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Abstract We give an a priori analysis of a semi-discrete discontinuous Galerkin
scheme approximating solutions to a model of multiphase elastodynamics which
involves an energy density depending not only on the strain but also the strain gradient.
A key component in the analysis is the reduced relative entropy stability framework
developed in Giesselmann (SIAM JMath Anal 46(5):3518–3539, 2014). The estimate
we derive is optimal in the L∞(0, T ; dG) norm for the strain and the L2(0, T ; dG)

norm for the velocity, where dG is an appropriate mesh dependent H1-like space.
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1 Introduction

Our goal in this work is to introduce the reduced relative entropy technique as a
methodology for deriving a priori error estimates to finite element approximations of a
problem arising in elastodynamics. In particular, this work is concernedwith providing
a rigorous a priori error estimate for a semi (spatially) discrete discontinuous Galerkin
scheme approximating the solution of amultiphase problem in nonlinear elasticity.We
consider a model for shearing motions in an elastic bar undergoing phase transitions
between phases corresponding to different (intervals of shear) strains. The model is
based on the equations of nonlinear elastodynamics with a non-convex energy density
regularized by an additional (quadratic) dependence of the energy density on the
strain gradient. Such models are frequently called “second (deformation) gradient”
models [20]. It should be noted that (due to the non-convexity of the energy) it is not
immediately obvious what an appropriate stability theory is. A possible answer to this
question was given in [16] where a modification of the relative entropy approach was
presented, which uses the higher order regularizing terms in order to compensate for
the non-convexity of the energy.

The relative entropy framework for hyperbolic conservation laws endowed with a
convex entropy was introduced in [8,12]. For systems of conservation laws describing
(thermo)-mechanical processes the notion of (mathematical) entropy follows from the
physical one [9]. The generalization of the relative entropy techniques to entropies
which are quasi or polyconvex is by now standard and is discussed in detail in [9]. It
should be noted, however, that the model considered in this study does not fall into
this framework which requires us to build our analysis around the stability framework
from [16].

Our analysis is based on deriving a space discrete version of the modified relative
entropy framework from [16]. This enables us to derive an estimate for the difference
of solutions to our semi-discrete scheme and a perturbed version thereof. We combine
this stability frameworkwith appropriate projection operators which enable us to show
that the exact solution satisfies a perturbed version of the numerical scheme.

In order to be more precise let us introduce the equations under consideration: In
one space dimension the equations of nonlinear elasticity read

∂t u − ∂xv = 0

∂tv − ∂xW
′(u) = 0, (1.1)

where u is the strain, v is the velocity and W = W (u) is the energy density given
by a constitutive relation. They can also be cast as a nonlinear wave equation for the
deformation field y satisfying ∂x y = u :

∂t t y − ∂x (W
′(∂x y)) = 0.

A priori estimates for continuous finite element and dG schemes approximating the
wave equation can be found in [21,24–26] for dG schemes for stationary elliptic
and hyperbolic equations of elasticity. For (1.1) to describe multiphase behaviour the
energy density W needs to be non-convex which makes (1.1) a problem of mixed
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Reduced relative entropy techniques for a priori analysis... 101

hyperbolic-elliptic type. This leads to many problems concerning e.g. uniqueness
of solutions to (1.1). To overcome the difficulties caused by the hyperbolic-elliptic
structure either a kinetic relation [1,22] needs to be introduced, or regularizations of
(1.1) need to be considered. We will study the numerical approximation of systems
arising from the second approach. In particular, wewill study the following regularized
problem which was considered in the following non-exhaustive list ([2,13,19,23,27,
28], e.g.):

∂t u − ∂xv = 0

∂tv − ∂xW
′(u) = μ∂xxv − γ ∂xxxu, (1.2)

where μ ≥ 0, γ > 0 are parameters which scale the strength of viscous and capillary
effects. It should be noted that (1.2) is a physically meaningful model in itself, which
also can be written in wave equation form

∂t t y − ∂x (W
′(∂x y)) = μ∂xxt y − γ ∂xxxx y. (1.3)

The numerical simulation of (1.3) and similar models, at hand and similar models,
like the Navier–Stokes–Korteweg system, has received some attention in recent years
(e.g., [4,5,11,17,20,29]). Indeed it turned out that even obtaining stability of numerical
solutions is not trivial. In this work we are interested in the case that γ is small, here
it is expected that solutions of (1.2) display thin layers at phase boundaries. Thus, we
advocate the use of discontinuous Galerkin (dG) finite element methods.

The remainder of the paper is organized as follows: after giving some basic defini-
tions we study well-posedness of (1.2) and its associated energy in Sect. 2. In Sect. 3
we define the semi-discrete dG scheme and describe some immediate properties of
the involved (discrete) operators. In Sect. 4 we derive a discrete version of the reduced
relative entropy framework and derive a stability estimate for solutions of a perturbed
version of the numerical scheme. Section 5 is devoted to the construction of projection
operators. The aim is to show that the projection of the exact solution of (1.2) is a
solution to a perturbed version of our dG scheme. In order to derive the projection
operators we need to study the gradient operators used in the dG scheme in more
detail. We combine the results of the preceding sections in Sect. 6 in order to derive
an error estimate for our dG scheme. Finally in Sect. 7 we conduct some numerical
benchmarking experiments.

2 Preliminaries, well-posedness and relative entropy

Given the standard Lebesgue space notation [7,14] we begin by introducing the
Sobolev spaces. Let Ω ⊂ R then

Wk
p(Ω) := {φ ∈ Lp(Ω) : Dαφ ∈ Lp(Ω), for |α| ≤ k

}
, (2.1)

which are equipped with norms and seminorms
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‖u‖Wk
p(Ω)

:=
⎧
⎨

⎩

(∑
|α|≤k ‖Dαu‖p

Lp(Ω)

)1/p
if p ∈ [1,∞)

∑
|α|≤k ‖Dαu‖L∞(Ω) if p = ∞

(2.2)

|u|Wk
p(Ω)

:=
∥
∥
∥Dku

∥
∥
∥
Lp(Ω)

(2.3)

respectively, where derivatives Dα are understood in a weak sense.
We also make use of the following notation for time dependent Sobolev (Bochner)

spaces:

Ci (0, T ;Hk(S1))

:=
{
u : [0, T ]→Hk(S1) : u and i temporal derivatives are continuous

}
, (2.4)

L∞(0, T ;Wk
p(Ω))

:=
{
u : [0, T ] → Wk

p(Ω) : ess supt∈[0,T ] ‖u(t)‖Wk
p(Ω)

< ∞
}

. (2.5)

We define Hk(Ω) := Wk
2(Ω). For any function space the subspace of functions with

vanishing mean is denoted by subscript m.
We complement (1.2) with periodic boundary conditions. To make this obvious in

the notation we consider (1.2) on [0, T ) × S1 for some T > 0 where S1 denotes the
flat circle, i.e., the interval [0, 1] with the endpoints being identified with each other.
We also need an initial condition u(0, ·) = u0 for some u0 : S1 → Rwhose regularity
we will specify later.

We assume W ∈ C3(R, [0,∞)) but make no assumption on the convexity of W .
The standard application we have in mind is that W has a multi-well shape.

The well-posedness of (1.2) can be ensured using semi-group theory:

Proposition 1 (Well-posedness) Let k ∈ N, k ≥ 3 and initial data u0 ∈ Hk(S1),
v0 ∈ Hk−1(S1) with

∫
S1 u0 dx = ∫

S1 v0 dx = 0 and μ, γ > 0 be given. Let W ∈
Ck(R). Then, there exists some T > 0 such that the problem (1.2) has a unique strong
solution (u, v) satisfying

u ∈ C0([0, T ],Hk(S1)) ∩ C1((0, T ),Hk−2(S1))

v ∈ C0([0, T ],Hk−1(S1)) ∩ C1((0, T ),Hk−3(S1))

with
∫
S1 u(t, ·) dx = ∫S1 v(t, ·) dx = 0 for all 0 ≤ t ≤ T .

In case k = 3 the solution exists for arbitrary times T > 0. This, indeed, relies
on the compatibility of the model with the second law of thermodynamics, i.e., the
following energy dissipation equality which is well-known.

Lemma 1 (Energy balance for (1.2)) Let T, γ > 0 and μ ≥ 0 be given and let

(u, v) ∈
(
C0([0, T ],H3(S1)) ∩ C1((0, T ),H1(S1))

)

×
(
C0([0, T ],H2(S1)) ∩ C1((0, T ),L2(S

1))
)

(2.6)
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be a strong solution of (1.2). Then, the following energy balance law holds in (0, T )×
S1 :

0 = ∂t

(
W (u) + γ

2
(∂xu)2 + 1

2
v2
)

− ∂x
(
vW ′(u) − γ v∂xxu + γ ∂xv∂xu + μv∂xv

)

+μ(∂xv)2. (2.7)

Proof of Proposition 1 The result for k = 3 can be found in [16]. We will show the
result for k = 4, the generalization to k ≥ 5 is straightforward. Note that by forming
the x-derivative of (1.3) we obtain the following equation for u = ∂x y

∂t t u − ∂x (W
′′(∂x y)∂xu) = μ∂xxt u − γ ∂xxxxu (2.8)

where ∂x y is considered to be already given (from the result for k = 3). With z =
(u, ∂t u)ᵀ this can be cast in abstract form as

∂t z = Az + f (z) with A =
(

0 Id
−γ ∂xxxx μ∂xx

)
f (z) =

(
0

∂x (W ′′(∂x y)∂x z1)

)
.

(2.9)
Let us define the spaces

X := H2
m(S1), Y := X × L2(S1). (2.10)

For every w ∈ X it holds that ∂xw ∈ H1
m(S1) such that, by Poincaré’s inequality,

〈(
z1
z2

)
,

(
z̃1
z̃2

)〉

Y
:=
∫

S1
γ ∂xx (z1)∂xx (z̃1) + z2 z̃2 dx,

∥
∥
∥
∥

(
z1
z2

)∥∥
∥
∥

2

Y
:=
〈(

z1
z2

)
,

(
z1
z2

)〉

Y

(2.11)

define a scalar product and a norm on Y. The operator A is densely defined on Y with

D(A) = (H4(S1) ∩ X
)× H2(S1). (2.12)

The operator A induces a C0 semi-group on Y which can be seen analogously to the
arguments in [2] using {sin 2nπ ·, cos 2nπ · : n ∈ N} as a basis of X . Note that for all
t ≥ 0 it holds that

∫

S1
u(t, ·) dx = 0,

∫

S1
∂xu(t, ·) dx = 0,

∫

S1
∂t u(t, ·) dx = 0,

due to our assumptions on the initial data and the fact that the wave equation (2.8) can
be recast as conservation laws for ∂xu, ∂t u. The semi-group induced by A is, in fact,
contractive as any solution (z1, z2) of

∂t

(
z1
z2

)
= A

(
z1
z2

)
(2.13)
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satisfies

d

dt

∥
∥
∥
∥

(
z1
z2

)∥∥
∥
∥

2

Y
= 2

∫

S1
γ ∂xx z1∂xxt z1 + z2∂t z2 dx

= 2
∫

S1
γ ∂xx z1∂xxt z1 − γ ∂xxxx z1∂t z1 + μz2∂xx z2 dx

= −2
∫

S1
μ(∂x z2)

2 dx ≤ 0.

(2.14)

Moreover, the map f : Y → Y is locally Lipschitz continuous, as estimates for
‖y‖H2

(S1)
are already known from the result for k = 3. Invoking [26, Thm. 5.8] we

infer that it exists a maximal time of existence Tm ∈ (0,∞] and a unique strong
solution (z1, z2) of (2.8) with

z1 ∈ C0([0, Tm),H4
m(S1)) ∩ C1((0, Tm),H2

m(S1)),

z2 ∈ C0([0, Tm),H2
m(S1)) ∩ C1((0, Tm),L2(S

1)).
(2.15)

Now that we have obtained z1 we may define some ỹ as the primitive of z1 with mean
value zero. It is straightforward to check, by integrating (2.8), that ỹ indeed solves
(1.3). As the solution of (1.3) is unique we have y = ỹ which implies z1 = ∂x y. This
induces the desired additional regularity of y.

The equations for higher spatial derivatives of y can be obtained analogously to
(2.8) and the arguments can be modified in a straightforward fashion.

3 Semi-discrete dG scheme

We consider the approximation of (1.2) by a semi-discrete discontinuous Galerkin
scheme. To define the scheme let us first introduce some standard notation: Let I :=
[0, 1] be the unit interval and choose 0 = x0 < x1 < · · · < xN = 1. We denote
In = [xn, xn+1] to be the nth subinterval and let hn := xn+1 − xn be its size. By h we
denote the mesh-size function S1 → [0,∞)., i.e., h|In = hn and h := max hn . For
the purposes of this work, we will assume that hN ≤ C for some C > 0. For q ≥ 1
let Pq(I ) be the space of polynomials of degree less than or equal to q on I , then we
denote

Vq := {g : I → R : g|In ∈ P
q(In) for n = 0, . . . , N − 1

}
, (3.1)

to be the usual space of piecewise qth order polynomials for functions over I . By

V
m
q :=

{
g ∈ Vq :

∫

S1
g dx = 0

}
, (3.2)

we denote the subspace of functions with vanishing mean. In addition we define jump
and average operators by
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[[g]]n := g(x−
n ) − g(x+

n ) := lim
s↘0

g(xn − s) − lim
s↘0

g(xn + s),

{{g}}n := 1

2

(
g(x−

n ) + g(x+
n )
) := 1

2

(
lim
s↘0

g(xn − s) + lim
s↘0

g(xn + s)

)
.

(3.3)

We will also denote the L2 projection operator from L2(S1) to Vq by Pq .
Wewill examine semi-discrete numerical schemeswhich are based on the following

reformulation of (1.2) using an auxiliary variable τ :

∂t u − ∂xv = 0

∂tv − ∂xτ − μ∂xxv = 0 (3.4)

τ − W ′(u) + γ ∂xxu = 0.

In the semi-discrete numerical scheme the quantities uh, vh ∈ C1([0, T ),Vq) and
τh ∈ C0([0, T ),Vq) are determined such that

∫

S1
∂t uhΦ − G−[vh]Φ dx = 0 ∀ Φ ∈ Vq ,

∫

S1
∂tvhΨ − G+[τh]Ψ + μG−[vh]G−[Ψ ] dx = 0 ∀ Ψ ∈ Vq ,

∫

S1
τh Z − W ′(uh)Z dx − γ adh (uh, Z) = 0 ∀ Z ∈ Vq ,

(3.5)

given the initial conditions uh(0, ·) = Pq [u0], vh(0, ·) = Pq [v0], where Pq is the
L2 projection L2(S1) → Vq . In (3.5) G± : Vq → Vq denote discrete gradient
operators and adh : Vq × Vq → R is a symmetric, bilinear form which is a consistent
discretisation of the weak form of the Laplacian. We will describe our assumptions
on adh below. For any w ∈ Vq the discrete gradients G±[w] are defined by

∫

S1
G±[w]Ψ dx =

N−1∑

i=0

∫ xi+1

xi
∂xwΨ dx −

N−1∑

i=0

[[w]]iΨ (x±
i ) ∀ Ψ ∈ Vq , (3.6)

where the periodic boundary conditions are accounted for by [[w]]0 := w(x−
N ) −

w(w+
0 ).

In the sequel we will use the convention that C > 0 denotes a generic constant
which may depend on q, the ratio of concurrent cell sizes, γ , W , but is independent
of h and the exact solution (u, v). We impose that the bilinear form adh is coercive
and stable with respect to the dG-norm, i.e., there exists a C > 0 such that for all
w, w̃ ∈ Vq

adh (w, w̃) ≤ C‖w‖dG‖w̃‖dG,

|w|2dG ≤ Cadh (w,w), (3.7)
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106 J. Giesselmann, T. Pryer

where

|w|2dG :=
N−1∑

n=0

(

‖∂xw‖2L2(In)
+ 2 ([[w]]n)2

hn−1 + hn

)

,

‖w‖2dG := ‖w‖2L2(S1)
+ |w|2dG . (3.8)

A classical choice for adh satisfying (3.7) is the interior penalty method

adh (w, w̃) :=
N−1∑

i=0

(∫ xi+1

xi
∂xw∂x w̃ dx − [[w]]i {{∂x w̃}}i − [[w̃]]i {{∂xw}}i

+σ

h
[[w]]i [[w̃]]i

)
, (3.9)

for some σ  1, and {{∂xw}}0 := 1
2 (∂xw(x−

N )+ ∂xw(x+
0 )). In addition, we need adh to

satisfy the following approximation property. For some w ∈ H2(S1) let P[w] be the
Riesz projection of w with respect to adh , i.e., the unique function in Vq satisfying

adh (P[w], Ψ ) =
∫

S1
∂xxwΨ dx ∀ Ψ ∈ Vq and

∫

S1
P[w] − w dx = 0. (3.10)

We impose on adh that for every w ∈ Hq+1(S1) we have

|w − P[w]|dG ≤ Chq ‖w‖Hq+1
(S1)

‖w − P[w]‖L2(S1) ≤ Chq+1 ‖w‖Hq+1
(S1)

(3.11)

‖P[w]‖W1
∞(S1)

≤ C ‖w‖W1
∞(S1)

.

These conditions are also satisfied by the interior penalty method (3.9), see [10,
Cor. 4.18, Thm. 4.25] and [6, Thms. 5.1,5.3].

Let us note some properties of the discrete gradient operators, which follow from
[18, Prop. 4.4] and by standard inverse and trace inequalities

Lemma 2 (Properties of discrete gradients) The discrete gradients G± have the fol-
lowing duality property:

∫

S1
G+[Φ]Ψ dx = −

∫

S1
ΦG−[Ψ ] dx ∀ Φ,Ψ ∈ Vq . (3.12)

The discrete gradients G± have the following stability property: For all q ∈ N there
exists C > 0 independent of h such that

∥
∥G±[Φ]∥∥L2(S1)

≤ C
∥
∥
∥h−1Φ

∥
∥
∥
L2(S1)∥

∥G±[Φ]∥∥L2(S1)
≤ C |Φ|dG ∀ Φ ∈ Vq . (3.13)
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Proof The proof of (3.12) follows immediately from the definition of G±[·], indeed
∫

S1
G+[Ψ ]Φ =

N−1∑

i=0

∫ xi+1

xi
∂xΨ Φ dx −

N−1∑

i=0

[[Ψ ]]iΦ(x+
i )

= −
N−1∑

i=0

∫ xi+1

xi
Ψ ∂xΦ dx +

N−1∑

i=0

Ψ (x−
i )[[Φ]]i

= −
∫

S1
ΨG−[Φ]. (3.14)

The proof of (3.13) uses standard inverse inequalities. ��
Remark 1 (Discrete entropy inequality) Using the test functions Φ = τh , Ψ = vh
and Z = ∂t uh in (3.5) and employing the duality (3.12) it is straightforward to see
that our semi-discrete scheme satisfies the following entropy dissipation equality for
0 < t < T

d

dt

(∫

S1
W (uh) + 1

2
v2h dx + γ

2
adh (uh, uh)

)
= −μ‖G−[vh]‖2L2(S1)

.

The reader may note that this is similar to the entropy dissipation equality obtained in
the fully discrete case in [17]. However there are also differences: In [17] the authors
required the dissipative term to be coercive (with respect to the dG-norm) and “central”
discrete gradients were used instead of the one sided versions G± here.

Remark 2 (L∞ bound for uh) As the numerical scheme dissipates discrete energy, adh
is coercive, see (3.7), (Vq , ‖ · ‖dG) is embedded in (L∞(S1), ‖ · ‖L∞) and the mean
of uh is constant in time we observe that ‖uh‖L∞(0,T ;L∞(S1)) is bounded in terms of
the initial (discrete) energy.

Remark 3 (Choice of discrete operators)While the precise choices of “surface energy”
and dissipation terms (on the discrete level) were somewhat arbitrary in [17] this is
not the case here. Our analysis heavily relies on the fact that adh is coercive on V

m
q

in order to infer an error estimate from the relative entropy estimate Corollary 1. We
choose the same kind of gradient operators for discretising the viscous term in (3.5)
as for the gradient in the continuity equation in order to simplify the estimates for the
residual Rv in Proposition 3. Let us finally note that the roles of G+ and G− in (3.5)
could be interchanged.

Lemma 3 (Stability of the L2 projection) The Pq projection is stable with respect to
the dG-seminorm.

Proof Arguing similarly to the proof of [15, Lem4.6] we have for any w ∈ H1(T )

∣
∣Pq [w]∣∣2dG =

∑

n

(∫

In
(∂x (Pqw))2 dx + [[Pq [w]]]2n

hn−1 + hn

)
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108 J. Giesselmann, T. Pryer

≤
∑

n

(∫

In
(∂x (Pq [w] − P0[w]))2 dx + 2[[Pq [w] − w]]2n + 2[[w]]2n

hn−1 + hn

)

≤
∑

n

(∫

In
h−2
n

(
Pq [w] − P0[w])2 dx

+2
∫

In

(
Pq [w] − w

)2

(hn−1 + hn)2
dx + 2

[[w]]2n
hn−1 + hn

)

≤
∑

n

(
3
∫

In
(∂x (w))2 dx + 2

[[w]]2n
hn−1 + hn

)
≤ 3 |w|2dG , (3.15)

concluding the proof. ��
We are now in position to prove the existence of solutions to (3.5) for arbitrary long

times:

Lemma 4 [Existence and uniqueness to the discrete scheme (3.5)] For given ini-
tial data u0h, v

0
h ∈ Vq the ODE system (3.5) has a unique solution (uh, vh, τh) ∈

(
C1((0,∞),Vq)

)3
.

Proof To some wh ∈ Vq let Δhwh denote the unique element of Vq satisfying

adh (wh, Φ) = −
∫

S1
ΦΔhwh dx .

Using this notation we may remove τh from (3.5) and rewrite it as

∫

S1
∂t uhΦ − G−[vh]Φ dx = 0 ∀ Φ ∈ Vq ,

∫

S1
∂tvhΨ − G+ [Pq [W ′(uh)] − γΔhuh

]
Ψ + μG−[vh]G−[Ψ ] dx = 0 ∀ Ψ ∈ Vq .

(3.16)

This can be written in more abstract form as

z′(t) = f (z(t)), (3.17)

with

z :=
(
uh
vh

)
f (z) :=

(
G−[z2]

G+ [Pq [W ′(z1)] − γΔhz1
]+ μG+[G−[z2]]

)
. (3.18)

Note that f : (Vq)
2 → (Vq)

2 is continuous, due to inverse estimates and stability of
projection operators. As Vq is finite dimensional we do not need to choose a norm on
Vq . From Remark 1, the coercivity of adh (3.7) and the fact that the mean value of uh
does not change over time we infer that z(t) remains in some bounded set K ⊂ (Vq)

2
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(depending on the initial data) as long as a classical solution exists. Note that this
conclusion does not require any growth assumptions on W. Note also that K can be
chosen such that for any initial data z0 ∈ K solutions remain in K . For any z ∈ (Vq)

2

we have that

D f (z) : (Vq)
2 → (Vq)

2,

with

D f (z)(z̃) =
(

G−[z̃2]
G+[Pq [W ′′(z1)z̃1] − γΔh z̃1] + μG+[G−[z̃2]]

)
.

Thus, the regularity of W implies that D f (z) is a uniformly bounded operator for all
z ∈ K . Thus, Picard–Lindelöf’s theorem implies that for any initial data z0 ∈ K there
is a local solution to (3.5) with a minimal time of existence bounded uniformly from
below.

Let us now assume that initial data z0 ∈ (Vq)
2 are given and there is a maximal

finite interval of existence [0, Tm) with Tm < ∞ of the associated solution. Let K be
the set of elements in (Vq)

2 with energy smaller or equal to the energy of the initial
data. Then the solution can be evaluated on an increasing sequence of times (ti )i∈N
with

ti < ti+1 < Tm, z(ti ) ∈ K ∀ i, lim
i→∞ ti = Tm .

Then, there is some i such that the difference between Tm and ti is smaller that the
minimal time of existence of solutions for (3.5) with initial data in K . Thus, we can
extend the solution on [0, Tm) by the solution with “initial” data (ti , z(ti )) which is a
contradiction to the maximality of Tm . ��

4 The discrete relative entropy framework

The stability analysis of (nonlinear systems of) hyperbolic conservation laws is based
on the relative entropy framework, which transfers the knowledge about the energy
dissipation inequality into estimates for differences of solutions. This framework can-
not be used here directly as W , and therefore the whole energy, is not convex. It was
shown in [16], however, that the higher order regularization terms in (1.2) make it pos-
sible to consider only part of the relative entropy and thereby obtain stability results.
In this section we will employ the fact that our semi-discrete scheme (3.5) satisfies a
discrete energy inequality, see Remark 1, in order to obtain a discrete version of the
results in [16].

Definition 1 (Discrete reduced relative entropy) For tuples (uh, vh, τh) and (ũh, ṽh,
τ̃h) ∈ C0([0, T ],Vq)

3 we define the reduced relative entropy between them as
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110 J. Giesselmann, T. Pryer

ηR(t) := 1

2
‖vh(t, ·) − ṽh(t, ·)‖2L2(S1)

+ γ

2
adh (uh(t, ·) − ũh(t, ·), uh(t, ·) − ũh(t, ·))

+μ

4

∫ t

0

(
G−[vh(s, ·) − ṽh(s, ·)]

)2
ds. (4.1)

Lemma 5 (Discrete reduced relative entropy rate) Let (uh, vh, τh) be a solution of
(3.5) and let

(ũh, ṽh, τ̃h) ∈ C1([0, T ),Vq) × C1([0, T ),Vq) × C0([0, T ),Vq)

be a solution of the following perturbed problem

∫

S1
∂t ũhΦ − G−[ṽh]Φ dx =

∫

S1
RuΦ dx ∀ Φ ∈ Vq

∫

S1
∂t ṽhΨ − G+[τ̃h]Ψ + μG−[ṽh]G−[Ψ ] dx =

∫

S1
RvΨ dx ∀ Ψ ∈ Vq (4.2)

∫

S1
τ̃h Z − W ′(ũh)Z dx − γ adh (ũh, Z) =

∫

S1
Rτ Z dx ∀ Z ∈ Vq ,

S for some Ru, Rv, Rτ ∈ C0([0, T ),Vq). Then the rate (of change) of the discrete
reduced relative entropy satisfies

d

dt
ηR = −3

4
μ

∫

S1
G−[vh − ṽh]G−[vh − ṽh] dx

−
∫

S1
Rv(vh − ṽh) + Ru(τh − τ̃h) + (W ′(uh) − W ′(ũh))G−[vh − ṽh] dx

+
∫

S1
(W ′(uh) − W ′(ũh))Ru + RτG

−[vh − ṽh] − Rτ Ru dx . (4.3)

Remark 4 (Impact of different residuals) If we consider applying Gronwall’s Lemma
to (4.3) we observe that the residual Ru is more problematic than Rv, Rτ as it is
multiplied by τh − τh which is not controlled by the reduced relative entropy. While
it is possible to replace this term using (3.5)3 and (4.2)3 this would in turn introduce
a term adh (uh − ũh, Ru), which includes derivatives of Ru . Therefore, our projections
in Section 6 will be constructed such that Ru = 0. The discrete relative entropy rate
in this case is considered in more detail in the subsequent corollary.

Corollary 1 (Estimate of reduced relative entropy) Let the conditions of Lemma 5
be satisfied with Ru = 0. Let ũh be bounded in L∞(0, T ;W1∞(S1)) and satisfy

∫

S1
uh(0, ·) − ũh(0, ·) dx = 0. (4.4)

Then, there exists a constantC>0dependingonly onγ, T, u0, v0, ‖ũh‖L∞(0,T ;W1
∞(S1))

such that for 0 ≤ t ≤ T
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d

dt
ηR(t) ≤ CηR(t) + C

∫

S1
R2

v(t, ·) + 1

h2
R2

τ (t, ·) dx .

Therefore, Gronwall’s Lemma implies (for 0 ≤ t ≤ T )

ηR(t) ≤
(
ηR(0) + C‖Rv‖2L2([0,t]×S1)

+ C‖h−1Rτ‖2L2([0,t]×S1)

)
exp(Ct). (4.5)

Proof Upon using Ru = 0, (3.12) and Young’s inequality on the assertion of Lemma
5 we obtain

d

dt
ηR ≤

∫

S1
R2

v + 2(vh − ṽh)
2 + (G+[Pq [W ′(uh) − W ′(ũh)]])2 + (G+[Rτ ])2 dx .

(4.6)
Because of Lemma 2, (4.6) implies

d

dt
ηR ≤

∫

S1
R2

v + 2(vh − ṽh)
2 + C

h2
R2

τ dx + ∣∣Pq [W ′(uh) − W ′(ũh)]
∣
∣2
dG . (4.7)

Using the stability of the L2 projection with respect to the dG-norm we get

d

dt
ηR ≤

∫

S1
R2

v + 2(vh − ṽh)
2 + C

h2
R2

τ dx + C
∣
∣W ′(uh) − W ′(ũh)

∣
∣2
dG

≤
∫

S1
R2

v + 2(vh − ṽh)
2 + C

h2
R2

τ dx + C ‖uh − ũh‖2dG . (4.8)

For the second inequality in (4.8) we have used the fact that

∣
∣W ′(uh) − W ′(ũh)

∣
∣2
dG ≤

∑

n

(∥
∥(W ′′(uh) − W ′′(ũh)

)
∂x ũh

∥
∥2
L2(In)

+ ∥∥W ′′(ũh) (∂x ũh − ∂xuh)
∥
∥2
L2(In)

+2[[W ′(uh) − W ′(ũh)]]2n
hn−1 + hn

)

≤
∑

n

(
|ũh |2W1

∞

∥
∥W ′′(uh) − W ′′(ũh)

∥
∥2
L2(In)

+ ∥∥W ′′(ũh) (∂x ũh − ∂xuh)
∥
∥2
L2(In)

+2[[W ′(uh) − W ′(ũh)]]2n
hn−1 + hn

)

≤ C
∑

n

(
|ũh |2W1

∞
‖uh − ũh‖2L2(In)

+ ‖∂x ũh − ∂xuh‖2L2(In)

+2[[uh − ũh]]2n
hn−1 + hn

)
, (4.9)
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112 J. Giesselmann, T. Pryer

because ‖W‖W3
∞[−M,M] is bounded for

M := max{‖ũh‖L∞(0,T ;L∞(S1)) , ‖uh‖L∞(0,T ;L∞(S1))}. (4.10)

The assertion of the Lemma follows from (4.8) as

‖uh − ũh‖2dG ≤ C |uh − ũh |2dG ≤ Cadh (uh − ũh, uh − ũh)

due to (4.4). ��
Remark 5 (Parameter dependence) Note that the constant M in (4.10) depends on γ.

In particular, due to (2.7) and Remark 1,

M ≤
∣
∣
∣
∣

∫

S1
u0 dx

∣
∣
∣
∣+

CP√
γ

∫

S1
W (u0) + 1

2
v20 + γ

2
|∂xu0|2 dx, (4.11)

whereCP is the Sobolev embedding constant apearingwhen the L∞ norm is estimated
by the H1 semi-norm for functions with mean value zero. This, induces a subtle
dependence of C in (4.5) on γ which is intertwined with the growth behaviour of W
and its derivatives. To make this more precise later let us define

k(γ ):= max
u∈[−M,M]

∣
∣W ′′(u)

∣
∣ . (4.12)

There is an additional γ dependence of the constant C in the statement of Corollary 1
which enters when

‖uh − ũh‖2L2(S1)
+ ‖vh − ṽh‖2L2(S1)

(4.13)

is estimated by CηR . Taking (4.11)–(4.13) into account we find that

C ∼ k2(γ )

γ
.

This dependence is inherited by all the constants C in the subsequent results.
For clarity,wewill explicitly give thedependence for the potentialW (u) = (u2−1)2

which will be the subject of numerical investigations in Sect. 7. It holds that

k(γ ) = max
u∈[−M,M]

∣
∣
∣12u2 − 4

∣
∣
∣ ∼ γ −1

for small γ.

Note that if the second derivative of W is globally bounded then k(γ ) is, in fact,
independent of γ .

In case the reader takes special interest in the sharp interface case γ → 0 we like to
state the following result which shows that the previous estimate can also be obtained
in amore uniform-in-γ version. However, in that case, the stability constant sensitively
depends on μ.
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Corollary 2 (Estimate of modified relative entropy) Let the assumptions of Lemma 5
be satisfied with Ru = 0. Let |W ′′| be uniformly bounded. Then, there exists a constant
C > 0 depending only on μ, T, u0, v0,

∥
∥W ′′∥∥

L∞(R)
such that for 0 ≤ t ≤ T

ηM (t) := 1

2
‖uh(t, ·) − ũh(t, ·)‖2L2(S1)

+ ηR(t)

satisfies
d

dt
ηM (t) ≤ CηM (t) + C

∫

S1
R2

v(t, ·) + R2
τ (t, ·) dx . (4.14)

Therefore, Gronwall’s Lemma implies (for 0 ≤ t ≤ T )

ηM (t) ≤ C
(
ηM (0) + ‖Rv‖2L2([0,t]×S1)

+ ‖Rτ‖2L2([0,t]×S1)

)
exp(Ct). (4.15)

Proof Starting from (4.3) with Ru = 0 and |W ′′| uniformly bounded we find

d

dt
ηR ≤

∫

S1
−3

4
μ|G−[vh − ṽh]|2 + R2

v + (vh − ṽh)
2 + C

μ
(uh − ũh)

2 dx

+
∫

S1

μ

4
|G−[vh − ṽh]|2 + 1

μ
R2

τ + μ

4
|G−[vh − ṽh]|2 dx . (4.16)

In addition, because of (3.5)1 and (4.2)1, it holds

d

dt

(
1

2
‖uh − ũh‖2L2(S1)

)
=
∫

S1
(uh − ũh)∂t (uh − ũh) dx

=
∫

S1
(uh − ũh)G

−[vh − ṽh] dx

≤
∫

S1

1

μ
(uh − ũh)

2 + μ

4
|G−[vh − ṽh]|2 dx . (4.17)

Adding (4.16) and (4.17) we obtain

d

dt
ηM ≤

∫

S1
R2

v + (vh − ṽh)
2 + 1

μ
R2

τ + C

μ
(uh − ũh)

2 dx

≤ CηM +
∫

S1
R2

v + 1

μ
R2

τ dx, (4.18)

which proves (4.14) and (4.15) follows by Gronwall’s inequality. ��
Remark 6 [Parameter dependence of the constant in (4.15)]

1. Note that the constant C in (4.15) scales like 1/μ for μ → 0.
2. If we would not assume that

∣
∣W ′′∣∣ is globally bounded, we would obtain that the

constant C in the statement of Corollary 2 is bounded by k2(γ )/μ where we have
used notation from Remark 5.
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Proof of Lemma 5 A direct computation shows

d

dt
ηR =

∫

S1
(vh−ṽh)(∂tvh−∂t ṽh)+μ

4

(
G−[vh−ṽh]

)2
dx+γ adh (uh−ũh, ∂t uh−∂t ũh).

(4.19)
Using Z = ∂t (uh − ũh) and Ψ = vh − ṽh in (3.5) and (4.2) we infer from (4.19) that

d

dt
ηR =

∫

S1
(vh − ṽh)G

+[τh − τ̃h] − Rv(vh − ṽh) dx

+
∫

S1
(τh − τ̃h)(∂t uh − ∂t ũh) − (W ′(uh) − W ′(ũh))(∂t uh − ∂t ũh) dx

+
∫

S1
Rτ (∂t uh − ∂t ũh) − 3

4
μG−[vh − ṽh]G−[vh − ṽh] dx . (4.20)

Using Φ = (τh − τ̃h) as a test function in (3.5) and (4.2) and employing (3.12) we
obtain

d

dt
ηR =

∫

S1
−Rv(vh − ṽh) − Ru(τh − τ̃h) − (W ′(uh) − W ′(ũh))(∂t uh − ∂t ũh) dx

+
∫

S1
Rτ (∂t uh − ∂t ũh) − 3

4
μG−[vh − ṽh]G−[vh − ṽh] dx . (4.21)

As (∂t uh − ∂t ũh) ∈ Vq for each 0 ≤ t ≤ T we may replace (W ′(uh) − W ′(ũh))
by its L2 projection Pq [W ′(uh) − W ′(ũh)] in (4.19). Upon using Φ = Pq [W ′(uh)
−W ′(ũh)] − Rτ in (3.5) and (4.2) we obtain the assertion of the Lemma from (4.21).

5 Projections and perturbed equations

Let (u, v) be a strong solution of (1.2), see Proposition 1. We aim at determining
projections of (u, v) and τ := W ′(u)−γ ∂xxu so that these projections formaperturbed
solution of (3.5) such that there is no residual in the first equation and the residuals in
the other equations are of optimal order.

It is important to appropriately account for the highest order derivative, as such, we
project u by the Riesz projection, defined in (3.10). Let us note that due to the linearity
of the definition of the Riesz projection we have

∂tP[u] = P[∂t u] = P[∂xv]. (5.1)

Since our aim is ensuring that the projections satisfy (3.5)1 exactly, this already
determines the discrete gradient of the projection of v. Before we can focus on the
projection of v we need to investigate the kernel and range of the gradient operators
G±. To this end we need to introduce some notation: By lk ∈ P

k(−1, 1) we denote
the k-th Legendre polynomial on (−1, 1) and by lnk its transformation to the interval
In , i.e.,

lnk (x) = lk

(
2

(
x − xn
hn

)
− 1

)
. (5.2)
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Let us gather the key properties of the Legendre polynomials which we will employ
in the sequel:

Proposition 2 (Properties of the Legendre polynomials [3]) The transformed Legen-
dre polynomials lnk have the following properties

(−1)klnk (xn) = lnk (xn+1) = 1, (5.3)

0 ≤
∫

In
lnk′(x)lnk (x) dx = hn

2k + 1
δkk′ ≤ hn, (5.4)

∥
∥lnk
∥
∥
L∞(In)

≤ 1. (5.5)

Let us point out the following convention in our notation for the subsequent calcula-
tions: Superscripts will usually refer to the element/interval/vertex under consideration
while subscripts refer to the polynomial degree. The only exception is hn denoting the
length of the nth interval.

Lemma 6 (The kernel of G±) The kernel of each of the operators G± : Vq → Vq

defined in (3.6) is one dimensional and consists of the functions which are constant
everywhere. The range of G± is Vm

q .

Proof We will give the proof for the kernel of G+, the modifications for G− are
straightforward. Consider Φ ∈ Vq with G+[Φ] = 0. Let us fix some n and define
Ψ ∈ Vq by

Ψ (x) :=
{
lnq (x) : x ∈ In
0 : x /∈ In

we find, as ∂x (Φ|In ) ∈ P
q−1(In),

0 =
∫

S1
G+[Φ]Ψ dx =

∑

n

(∫

In
∂xΦΨ dx − Ψ (x+

n )[[Φ]]n
)

= (−1)q+1[[Φ]]n.

As n was arbitrary we obtain that Φ is continuous. The continuity of Φ implies

0 =
∫

S1
G+[Φ]G+[Φ] dx =

∑

n

∫

In
(∂xΦ)2 dx .

Therefore, Φ is continuous and constant in each interval. Thus, Φ is globally constant
and the assertion for the kernel is proven. We infer from the result for the kernel that
the range of G± has codimension 1. The proof is concluded by the observation

∫

S1
G±[Φ] dx =

∑

n

(∫

In
∂xΦ dx − [[Φ]]n

)
= 0 ∀ Φ ∈ Vq ,

which implies that the range of G± is a subset of Vm
q . ��
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Remark 7 (Properties of one sided gradients) The properties of G± asserted in
Lemma 6 distinguish them from the “central” discrete gradients used in [17] which
may have 2-dimensional kernels.

Our next aim is to show the following discrete Poincaré inequality:

Lemma 7 (Discrete Poincaré inequality) There exists a constant C > 0 independent
of h such that

‖Φ‖L2(S1) ≤ C‖G−[Φ]‖L2(S1) ∀ Φ ∈ V
m
q .

Proof For each interval In let Dn denote the map

span{ln1 , . . . , lnq } → span{ln0 , . . . , lnq−1}, Φ �→ ∂xΦ.

Since ker Dn is trivial, as it consists of functions which are constant and orthogonal to
constant functions, we have that Dn is invertible. Comparing Dn to the analogous map
on (−1, 1), instead of In, we obtain that ‖D−1

n ‖2 = O(hn), where ‖·‖2 denotes the
Euclidean matrix norm. Let us now write the functions under consideration as linear
combinations of transformed Legendre polynomials in each interval

G−[Φ]|In (x)=
q∑

r=0

gnr l
n
r (x), Φ|In (x) =

q∑

r=0

anr l
n
r (x), ∂x (Φ|In )(x) =

q−1∑

r=0

bnr l
n
r (x),

(5.6)
with real numbers (gnr )

n=0,...,N−1
r=0,...,q , (anr )

n=0,...,N−1
r=0,...,q , (bnr )

n=0,...,N−1
r=0,...,q−1 . Let χn denote the

characteristic function of In . Then we have by definition of G−

∫

S1
G−[Φ](lnr − lnq )χn dx =

∫

S1
∂xΦlnr χn dx ∀ r = 0, . . . , q − 1, (5.7)

as ∂xΦ is orthogonal to lnq and (lnr − lnq )(x−
n+1) = 0, and

∫

S1
G−[Φ]lnqχn dx = −[[Φ]]n+1 (5.8)

because lnq (x−
n+1) = 1. This implies

gnr
2r + 1

− gnq
2q + 1

= bnr
2r + 1

∀r = 0, . . . , q − 1 and
gnqhn

2q + 1

=
q∑

r=0

(−1)r an+1
r −

q∑

r=0

anr . (5.9)

From (5.9)1 we infer
|bnr | ≤ |gnr | + |gnq |. (5.10)
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For an = (an1 , . . . , a
n
q )ᵀ, gn = (gn0 , . . . , g

n
q )

ᵀ, and bn = (bn0 , . . . , b
n
q−1)

ᵀ we have
‖bn‖ ≤ C ‖gn‖ and bn = Dnan such that

‖an‖ ≤ Chn‖gn‖, (5.11)

as ‖D−1
n ‖2 = O(hn).

From (5.9)2 we infer

an0 − an+1
0 = − gnqhn

2r + 1
−

q∑

r=1

anr +
q∑

r=1

(−1)r an+1
r =: cn (5.12)

with cn = O(hn(‖gn‖ + ∥∥gn+1
∥
∥)) for each n due to (5.11). As Φ ∈ V

m
q we have

∑N−1
n=0 an0 = 0. Therefore, ã = (a00 , . . . , a

N−1
0 )

ᵀ
and c = (c0, . . . , cN−1)

ᵀ
satisfy

‖ã‖22 =
N−1∑

n=0

(an0 )
2 =

N−1∑

n=0

⎛

⎝an0 − 1

N

N−1∑

j=0

a j
0

⎞

⎠

2

=
N−1∑

n=0

⎛

⎝ 1

N

N−1∑

j=0

an0 − a j
0

⎞

⎠

2

≤
N−1∑

n=0

N−1∑

j=0

1

N

(
an0 − a j

0

)2

≤
N−1∑

n=0

N−1∑

j=0

1

N

(
N−1∑

k=0

|ck |
)2

≤
N−1∑

n=0

N−1∑

j=0

N−1∑

k=0

|ck |2 = N 2‖c‖22,

(5.13)

whereweused Jensen’s inequality, the definition of cn andCauchy-Schwarz inequality.
Combining the preceding estimates we conclude

‖Φ‖2L2(I )
≤

N−1∑

n=0

q∑

r=0

hn|anr |2

≤ h
N−1∑

n=0

|an0 |2 +
N−1∑

n=0

q∑

r=1

hn|anr |2

≤ h

(
N−1∑

n=0

|an0 |2 +
N−1∑

n=0

∥
∥an
∥
∥2
)

(5.14)

≤ ChN 2
N−1∑

n=0

|cn|2 + C
N−1∑

n=0

h3‖gn‖2

≤ ChN 2
N−1∑

n=0

h2‖gn‖2 + C
N−1∑

n=0

h3‖gn‖2
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≤ Ch
N−1∑

n=0

q∑

r=0

|gnr |2 ≤ C
∥
∥G−[Φ]∥∥2L2(I )

,

where we have used that hN is bounded. ��
Definition 2 (Projection Q) For q ∈ N we define S±

q : C0(S1) → Vq by

S±
q [w](x±

n ) = w(xn),
∫

S1
(S±

q [w] − w)Φ dx = 0 ∀ Φ ∈ Vq−1.

We also define Q : C1(S1) → Vq by

G−[Q[w]] = P[∂xw] and
∫

S1
Q[w] − w dx = 0. (5.15)

Note that Q[w] is well-defined by (5.15) due to Lemma 6 and the fact that∫
S1 P[∂xw] dx = ∫S1 ∂xw dx = 0 as w is periodic.

Lemma 8 (Properties of the projection operator Q) The projection operators from
Definition 2 satisfy the following estimates: There exists a C > 0, independent of h,

such that for every w ∈ Hq+3(S1)

‖S±
q [w] − w‖L2(S1) ≤ Chq+1 ‖w‖Cq+1

(S1)∥
∥
∥G− [Q[w] − S+

q [w]
]∥∥
∥
L2(S1)

≤ Chq+1 ‖w‖Hq+3
(S1)

‖Q[w] − S+
q [w]‖L2(S1) ≤ Chq+1 ‖w‖Hq+3

(S1)
.

(5.16)

Proof The first assertion follows from the fact that S±
q is exact for functions in Vq .

We obtain the second assertion as follows: Let U:={Ψ ∈ Vq : ‖Ψ ‖L2(S1) = 1}, then
∥
∥
∥G− [Q[w] − S+

q [w]
]∥∥
∥
L2(S1)

= sup
Ψ ∈U

∫

S1

(
G− [Q[w] − S+

q [w]
])

Ψ dx

= sup
Ψ ∈U

(∫

S1
P[∂xw]Ψ + S+

q [w]G+[Ψ ] dx
)

= sup
Ψ ∈U

(∫

S1
P[∂xw]Ψ + S+

q [w]∂xΨ dx

−
∑

n

S+
q [w](x+

n )[[Ψ ]]n
)

= sup
Ψ ∈U

(∫

S1
P[∂xw]Ψ + w∂xΨ dx

−
∑

n

w(xn)[[Ψ ]]n
)
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= sup
Ψ ∈U

∫

S1
P[∂xw]Ψ − ∂xwΨ dx

≤ ∥∥P[∂xw] − Pq [∂xw]∥∥L2(S1)

≤ Chq+1 ‖w‖Hq+3
(S1)

(5.17)

because of the properties ofP, see (3.11), Q, (3.12) and Pq as Cq+2(S1) ⊂ Hq+3(S1).
The third assertion is a consequence of the second and Lemma 7. ��
Definition 3 (Projection R) Let τ ∈ C0([0, T ],H1(S1)) and u ∈ C0([0, T ],H3(S1))
be related by τ = W ′(u) − γ ∂xxu. Then, the projection R[τ ] ∈ C0([0, T ],Vq) is
defined by

∫

S1
R[τ ]Ψ dx =

∫

S1
W ′(u)Ψ dx − γ adh (P[u], Ψ ) ∀ Ψ ∈ Vq .

Lemma 9 (Perturbed equations) Let (u, v) be a strong solution of (1.2) and
τ :=W ′(u) − γ ∂xxu. Then, the projections (P[u], Q[v], R[τ ]) satisfy

∫

S1
∂tP[u]Φ − G− [Q[v]]Φ dx = 0 ∀ Φ ∈ Vq

∫

S1
∂t Q[v]Ψ − G+ [R[τ ]]Ψ + μG− [Q[v]]G−[Ψ ] dx =

∫

S1
RvΨ dx ∀ Ψ ∈ Vq

∫

S1
R[τ ]Z − W ′(P[u])Z dx − γ adh (P[u], Z) =

∫

S1
Rτ Z dx ∀ Z ∈ Vq ,

(5.18)
with

Rτ := Pq [W ′(u) − W ′(P[u])],
Rv := −Pq [∂t (v−Q[v])]+Pq [∂xτ ]−G+[R[τ ]] + μPq [∂xxv] − μG+[G−[Q[v]]].

(5.19)

Proof The first equation in (5.18) is a direct consequence of the definition of Q[v] in
Definition 2. The second equation in (5.18) follows from

∫

S1
∂tvΨ − ∂xτΨ − μ∂xxvΨ dx = 0 ∀ Ψ ∈ Vq (5.20)

and the duality (3.12). The third equation follows from the definition of R[τ ] in
Definition 3. ��
Lemma 10 (Coercivity of G− ) There exists a constant C > 0 only depending on q
such that for every w ∈ Vq

|w|dG ≤ C
∥
∥G−[w]∥∥L2(S1)

.
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Proof Let us use

Ψ |In = ∂xw|In − (−1)q
( [[w]]n+1

hn + hn+1
+ ∂xw(x−

n+1)

)
lnq

in (3.6). Upon noting ∂xw|In ⊥ lnq and Ψ (x−
n+1) = [[w]]n+1

hn+hn+1
we obtain

∫

S1
G−[w]Ψ dx = |w|2dG . (5.21)

It remains to determine a bound for ‖Ψ ‖L2
. Let {yk}qk=0 denote Gauss-Radau points

on [−1, 1] and {ynk }qk=0 their image under the map

κ �→ xn + xn+1

2
+ κ

xn+1 − xn
2

such that yn0 = xn+1. By ωk we denote the weights of Gauss-Radau quadrature. Due
to the exactness of Gauss-Radau quadrature for polynomials of degree 2q and the
properties of Legendre polynomials, see Proposition 2, we find

‖Ψ ‖2L2(In)
≤ 2

∥
∥
∥∂xw|In − (−1)q∂xw(x−

n+1)l
n
q

∥
∥
∥
L2(In)

+ 2hn

( [[w]]n+1

hn + hn+1

)2

≤ 2
q∑

k=1

hnωk(∂xw(ynk ) + ∂xw(yn0 ))2 + 2hn

( [[w]]n+1

hn + hn+1

)2

≤ 4

∑q
k=1 ωk

ω0
hn

q∑

k=1

(∂xw(ynk ))2 + 2hn

( [[w]]n+1

hn + hn+1

)2

≤ 4

∑q
k=1 ωk

ω0

∥
∥∂xw|In

∥
∥
L2(In)

+ 2
([[w]]n+1)

2

hn + hn+1
.

(5.22)

Summing over n implies that

‖Ψ ‖2L2
≤ C(q) |w|2dG . (5.23)

Combining (5.21) and (5.23) gives the desired result, as

∫

S1
G−[w]Ψ dx ≤ ∥∥G−[w]∥∥L2

‖Ψ ‖L2
.

��

6 Main result

This section is devoted to the proof of the main result of this work, which reads as
follows:
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Theorem 1 (Reduced relative entropy error estimate) Let the exact solution (u, v) of
(1.2) satisfy

u ∈ C1((0, T ),Hq+2(S1)) ∩ C0([0, T ],Cq+3(S1))

v ∈ C1((0, T ),Cq+2(S1)) ∩ C0([0, T ],Cq+3(S1))
(6.1)

and let W ∈ Cq+3(R, [0,∞)). Then there exists C > 0 independent of h, but depend-
ing on q, T, γ, ‖u‖L∞(0,T ;W1

∞(S1))
such that

sup
0≤t≤T

(
‖uh(t, ·) − u(t, ·)‖dG + ‖vh(t, ·) − v(t, ·)‖L2(S1)

)

+
(

μ

∫ T

0
|vh(s, ·) − v(s, ·)|2dG ds

)1/2

≤ Chq
(

‖u‖L∞(0,T ;Cq+3
(S1))

+ ‖v‖L∞(0,T ;Cq+3
(S1))

+ ‖∂tv‖L∞(0,T ;Cq+2
(S1))

)
.

(6.2)

Theorem 1 is a direct consequence of the subsequent proposition, the estimates
(3.11)1 and (5.16) and Lemma 10.

Proposition 3 (Discrete stability estimate)Under the assumptions of Theorem 1 there
exists C > 0 independent of h, but depending on q, T, γ, ‖u‖L∞(0,T ;W1

∞(S1))
such

that

sup
0≤t≤T

(
‖uh(t, ·) − P[u(t, ·)]‖dG + ‖vh(t, ·) − Q[v(t, ·)]‖L2(S1)

)

+
(

μ

∫ T

0
|vh(s, ·) − Q[v(s, ·)]|2dG ds

)1/2

≤ Chq
(

‖u‖L∞(0,T ;Cq+3
(S1))

+ ‖v‖L∞(0,T ;Cq+3
(S1))

+ ‖∂tv‖L∞(0,T ;Cq+2
(S1))

)
.

(6.3)

Proof As the subsequent estimates are uniform in time (on [0, T ]) we omit the time
dependency. In order to see that Corollary 1 can be applied to (5.18) we need P[u]
to be bounded in L∞(0, T ;W1∞(S1)). This follows from (3.11) and our assumptions
on u. In particular, we may use the fact that ‖W‖W3

∞
is bounded on [−M, M] with

M := max{‖P[u]‖L∞ , ‖uh‖L∞}.
As we can apply Corollary 1 and Lemma 10 it remains to estimate ηR(0),

‖Rv‖L2([0,T ]×S1) and ‖Rτ‖L2([0,T ]×S1) . It holds

ηR(0) ≤ ‖uh(0, ·) − P[u(0, ·)]‖dG + ‖vh(0, ·) − Q[v(0, ·)]‖L2(S1)

≤ Chq+1
(
‖u0‖Hq+2

(S1)
+ ‖v0‖Cq+2

(S1)

) (6.4)

by the properties of Pq ,P, Q and Cq+2(S1) ⊂ Hq+2(S1) ⊂ Cq+1(S1).
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As |W ′′| is bounded on the interval of interest

‖Rτ‖L2(S1) ≤ C ‖u − P[u]‖L2(S1) ≤ Chq+1 ‖u‖Hq+1
(S1)

. (6.5)

To estimate Rv we decompose it as Rv = −R1
v + R2

v + R3
v with

R1
v := Pq [∂t (v − Q[v])],

R2
v := Pq [∂xτ ] − G+[R[τ ]],

R3
v := μPq [∂xxv] − μG+[G−[Q[v]]].

(6.6)

The estimate
∥
∥R1

v

∥
∥
L2(S1)

≤ Chq+1 ‖∂tv‖Cq+2
(S1)

follows from ∂t Q[v] = Q[∂tv],
(5.16)3, the stability of Pq , and our assumptions on v. Before we consider R2

v let us
recall U:={Ψ ∈ Vq : ‖Ψ ‖L2(S1) = 1} and note that

∥
∥Pq [τ ] − R[τ ]∥∥L2

= sup
Ψ ∈U

∫

S1
W ′(u)Ψ − γ ∂xxuΨ − W ′(u)Ψ dx − adh (P[u], Ψ )

= 0

by definition of P[u]. As

‖R[τ ] − τ‖L2(S1) = ∥∥Pq [τ ] − τ
∥
∥
L2(S1)

≤ Chq+1 ‖τ‖Cq+1
(S1)

≤ Chq+1 ‖u‖Cq+3
(S1)

we find, due to (3.12), and inverse and trace inequalities, see [10, Lemmas1.44,1.46],

∥
∥Pq [∂xτ ] − G+[R[τ ]]∥∥L2

= sup
Ψ ∈U

∫

S1
∂xτΨ + R[τ ]G−[Ψ ] dx

= sup
Ψ ∈U

N−1∑

n=0

(∫

In
(R[τ ] − τ)∂xΨ dx

+ (τ (xn) − R[τ ](x−
n ))[[Ψ ]]n

)

≤ C

h
‖τ − R[τ ]‖L2(S1)

‖Ψ ‖L2(S1) ≤ Chq ‖u‖Cq+3
(S1)

.

(6.7)
Finally we compute, using (3.12), and inverse and trace inequalities again:

∥
∥Pq [∂xxv] − G+[G−[Q[v]]]∥∥L2

= sup
Ψ ∈U

∫

S1
∂xxvΨ + G−[Q[v]]G−[Ψ ] dx

= sup
Ψ ∈U

N−1∑

n=0

(∫

In
P[∂xv]G−[Ψ ] − ∂xv∂xΨ dx

+∂xv(xn)[[Ψ ]]n
)
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= sup
Ψ ∈U

N−1∑

n=0

(∫

In
(P[∂xv] − ∂xv)∂xΨ dx

+ (∂xv(xn) − P[∂xv](x−
n )
) [[Ψ ]]n

)

= sup
Ψ ∈U

N−1∑

n=0

(∫

In
(P[∂xv] − S−

q [∂xv])∂xΨ dx

+
(
S−
q [∂xv](x−

n ) − P[∂xv](x−
n )
)

[[Ψ ]]n
)

≤ sup
Ψ ∈U

C

h

∥
∥
∥S−

q [∂xv] − P[∂xv]
∥
∥
∥
L2(S1)

‖Ψ ‖L2(S1)

≤ Chq ‖v‖Cq+3
(S1)

. (6.8)

In the last step we used (5.16)1 and (3.11). Combining Corollary 1 with (6.4)–(6.8)
we obtain the assertion of this Proposition. ��
Remark 8 (Parameter depenence) Note that the constant C in the statement of The-

orem 1 behaves like exp( k(γ )2

γ
T ). This is a consequence of Remark 5 and the use of

Gronwall’s lemma.

Remark 9 (Viscosity) Note that we need μ > 0 only in order to guarantee existence
of sufficiently regular solutions for small times. If for μ = 0 the exact solution is
sufficiently regular, all our estimates also hold true in this case.

Using the stability induced byCorollary 2 and the estimates for the residuals derived
in the proof of Theorem 1 we have the following estimate with constants independent
of γ. This result should not be understood as an estimate in the case γ = 0 but as a
uniform estimate in the sharp interface limit case γ → 0.

Theorem 2 (Modified entropy error estimate) Let the assumptions of Theorem 1 be
satisfied and let |W ′′| be uniformly bounded. Then, there exists C > 0 independent of
h, but depending on q, T, μ such that

sup
0≤t≤T

(
‖uh(t, ·) − u(t, ·)‖L2(S1) + √

γ |uh(t, ·) − u(t, ·)|dG

+ ‖vh(t, ·) − v(t, ·)‖L2(S1)

)

+
(

μ

∫ T

0
|vh(s, ·) − v(s, ·)|2dG ds

)1/2

≤ Chq
(

‖u‖L∞(0,T ;Cq+3
(S1))

+ ‖v‖L∞(0,T ;Hq+3
(S1))

+ ‖∂tv‖L∞(0,T ;Cq+2
(S1))

)
.

(6.9)
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Remark 10 (Parameter depenence)Note that the constantC in the statement of Theo-
rem 2 behaves like exp( 1

μ
T ). If |W ′′|was not uniformly bounded it would behave like

exp( k(γ )2

μ
T ).Both statements are consequences of Remark 6 and the use ofGronwall’s

lemma.

Remark 11 (Multiple space dimensions) The only difficulty in extending the analysis
presented here to the multi-dimensional version of the problem investigated in [16]
is to construct multi-dimensional discrete gradients with one dimensional kernel. We
need this to be able to find a projection of v which is of optimal order. It should be
noted though, that the aforementioned model is physically inadmissible, and probably
the multi-dimensional model which should be studied in the future is the Navier–
Stokes–Korteweg model.

7 Numerical experiments

In this section we conduct some numerical benchmarking.

Definition 4 (Estimated order of convergence) Given two sequences a(i) and h(i) ↘
0, we define estimated order of convergence (EOC) to be the local slope of the log a(i)
vs. log h(i) curve, i.e.,

EOC(a, h; i) := log(a(i + 1)/a(i))

log(h(i + 1)/h(i))
. (7.1)

In this test we benchmark the numerical algorithm presented in Sect. 3 against a
steady state solution of the regularised elastodynamics system (1.2) on the domain
Ω = [−1, 1].

We take the double well

W (u) :=
(
u2 − 1

)2
, (7.2)

then a steady state solution to the regularised elastodynamics system is given by

u(t, x) = tanh

(

x

√
2

γ

)

, v(t, x) ≡ 0 ∀ t. (7.3)

For the implementation we are using natural boundary conditions, that is

∂xuh = vh = 0 on [0, T ) × ∂Ω, (7.4)

rather than periodic. The temporal discretisation is a perturbation of a 2nd order
Crank–Nicolson method (see [17, §4] for details). Note that this temporal discreti-
sation satisfies a fully discrete version of the entropy dissipation equality given in
Remark 1. Tables 1, 2 and 3 detail three experiments aimed at testing the convergence
properties for the scheme using piecewise discontinuous elements of various orders
(p = 1 in Table 1, p = 2 in Table 2 and p = 3 in Table 3).
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Table 1 In this test we benchmark a stationary solution of the regularised elastodynamics system using
the discretisation (3.5) with piecewise linear elements (p = 1), choosing k = h2

N ‖eu‖L∞(L2)
EOC ‖eu‖L∞(dG) EOC ‖ev‖L∞(L2)

EOC ‖ev‖L2(dG) EOC

16 3.033825e−01 0.000 4.413617e+00 0.000 2.103556e−01 0.000 1.928219e+00 0.000

32 2.024675e−01 0.583 5.051696e+00 −0.195 1.287003e−01 0.709 1.679159e+00 0.200

64 9.293951e−03 4.445 3.379746e−01 3.902 1.392056e−02 3.209 8.192812e−01 1.035

128 3.226365e−03 1.526 1.517014e−01 1.156 4.672567e−03 1.575 4.290682e−01 0.933

256 1.022094e−03 1.658 4.636069e−02 1.710 1.358856e−03 1.782 2.026073e−01 1.083

512 2.124393e−04 2.266 9.988999e−03 2.215 3.129043e−04 2.119 9.814742e−02 1.046

1024 5.332873e−05 1.994 2.462207e−03 2.020 7.765626e−05 2.011 4.832915e−02 1.022

The temporal discretisation is a perturbation of a 2nd order Crank–Nicolson method. We look at the
L∞(0, T ;L2(Ω)) errors of the discrete variables uh and vh , the L∞(0, T ; dG) error of uh and the
L2(0, T ; dG) error of vh . We use eu := u − uh and ev := v − vh . In this test we choose γ = μ = 10−3.
We show the rates of convergence for each of the components of the reduced relative and modified entropy
error. Notice the leading order terms in the reduced relative entropy error and the modified entropy error
converge with the rates in Theorems 1 and 2 respectively

Table 2 The test is the same as in Table 1 with the exception that we take p = 2

N ‖eu‖L∞(L2)
EOC ‖eu‖L∞(dG) EOC ‖ev‖L∞(L2)

EOC ‖ev‖L2(dG) EOC

16 1.582736e−01 0.000 4.357875e+00 0.000 8.843701e−02 0.000 5.622669e−01 0.000

32 1.452531e−02 3.446 5.367621e−01 3.021 2.016238e−02 2.133 1.686844e−01 1.737

64 1.447604e−03 3.327 1.551374e−01 1.791 2.482052e−03 3.022 4.731776e−02 1.834

128 9.269265e−05 3.965 1.873093e−02 3.050 4.237385e−04 2.550 1.427457e−02 1.729

256 7.884262e−06 3.555 3.723996e−03 2.331 1.174188e−04 1.852 3.251624e−03 2.001

512 7.830533e−07 3.332 8.264272e−04 2.172 3.262314e−05 1.848 8.153683e−04 1.996

1024 9.110337e−08 3.104 2.069450e−04 1.998 8.486964e−06 1.943 1.977015e−04 2.044

Notice the leading order terms in the reduced relative entropy error and the modified entropy error converge
with the rates in Theorems 1 and 2 respectively

Table 3 The test is the same as in Table 1 with the exception that we take p = 3

N ‖eu‖L∞(L2)
EOC ‖eu‖L∞(dG) EOC ‖ev‖L∞(L2)

EOC ‖ev‖L2(dG) EOC

16 8.127264e−03 0.000 4.424734e−01 0.000 1.121668e−02 0.000 1.469452e−01 0.000

32 4.382422e−03 0.891 4.035348e−01 0.133 6.529868e−03 0.781 1.680196e−01 −0.193

64 7.923654e−04 2.468 7.208921e−02 2.485 1.112353e−03 2.553 2.923226e−02 2.523

128 5.081122e−05 3.963 1.017129e−02 2.825 1.447472e−04 2.942 4.334565e−03 2.754

256 2.407321e−06 4.400 1.270398e−03 3.001 1.819700e−05 2.992 5.623497e−04 2.946

512 1.452940e−07 4.050 1.577331e−04 3.010 2.338797e−06 2.960 7.027682e−05 3.000

1024 9.0432415−09 4.006 1.951425e−05 3.015 2.936765e−07 2.994 8.835729e−06 2.992

Notice the leading order terms in the reduced relative entropy error and the modified entropy error converge
with the rates in Theorems 1 and 2 respectively
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