singular, because, similar as
in the inverse power method, rounding errors prevent the method from getting into
trouble. A safe alternative with no worries is to solve (5.1) as a (2n + 2) x (2n + 2)
linear system. However, this is approximately four times more expensive since we do
not exploit the block structure of the Jacobian matrix.
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248 B. Plestenjak

Theorem 5.1 Let (7y, ty) be an algebraically simple eigenvalue of the N2EP (1.1)
and let x1 ® xp be the corresponding right eigenvector such that v{" X = vf xp = 1.

Then the inverse iteration has quadratic convergence close to the solution.

Proof Since this is Newton’s method, it is enough to show that the Jacobian (5.2) is
nonsingular at (x1, x2, A«, Ux). SO, suppose that the Jacobian is singular. Then there
exist vectors z1, zo and scalars o1, a2, not all of them being zero, such that

JF(x1, x2, Ay, ) =0. (5.4

If we multiply the first and the second equation of (5.4) by yf’ and y2H , respectively,
where y; ® y» is the left eigenvector of (A, (), we obtain

VA B2 s )2 V352 (b )z | L2

[y{’ S O, pxt yE SO, m)xl} [al] .
As we know from Proposition 4.2 that the above system is nonsingular for an alge-
braically simple eigenvalue, it follows that o] = ap = 0.

From the first and the second equation of (5.4) we now see that there should exist
scalars 81 and B, such that z; = B1x1 and z2 = B2x2, as the null spaces of T7 (A, y)
and T (A, (x) have dimension 1. But then the last two equations of (5.4) read as
Bi le x| = ﬂzvf x = 0, which yields 81 = B2 = 0 and we have a contradiction. 0O

The inverse iteration was applied to 2EPs in [16] and as a part of the continuation
method in [24]. On both occasions the method was enhanced by a generalization
of the Rayleigh quotient for the 2EP. In the next subsection we introduce several
generalizations of the Rayleigh quotient for N2EPs that could be used for such purpose.

5.2 Residual inverse iteration

In each step of the inverse iteration we spend many operations for solving the linear
systems with the matrices 77 (Ag, ux) and T2 (Ak, ix). The same difficulty appears in
the inverse iteration for the NEP. Neumaier showed in [23] that in the NEP we can
use a fixed matrix instead, if we are prepared to trade the quadratic convergence for a
linear one.

This approach can be generalized to the N2EP as follows. Starting from (5.3) and
following arguments from [23] we write

k k _ . . k
xi( - xi( D = T e, ) YT O, i) + Akk%(lk, wi) + Auk%(?»k, ,U«k))xi( )
_ k
= T3 Ot 1)~ (Ts Okt 1) + € (1AM + [ A )?) )
= T; Outes )™ T Gt s DX + O (1AM + 1 Ape])?)
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fori = 1, 2. We can approximate T} (Ar, ux) "' by Tj(o, T)~", where (o, 7) is a fixed
shift close to the eigenvalue, if we have an approximation for (A1, ik+1). To obtain
such approximation, we generalize the Rayleigh functional to N2EP.

If xfk) ® xék) is an approximation for the eigenvector, then the first generalization of
the Rayleigh functional are solutions of the following, in general nonlinear, bivariate
system

(k)H *) _
T1 Mkt 15 fr41)X 0, (5.5
ék) Tr (A1, /Lk+1)x;k) =0.

For a new approximation (Ax41, ti+1) We take the solution of (5.5) that is closest
to (Ag, pi). For the 2EP the system (5.5) has exactly one solution. It is called the tensor
Rayleigh quotient and is equal to the pair (o1, p2), where

NI ) 0o - ) )

(ik) le{k))(x(k) (k)) (xlk) Cx}k))(x(k) Bxék))
(x]) lel(k))(x(k) (k)) (x! (o H A xl(k))(x(k) Bxék))
B o) — ) 0 Bax?)

k k
pa(x() x{9) =

For example, if we take the Q2EP, then (5.5) has 4 solutions in the general case. At
least one of these four solutions is an eigenvalue if xik) ® xék) is an exact eigenvector.

We can think of (5.5) as a one-sided Rayleigh functional, because we use the same
vectors on the left and the right side. We could use the two-sided version instead, where
we use approximation for the left eigenvector on the left side. If, similar to the NEP,
we use Ti(o, 1) Hv; @ Th(o, 1) H v, for an approximation to the left eigenvector,
we obtain the following system for the two-sided Rayleigh functional:

H -1 (k)
v T1(o, 1) T1(Aks1, rt1)Xx; =0,
1 +1s Kk+1)X (5.6)

_ k
vaz(G, 7) ITZ()‘k+1’ Hk—i—l)xé ) —0.

Instead of solving (5.6) we perform one step of Newton’s method using (Ag, () as
an initial approximation. As we show in Theorem 5.2, this is enough for convergence.

This yields
_ N
v2l’

(5.7
where y; = viHTi(U, )7 T s ,uk)xi(k) for i = 1, 2. The values Ay = Ax + Arg
and pur4+1 = i+ Apg present a generalization of Lancaster’s one-parameter Rayleigh
functional [18].

Hence, when we use the residual iteration, we first compute the new eigenvalue
approximation (A1, k1) from (5.7). The new eigenvector approximation before
normalization is then

of Ty (o.0) 7 51 (w»x HTl(mr‘%j)(xkuk)xf“ [mk}:
0l Ta(o.0) T2 Guon)x” 0 T (0,071 G2 G | [ A1k
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k
21 _x] —Ti(o,7)” Tl()»k+1,Mk+l)X1( ),

k
2 =x — Do, D) TG, pur ).

Algorithm 2 Residual iteration (Reslter)

1: Start with Aq, g, v1, V2, x](O) and x(O)

2: for k =0, 1,2, ... until convergence do

such that v]Hx(()l) = vsz(()z) =1.

—1 0T — k
3: Compute ay = Ty Gro, 120) ™ St g, i) x(*) and @y = T, 10)~"! “ 2 (g, i)y

10T — k
Compute by = 71 (.0, 110) ™ 5L Gut, p)x () and by = TaGro, 120) ™ 52 O, um( ).

— k k
Compute y1 = v Ty (g, o) ™' T e, ) x (¥ and o = w8 75 (o, Mo) 1T Grges i)y,

Solve - -
er st L) =[]
v2 ap vy b2 Apg -2
7:  Update Ag41 = A + Ak and w41 = g + Apk.

k+1 k _ k
g x%+D :xf ) _ T1 (M. 120) 1T1()»k+1,uk+1)Xf )

1
k+1 k — k
9: 2tV =89 — TG o) ot s D)2y

10:  Normalize xik_H) = x§k+l)/(vf1x§k+l)) and xék_H) = x§k+l)/(v§1x§k+l)).

11: end for

AR AN

The above procedure is presented in Algorithm 2, where we use the initial eigen-
value approximation (Xg, o) as a fixed shift (o, v). The residual iteration has linear
convergence if the initial approximation is close to the eigenpair.

Theorem 5.2 Let (7y, ty) be an algebraically simple eigenvalue of the N2EP (1.1)
and let x1 ® xp be the corresponding right eigenvector such that v]H X] = vf xp = 1.
If (Ao, o) is sufficiently close to the eigenvalue, then the residual iteration has linear

convergence close to the solution.

Proof We know that the inverse iteration, being a Newton’s method, has quadratic
convergence close to the solution. If we replace the Jacobian (5.2) in the inverse
iteration with the matrix

T (20, 10) 0 8 (. x| on o O o)
AT aTz ( )
B(x® xékz My 1) = (L Tr(rom0) 5% ()»k,uk)xz 7 G rui) X,
of 0 0 0
0 vl 0 0

where the top left diagonal blocks of the Jacobian are fixed at (L¢, (o), then the new
method has linear convergence when (Ag, 1) is sufficiently close to (A, i«) (see,
e.g., [17, Theorem 5.4.1]). If we assume that vf{xl(k) = vf ® = 1, then the solution

of the system

k
Ax (k) Tl()\k»l/«k)x{)
® -1 Ax(k) T3 Outey ) x3"
B(x] ) xz ) )‘-kﬂ /J/k) A}\‘ = - UHx(k 1
1%
Ay v xék) 1
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gives (5.7) for the corrections Ax; and Auyg, and we get

k+1
2 = {0 = TG0, 10) ™ (T s ) + AN Outes ) + Aptac 55 Gt i) 1

- x,.( — T (Ao, po) ! (Ti()“k“’ W) + O ((|Akk| 1A )) ti :

for i = 1,2. This differs only for & ((IA)»kI + IA,uk|)2) from the vectors that are
computed in Steps 8§ and 9 in Algorithm 2. As this difference is too small to destroy
the convergence, the residual iteration has linear convergence as well. O

5.3 Successive linear problems

This method was also introduced by Ruhe [26]. Its generalization to the N2EP is as
follows. We expand

Ty (A — Ak, ke — Apg)xy = 0,
(M — Adgs itk — Apg)xa =0

in the Taylor series as

(T2 Ot 1) = At 53 Ot 1) = A 5 s 1) + € (1 ARe] + 1A )?) )1 =0,
(T2 Ok 1) — AMe G2 s i) = A2 Ok, i) + € (1 AMi] + 1Api])?) ) x2 =0.

We discard higher order terms and take for (AAg, Ay ) the eigenvalue closest to (0, 0)
of the 2EP

Ty Oy )Xt = A S8 G, ) xy + A 1 Bu 0 (ks o), 55
To (e, )2 = A 52 (e, ) x2 + Api 52 o (Mo 1) X2 .

The procedure is presented in Algorithm 3.

Algorithm 3 Method of successive linear problems (SuccLP)
1: Start with 1o and pug.

2: for k =0, 1,2, ... until convergence do

3:  Solve the linear two-parameter eigenvalue problem

Ti (A, pi)x1 = 0 a,\ LG, idx1 + 7 8# L (ks 1)1,
(Mg, ug)x2 = o (),\ 2 (Mo p)X2 + T au Z (Ao pi)X2.
Select the eigenvalue (o, 7) that is closest to (0, 0).

4
5: Update Agy1 = Ag —o and g4 = g — 7.
6: end for
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Numerical results show that the convergence is quadratic. One step has complexity
0 (n6) when the algorithm from [9] is used to solve the 2EP in Step 3. But, since we
only need one eigenvalue of (5.8), we can merge Steps 3 and 4 and apply an iterative
method that can efficiently compute the closest eigenvalue. Here, the Jacobi—Davidson
method from [13] or subspace methods from [19] could be applied.

5.4 Newton’s method on determinants

Instead of (1.1) we can consider the system of determinants (1.2). In order to apply
Newton’s method we need an efficient numerical method for the partial derivatives
O ) and GG, ). where fi (1, 1) := det(T; (h, ) fori = 1, 2.1F fi G, ) # 0
then Jacobi’s formula for the derivative of the determinant yields

LGy m (16 2
FGom o W= (m,m 0 (w)),
1 afi AT, (5.9)
=L ) = T, )~ 2,
Foow oW tr( A5« M))

for i = 1, 2. Using the above formulae we can compute the derivatives in &'(n3).

In [5] one can find an algorithm based on the LU factorization. To simplify
the presentation, we describe the algorithm for one-parameter only. Suppose that
det(A(X)) # 0 and that PA(A) = LU is the result of the Gaussian elimination with
partial pivoting, where P is a permutation matrix, L is a lower triangular matrix with
ones on the diagonal and U is an upper triangular matrix. Then

F(1) = det(A(A)) = det(P) ]_[ .
j=1

If we fix the permutation matrix P, then for each v in a small neighbourhood of A
there exist matrices L(v) and U (v) such that

Lwv)U() =PA(v) (5.10)

is the LU factorization of P A(v). By differentiating (5.10) at v = A we get
PA' AV =L'0W)VUM) + LU (M) = MU + LV, (5.11)
where M := L’(}) is a lower triangular matrix with zeros on the diagonal and V :=
U’()) is an upper triangular matrix. Matrices M and V of the proper form that satisfy

(5.11) can be computed in O(n) flops from A’(A), P, L, and U, for details, see [5]
or Algorithm 6.1 in [25]. It follows that
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The Newton’s method combined with the above approach to compute the derivatives
is presented in Algorithm 4. We assume that 77 (Mg, i) and 7> (Mg, (i) are nonsingular.
If not, we can use a slightly modified algorithm from [5] that is able to compute f”(A)
by the LU factorization even when f (1) = 0.

Algorithm 4 Newton’s method on characteristic functions (NewtCF)

1: Start with X and .

2: for k =0, 1,2, ... until convergence do

3:  Compute LU factorization with partial pivoting P; T; (Ag, ug) = L;U; fori =1, 2.

4:  Compute a lower triangular matrix M7; with zero diagonal and an upper triangular matrix Vy; such
that P; 905 (b, pg) = My U + Ly Vi fori = 1,2,

5:  Compute a lower triangular matrix M»; with zero diagonal and an upper triangular matrix V; such
that P[%—ﬁ(xk, i) = Mo Ui + Li Vo fori = 1,2.

6: Compute o; = Z?:](Vli)jj/(Ui)jj and B; = _r;=1(V2i)jj/(Ui)jj fori =1,2.

Solve
o 2] ]
oy Bo| | Ank —1]°
8: Update Ay = Ag + Arg and pg41 = g + Apk.
9: end for

As this is Newton’s method, the obtained method has quadratic convergence close
to an algebraically simple eigenvalue. A variant of Algorithm 4 was already applied
to the 2EP, see, e.g. [6].

5.5 Implicit determinant algorithm

A bottleneck of Algorithm 4 is the computation of partial derivatives of the determi-
nants. An alternative is based on the implicit determinant algorithm, proposed in [29],
see also [1], for the one-parameter nonlinear eigenvalue problem.

Lemma 5.3 Let (A, ty) be an algebraically simple eigenvalue of the N2EP (1.1)
and let x1 ® x> and y1 ® y2 be the corresponding right and left eigenvector. If vectors
u; and v; are such that ulH vi # 0and viH x; # 0, then the bordered matrix

T; (A, w) uz} (5.12)

Mi()"v M) = [ UH 0

i
is nonsingular at (Ay, () fori =1, 2.
Proof Suppose that
4 i, 1) ui||z
M; (s, phs) |:05i| = |: lu.H Oli| |:05i| =0.

1

When we multiply the first equation by y we get ayu; = 0 and y”u; # 0 yields
o = 0. It follows that z = Bx; for a scalar 8. But ,Bvl.Hxi = 0 and vini # 0, therefore
g =0. O
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Close to (A, i) we define vector x; (A, n) and scalar g; (A, i) as the solution of

, xi(h,w)| _ |0
wo.m v 0] =11]

fori = 1, 2. Then, by Cramer’s rule,

e Toww)
gk, n) = —det(M,-(k, ) i=1,2, (5.13)

and f1 (A, u) = f2(A, ) = 0 has the same root (Ay, x) as g1 (A, u) = g2 (A, u) = 0.
By differentiating (5.13) we get the linear system

dx; Bx, oT; aT;
o) 5 ) GO x5 E W
M;(x, p) |:dg G ) ag, 5 () :| |: 0 0 i|

with the same matrix as in (5.13) and solve it to get the partial derivatives of =- and

ag, for the Newton update. The overall method is presented in Algorithm 5.

In Algorithm 5 the matrix in Steps 3 and 4 is the same, so we have to compute
the factorization only once. One step is faster than applying (5.9) or Algorithm 4.
The algorithm depends on the vectors u; and v;. The optimal choice for u; and v; are
left and right eigenvector components u; = y; and v; = x; fori = 1,2 (see, e.g.,
Subsection 4.5 in [1]). If #; and v; differ much from y; and x; then Algorithm 5 can
converge to a root different than (A4, wy).

Algorithm 5 Implicit determinant method (ImpDet)

1: Start with X¢, ;o and nonzero vectors uy, ua, vy, V2.
2: for k =0, 1,2, ... until convergence do

. T, ) ui | [x;]_ [0 o
3: Solve|: U,'H ollvl=11 fori =1, 2.

T:(n . L. oT;
Solve|: l(l;u) ul:| |:z, w,:|= T s 1xi G,u O i fori =1,2.
vt 0]l B 0 0

ar B[ A | _[-n|
ar Bo| | Apk -2
6: Update Ay = Ak + Arg and g4 = g + Apg.
7: end for

»

5:  Solve

5.6 Jacobi-Davidson method

All the above-mentioned methods require a good initial approximation to converge
to a wanted eigenvalue. In addition, they compute one eigenpair only. When we lack
such approximation we can try a Jacobi—Davidson type method. This is also a method
of choice when matrices are large and sparse. The first Jacobi—-Davidson method for
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a 2EP was a one-sided version for a right-definite 2EP [12]. It was followed by the
two-sided version for a general 2EP [9], while the latest version [13] uses harmonic
Ritz values and works well for the interior eigenvalues. If we look at the NEP, then
the Jacobi—Davidson method was applied to a polynomial eigenvalue problem in [28],
while a version for a general NEP is presented in [4].

In Algorithm 6 we give a Jacobi—Davidson type method for a N2EP. Most of the
details are omitted as they can be found in, e.g., [11] and references therein.

Algorithm 6 Jacobi—Davidson method

1: Start with nonzero vectors s1, s, and Ujg = Usg = Vig = Voo = [ |

2: for k =0, 1,2, ... until convergence do

3:  Expand the search space: (U; 1, s;) — Uji fori =1,2.

4:  Update the appropriate test space: (V; x—1) — Vi fori =1, 2.

5:  Extract the Ritz pair ((o, 7), u] ® us), where u; = Ujc; fori = 1, 2, from the projected N2EP

VT (0, 0)Uier =0
VZIZTQ(U, T)Uprcr = 0.
6: Compute the residual r; = T; (o, T)u; fori =1, 2.

Stop if (Ir 11 + 2131/ < &.
8:  Solve approximately the correction equation, e.g.,

>

(I —uju)Ti(o, DU —ujul)s; = —r,

to get a new direction s; L u; fori =1,2.
9: end for

Let us give some comments on the algorithm. In Steps 3 and 4 we use the repeated
Gram-Schmidt orthogonalization so that the columns of U;; and Vj; are orthonormal
fori = 1, 2. The choice of an appropriate test space depends on whether we are using
one-sided variant, two-sided variant, or harmonic Ritz values. In the basic one-sided
variant we take V;r = Ujx and then Step 4 is redundant.

In Step 5 we need a numerical method that can be applied to a projected N2EP with
small matrices to compute the Ritz pairs of interest. In case of a P2EP we can apply
the linearization, compute all Ritz pairs, and then choose the most appropriate one.
For some other problems that are truly nonlinear, for example (2.2), we can apply the
methods from the previous subsections to obtain a Ritz pair. In this case it is useful
to have a good approximation for the eigenvalue, otherwise the methods might not
converge. In a typical scenario we are looking for an eigenvalue close to a given target
and the matrices are so large and sparse that the iterative iteration is too expensive.
Instead, we apply the Jacobi—Davidson method and use the iterative iteration to solve
the small projected problems.

In Step 8 we solve the correction equation only approximately by applying a few
steps of the GMRES method or another appropriate subspace method. For a better
convergence we should use preconditioning and restart the method when subspaces
become too large.
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The Jacobi—Davidson method was applied to the P2EP in [11]. Using a selection
criteria that prevents the algorithm from selecting the already converged Ritz values
it is possible to compute more eigenvalues.

6 Numerical examples

Two numerical examples are given. They were obtained on 64-bit Windows version
of Matlab R2012b running on Intel 8700 processor and 8 GB of RAM. In the first
example we compare the convergence of methods on a Q2EP. In the second example
we apply inverse iteration on a N2EP related to the determination of the critical curve
of a DDE.

Example 6.1 We take the Q2EP of the form (2.1), where A;; and B;; are random n X n
matrices generated in Matlab as

rand(’'state’, 0); k = 2;
for r = 0:k
for c¢=0: (k-r)
A{r+1, c+1}
B{r+l, c+1}
end

rand (n)+i*rand(n) ;
rand (n)+i*rand(n) ;

end

For n = 250, 500, and 1000 we first compute one eigenpair of the Q2EP by the
Jacobi—Davidson method from [11], which is basically Algorithm 6 adjusted to Q2EP,
and then use a perturbed solution for an initial approximation. We tested Algorithms 1,
2, 3, 4, and 5, to which we refer from now on by more descriptive names Invlter,
Reslter, SuccLP, NewtCF, and ImpDet, respectively. For numerical experiments with
the Jacobi—Davidson method (Algorithm 6) for Q2EP, see [11].

For n = 250 we give in Table 1 for all algorithms the norms of the eigenvalue
updates (|Arx|> + |Aug]?)!/? in individual iterations. In addition, for InvIter and
Reslter, where eigenvectors are computed as well, we give the norms of the residuals
(T (A, Mk)xfk) 1% + 112 Ok, /Lk)xék) 112, 1t is clearly seen that Reslter has linear
convergence while the other four algorithms have quadratic convergence.

In Table 2 we give the number of iterations and computational times. We iterate
InvIter and Reslter until the norm of the residual drops below 10~ 10 while in SuccLP,
NewtCF, and ImpDet the same bound is used for the norm of the eigenvalue update.

NewtCF is slower than InvIter and Reslter. We must remark that in the numerical
experiments we replaced the Steps 4 and 5 by (5.9). In theory, Steps 4 and 5 should be
faster as they require 25 % less flops than (5.9). In practice, it is difficult to implement
this part efficiently as all computations are done at most in Level 1 BLAS. For instance,
Algorithm 4 using an implementation of Steps 4 and 5 in C using MEX (Matlab
implementation is even much slower) requires 168 s for n = 1000.

In SuccLP we use subspace iteration with Ritz projections from [19] to compute
the eigenvalue closest to zero, which is to our believe the fastest available option
at the moment. Based on the properties of the algorithm from [19] it is clear that
one step of SuccLP is always more expensive than one step of InvIter. As they both
have quadratic convergence, the cheaper inverse iteration is preferred. Reslter is also
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very competitive and has an advantage that by using the fixed matrix 7; (Ao, (o) we
avoid potential difficulty of 7;(ik, ux) being singular when (Ag, (x) is close to an
eigenvalue.

In ImpDet we choose the vectors u; and v; as the result of one step of standard
inverse iteration on 7; (Ag, uo) and T; (Ao, o)™, respectively, fori = 1, 2. The method
is competitive to InvIter and Reslter. Its advantage is that the bordered matrix (5.12)
is nonsingular at exact eigenvalue (Ay, fLy).

Example 6.2 We consider a DDE with two delays of the form
X(t) = Aox(t) + A1x(t — hy) + Arx(t — hp).
The corresponding characteristic equation is
M)z = (—Al + Ao+ Are™M* + Aye ™M)z =0, 6.1)

where nonzero z is an eigenvector and X is the corresponding eigenvalue. In the critical
delay, where the stability of the DDE changes, A is purely imaginary. We would like
to find the critical curve, i.e., we are interested in the curve (hy, hy) for hy, hy > 0,
where the stability changes.

A usual approach is to assume that 7y = ah for different values of «. Then, as «
goes from 0 to oo, we compute the points on the critical curve. When we introduce p =
e~1* in (6.1) and write the conjugate equation, where, since A is purely imaginary,
A = —xand @ = u~!, we obtain (2.2). This equation can be solved for some integer
values of «, for instance o = 0, 1, 2, if we transform the problem into a polynomial
eigenvalue problem or into a P2EP, see, e.g., [15]. We could also take for « a rational
number with small numerator and denominator and then solve the problem as a P2EP.

This is how we get some points on the critical curve that we can use as initial
approximations for other values of « and thus follow the critical curve. For the missing
values of a we can solve (2.2) using any of the proposed local methods.

For the numerical example we consider the DDE with two delays from [14]:

U=ty +aoxX)u +ar(xulx,t —hy) +ax(x)ulx,t — hy), u(0,t)=u(mw,t)=0,
(6.2)

where the coefficients are ag(x) = 2 + 0.3sin(x), aj(x) = —2 4+ 0.2x(1 — ™ 7),
and az(x) = —2 — 0.3x(r — x). We discretize (6.2) by the finite differences with
matrices of size 100 x 100 and thus obtain Ag, A, and A, in (2.2). For the initial
point we assume k1 = h, and compute the critical delay by the Q2EP formulation
and the Jacobi-Davidson method as explained in [11].

It is important that (2.2) can be formulated as a Q2EP for 4| = hj. This enables
us to apply the linearization in Step 5 of Algorithm 6 and compute all Ritz values
of the projected problem. Only one eigenvalue of the related Q2EP corresponds to
the critical delay and a special selection criteria (for details, see [11]) guides the
Jacobi-Davidson method to this particular eigenvalue. This gives A = 4.2399286i
and h; = hy = 0.30266688 for the initial value ag = 1.
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Fig. 1 The critical curve (h1, hy) for the DDE (6.2). We start in 71 = hy = 0.30266688 and follow the
curve with the inverse iteration method

Let us remark that for @ # 1 such that (2.2) cannot be formulated as a P2EP, it is
difficult to compute the critical delay without a good approximation. Namely, if we
apply the Jacobi—Davidson method, then in Step 5 of Algorithm 6 we get only one
Ritz value and there is no guarantee that the computed eigenvalue corresponds to the
critical delay.

In the second phase we set

((m — k)n)
o =tan | ————
4m

fork =1, ..., m. For each o we take the solution from step k — 1 as an initial value
for InvIter. In this way we get points where 4, < hy. For the other part of the critical
curve we exchange the roles of /11 and /5 and repeat the procedure starting again from
ap = 1. The results for m = 20 are presented in Fig. 1, where the dot presents the
initial delay at 71 = h,. The computation of all 41 points including the initial one
takes just 1.5 s, which is much faster than reported in [14]. In addition, the results are
more accurate as we use much finer mesh.

For large and sparse matrices A, A1, and A, it would be more efficient to apply the
Jacobi—Davidson method in the second phase instead of InvIter. But in our particular
example, where the matrices Ag, A1 and A are tridiagonal, Invlter is very efficient
and there is no need for the Jacobi—Davidson method.

7 Conclusions

We presented several numerical methods for nonlinear two-parameter eigenvalue prob-
lems. The most competitive local methods are the inverse iteration with quadratic
convergence and the less expensive residual iteration with linear convergence. If we
know how to solve the smaller projected problem, then we can use the Jacobi—Davidson
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method as a global method. As a practical application we presented the computation
of critical curves of delay-differential equations with multiple delays.
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