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Abstract Weshow that the best degree reduction of a given polynomial P fromdegree
n tom with respect to the discrete L2-norm is equivalent to the best Euclidean distance
of the vector of h-Bézier coefficients of P from the vector of degree raised h-Bézier
coefficients of polynomials of degree m. Moreover, we demonstrate the adequacy
of h-Bézier curves for approaching the problem of weighted discrete least squares
approximation. Applications to discrete orthogonal polynomials are also presented.
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1 Introduction

Degree reduction of Bézier curves is a fundamental technique in Computer Aided
Geometric Design (CAGD) that allows for data reduction while preserving, to some
extent, the shape of the original curve. The technique consists of finding the best low
degree polynomial approximation, with respect to a given norm, of a given Bézier
curve. The solution of the approximation problem depends strongly on the norm that
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2 R. Ait-Haddou

measures the distance between curves. Polynomial degree reduction techniques with
respect to different norms attracted considerable interest for decades, e.g., L∞-norm
[7,19], L2-norm [13,14,16], L1-norm [12], L p-norm [5].

An interesting result emerged in the case of the L2-norm [14]. To state the result,
we denote by Pn the linear space of polynomials of degree at most n and define the
following two inner products on Pn ; the classical L2-inner product

〈P, Q〉L2 =
∫ 1

0
P(x)Q(x)dx (1.1)

and the Euclidean inner product of the Bézier coefficients

〈P, Q〉E2 =
n∑

i=0

pi qi , (1.2)

where (p0, p1, . . . , pn) and (q0, q1, . . . , qn) are the Bézier coefficients over the inter-
val [0, 1] of the polynomials P and Q respectively. The main result in [14] is the
following:

Theorem 1.1 Given a polynomial P of degree n and a positive integer m ≤ n, the
approximation problem

min
Q∈Pm

||P − Q|| (1.3)

has the same minimizer for the norm induced either by the inner product (1.1) or the
inner product (1.2).

Besides its elegance, Theorem 1.1 has practical implications: it allows for direct com-
putation of the control structure of the polynomial solution to (1.3) in terms of the
pseudo-inverses of the degree raising matrices. Theorem 1.1 was generalized to han-
dle the problem of polynomial degree reduction under endpoints constraints [1]. The
generalization was achieved by modifying the inner product (1.2) via associating a
fixed weight to each Bézier coefficient of the polynomials P and Q.

In this work, we initiate the problem of polynomial degree reduction with respect
to discrete norms. First, we give a discrete analogue of Theorem 1.1 in the following
sense: Given polynomials P and Q both of degree at most n, we fix an integer N ≥ n
and define the classical L2-discrete inner product on Pn as

〈P, Q〉Lh
2

=
N∑

j=0

P(x j )Q(x j ), (1.4)

where (x0, x1, . . . , xN ) is an equidistant partition of the interval [0, 1], where h = 1/N
is the sampling parameter and x j = jh for j = 0, 1, . . . , N . We also define the
Euclidean inner product of the h-Bézier coefficients as

〈P, Q〉Eh
2

=
n∑

i=0

ph
i qh

i , (1.5)
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Polynomial degree reduction... 3

where (ph
0 , ph

1 , . . . , ph
n ) (resp. (qh

0 , qh
1 , . . . , qh

n )) are the h-Bézier coefficients of the
polynomial P (resp. Q) over the interval [0, 1] with h = 1/N . (See Sect. 2 for the
notion of h-Bézier curves). Our first main result is:

Theorem 1.2 Given a polynomial P of degree n and a positive integer m ≤ n, the
approximation problem

min
Q∈Pm

||P − Q|| (1.6)

has the same minimizer for the norm induced either by the inner product (1.4) or the
inner product (1.5).

In the limit case when h converges to zero, we recover Theorem 1.1 as a particular
case.

Our second main finding is the realization of the adequacy of using the h-Bernstein
bases to approach the problemof polynomial degree reductionwith respect toweighted
discrete norms. The results we obtain with the weighted discrete norms have no con-
tinuous weighted L2-norm analogue. We also reveal that the validity of Theorems 1.1
and 1.2 can be traced back to some relations between the pseudo-inverses of the degree
raising matrices.

Another interesting application of Theorem 1.2 is a simple proof and interpretation
of the well-known fact that the Bernstein coefficients of Legendre polynomials are
discrete Legendre polynomials. The proof relies on Theorem 1.2 and the fact that
degree elevation of h-Bézier curves is independent of the sampling parameter h.

The paper is organized as follows: In Sect. 2 we review the notion of h-Bernstein
bases and h-Bézier curves. Some consequences, that will be used subsequently, of the
fact that degree elevation for h-Bézier curves is independent of the sampling parameter
h will be given. Our main Theorem 1.2 will be proved in Sect. 3 and methods for the
solution to the discrete polynomial degree reduction problem are given in Sect. 4. An
application to discrete Legendre polynomials will be presented in Sect. 5. Weighted
discrete polynomial degree reduction is the object of Sect. 6. We conclude in Sect. 7
with possible generalizations of this work.

2 Degree elevation of h-Bézier curves

Denote by Pn the linear space of polynomials of degree at most n. The h-Bernstein
basis over the unit interval [0, 1] of the space Pn is defined by [18]1

Bn
k (t; h) =

(
n

k

)∏k−1
i=0 (t − ih)

∏n−k−1
i=0 (1 − t − ih)∏n−1

i=0 (1 − ih)
, k = 0, 1, . . . , n, (2.1)

where h, throughout this work, is understood to be a real number different from
1/ i, i = 1, 2, . . . , n − 1. For h = 0, the h-Bernstein basis coincides with the classical
Bernstein basis which we denote simply by Bn

k , k = 0, 1, . . . , n. The h-Bernstein
bases share many similar properties with the classical Bernstein bases, e.g., for h ≤ 0

1 For convenience, we took a slightly different convention form [18] where one should replace h by −h.
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4 R. Ait-Haddou

the h-Bernstein functions Bn
k (t; h) are nonnegative on [0, 1]; the basis form a partition

of unity, i.e.,
n∑

k=0

Bn
k (t; h) ≡ 1.

An h-Bézier curve is a parametric polynomial of the form

P(t) =
n∑

k=0

Bn
k (t; h)Pk, Pi ∈ R

s; s ≥ 1.

The points Pi are called the h-Bézier points or coefficients of P over the interval
[0, 1]. Values of the polynomial P can be computed using an h-de Casteljau algorithm
[18]. Moreover, the h-blossoms introduced in [18], as a generalization of the classical
polynomial blossoms by altering the diagonal property, allow for the understanding
of many concepts related to h-Bézier curves with rather considerable ease.

To a polynomial P of degree at most n, we associate a family of parametrized
polynomials as:

P(t; h) =
n∑

k=0

pk Bn
k (t; h),

where (p0, p1, . . . , pn) are the Bézier coefficients of P over [0, 1] with respect to the
classical Bernstein basis, i.e., P(t; 0) = P(t) for all t ∈ R.

Lemma 2.1 Let P be a polynomial of degree n ≤ N written as

P(t) =
n∑

k=0

pk Bn
k (t) =

N∑
k=0

q(N )
k B N

k (t). (2.2)

For j = 0, 1, . . . , N

q(N )
j = P

(
j

N
; 1

N

)
.

Proof It can be checked that the h-Bernstein basis Bn
k (., h) satisfies the identity [10]

Bn
k (t; h) = n + 1 − k

n + 1
Bn+1

k (t; h) + k + 1

n + 1
Bn+1

k+1 (t; h), k = 0, 1, . . . , n. (2.3)

Since the coefficients attached to the h-Bernstein functions on the right hand side of
(2.3) are independent of h, we deduce that degree elevation for h-Bézier curves is
independent of the parameter h. Therefore,

P(t; h) =
n∑

k=0

pk Bn
k (t; h) =

N∑
k=0

q(N )
k B N

k (t; h).
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Polynomial degree reduction... 5

Fig. 1 An h-Bézier curve with
h = 1/N and with h-Bézier
coefficients coinciding with the
Bézier coefficients of a
polynomial P , interpolates the
raised Bézier coefficients of P to
degree N . Black the classical
quintic Bézier curve and its
control polygon. Red the control
polygon of P raised to degree 8.
Blue the h-Bézier curve with
h = 1/8 (color figure online)

We conclude the proof using the simple computational fact that

B N
j

(
k

N
; 1

N

)
= δ jk; j, k = 0, 1, . . . , N . (2.4)

	

Equation (2.4) shows that

B N
j

(
t; 1

N

)
= l N

j (t),

where l N
j , j = 0, 1, . . . , N is the Lagrange basis with respect to the points 0, 1/N ,

2/N , . . . , 1. In other words, we can state that P(t; 1/N ) is the Lagrange interpolating
polynomial of the degree raised Bézier coefficients to order N of the polynomial P
(see Fig. 1). This fact is more or less explicit in [9,10].

From now on, we adopt the following notation: For a vector p = (p0, . . . , pn),
we write Bn p = ∑n

i=0 pi Bn
i and Bn

h p = ∑n
i=0 pi Bn

i (.; h). As degree elevation for
h-Bézier curves is independent of the parameter h, we readily obtain the following:

Lemma 2.2 A polynomial Bn p is of degree less or equal m ≤ n if and only if a
polynomial Bn

h p is of degree less or equal m, i.e.;

Bn p ∈ Pm ⇔ Bn
h p ∈ Pm for an h ∈ R/

{
1,

1

2
, . . . ,

1

n − 1

}
.

Remark 2.1 If we set h = 1/n in the previous Lemma, and using the fact that Bn
1/n p is

the Lagrange interpolation polynomial of the control points of Bn p, we recover a well-
known result [11] (Lemma 4.4), which essentially states the following: if the Bézier
coefficients p(k) := pk of the polynomial Bn

h p can be expressed as a polynomial of
degree at most m in k, then the polynomial Bn

h p is a polynomial of degree at most m.
This is the version of Lemma 2.2 we will use subsequently.

In the next section, we will need the following proposition.
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6 R. Ait-Haddou

Proposition 2.1 Fix an integer n ≥ 1. Let R be a polynomial of degree at most s ≤ n
and denote by x j = j/N , j = 0, . . . , N with N ≥ n. The function

ψ(k) =
N∑

j=0

R( j)Bn
k

(
x j ; 1

N

)

is a polynomial in k of degree at most s.

Proof We proceed by induction on N . If N = n then invoking (2.4) we obtainψ(k) =
R(k) which is a polynomial of degree at most s in k. Now let us prove the proposition
for N + 1 assuming its validity for any l ≤ N . Consider the function

ψ(k) =
N+1∑
j=0

R( j)Bn
k

(
x̃ j ; 1

N + 1

)
, x̃ j = j

N + 1
, j = 0, . . . , N + 1. (2.5)

If we write

Bn
k (t) =

N∑
k=0

q(N )
k B N

k (t) =
N+1∑
k=0

q(N+1)
k B N+1

k (t)

then by Lemma 2.1, for j = 0, 1, . . . , N + 1

Bn
k

(
x̃ j ; 1

N + 1

)
= q(N+1)

j = N + 1 − j

N + 1
q(N )

j + j

N + 1
q(N )

j−1,

with the convention that q N−1 = q N
N+1 = 0. Therefore,

Bn
k

(
x̃ j ; 1

N + 1

)
= N + 1 − j

N + 1
Bn

k

(
x j ; 1

N

)
+ j

N + 1
Bn

k

(
x j−1; 1

N

)
. (2.6)

Inserting (2.6) into (2.5) gives

ψ(k) = 1

N + 1

N∑
j=0

((N + 1 − j)R( j) + ( j + 1)R( j + 1)) Bn
k

(
x j ; 1

N

)
.

Since the polynomial R is of degree at most s, the polynomial R̃(x) := (N + 1 −
x)R(x) + (x + 1)R(x + 1) is also of degree at most s. This completes the proof by
the induction hypothesis. 	


3 Discrete polynomial degree reduction

Fix a positive integer n ≥ 1. For each integer N ≥ n, we define an equidistant partition
X N = (x0, x1, . . . , xN ) of the interval [0, 1] by requiring x j = j/N , j = 0, 1, . . . , N .
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Polynomial degree reduction... 7

Denote by h the sampling parameter h = 1/N . The discrete Lh
2 inner product 〈·, ·〉Lh

2
over Pn is defined as

〈 f, g〉Lh
2

:=
N∑

j=0

f (x j )g(x j ). (3.1)

Moreover, we define the h-Euclidean inner product 〈·, ·〉Eh
2
of the h-Bézier coefficients

over Pn by

〈Bn
h b, Bn

h c〉Eh
2

:=
n∑

i=0

bi ci . (3.2)

Theorem 3.1 The orthogonal complements of Pm in Pn with respect to the discrete
Lh
2 inner product (3.1) and the h-Euclidean inner product (3.2) are equal.

Proof Denote by Pm,n the orthogonal complement of Pm in Pn with respect
to the Euclidean inner product 〈·, ·〉Eh

2
. Let Bn

h q be an element of Pm,n . Then

〈Bn
h q, Bn

h p〉Eh
2

= 0 for any element Bn
h p ∈ Pm . Let s be an integer smaller than

m. We have

〈Bn
h q, t s〉Lh

2
=

N∑
j=0

(x j )
s Bn

h q(x j ) = 〈Bn
h q, Bn

h φ〉Eh
2
, (3.3)

where φ = (φ0, φ1, . . . , φn) with

φk =
N∑

j=0

(x j )
s Bn

k (x j ; h).

As Bn
h q is an element of Pm,n and by Remark 2.1, the inner product (3.3) vanishes if

and only if Bn
h φ is an element of Pm i.e.; φ(k) := φk is a polynomial in k of degree at

most m. This is true as can be seen by writing φk as

φk = 1

N s

N∑
j=0

j s Bn
k (x j ; h)

and invoking Proposition 2.1. Therefore, Pm,n is contained in the orthogonal comple-
ment of Pm in Pn with respect to the h-Euclidean inner product 〈·, ·〉Lh

2
. We conclude

the proof by virtue of the equality of dimensions of the two orthogonal complements.
	


A direct consequence of Theorem 3.1 is our main result:

Corollary 3.1 Given a polynomial P of degree n and a positive integer m ≤ n, the
approximation problem

min
Q∈Pm

||P − Q|| (3.4)

has the same minimizer for the norm induced either by the inner product (3.1) or the
inner product (3.2).
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8 R. Ait-Haddou

A simple consequence of Corollary 3.1 is the following factorization of discrete poly-
nomial degree reduction: Denote byPh

m,n the linear operator that maps a polynomial
of degreen to the best discrete Lh

2-approximation inPm , thenwehave the factorization
Ph

m,n = Ph
m,lP

h
l,n with m ≤ l ≤ n.

Remark 3.1 In the limit case, when the parameter h goes to zero, we have

lim
h→0

h〈 f, g〉Lh
2

=
∫ 1

0
f (x)g(x)dx

and
lim
h→0

〈Bn
h p, Bn

h q〉Lh
2

= 〈Bn p, Bnq〉L2 .

From this, we see that when h goes to 0, Corollary 3.1 coincides with the main result
in [14].

4 Methods of solution

Denote by An,m the degree raising matrix for mapping the Bézier coefficients of a
polynomial P from degree m to n. The matrix A is of order (n + 1) × (m + 1) and
can be decomposed into elementary degree raising matrices [14] as An,m = An,n−1
An−1,n−2 . . . Am+1,m where

Ak,k−1(i, j) =
⎧⎨
⎩

i/k if j = i − 1,
1 − i/k if j = i,
0 else.

Let P be a polynomial of degree n with h-Bézier coefficients ph = (ph
0 , ph

1 , . . . , ph
n ).

According to Corollary 3.1 and since degree raising matrices for h-Bézier curves
coincide with those of the classical Bézier curves, the h-Bézier coefficients qh =
(qh

0 , qh
1 , . . . , qh

m) of the polynomial Q solution to the minimization problem (3.4)
coincide with the solution of the least squares problem

min
qh∈Rm+1

∣∣∣
∣∣∣ph − An,mqh

∣∣∣
∣∣∣
2
. (4.1)

The solution to (4.1) is given, using the pseudo-inverse A†
n,m , by

qh = A†
n,m ph := (

At
n,m An,m

)−1
At

n,m ph . (4.2)

As the solution (4.2) depends on the parameter h, namely the chosen spacing of the
partition of the interval [0, 1], we would want to monitor the solution as a function
of the parameter h. There are several ways to compute the h-Bézier coefficients of a
polynomial. One way is through the use of the notion of h-blossoming introduced in
[18]. Namely, given a polynomial P of degree at most n and a parameter h, there exists
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Polynomial degree reduction... 9

a unique multi-affine symmetric function f (u1, u2, . . . , un) called the h-blossom of
P such that

f (u, u + h, . . . , u + (n − 1)h) = P(u) for any u ∈ R.

From the expression of the h-blossom of the polynomial P , the h-Bézier coefficients
of P = Bn

h ph can be derived as

ph
k = f (kh, (k + 1)h, . . . , (n − 1)h, 1, 1 + h, . . . , 1 + (k − 1)h), k = 0, 1, . . . , n.

Methods for computing the h-blossom of a polynomial are discussed in [18]. Another
more efficient method is to use the conversion formula between the h-Bernstein bases
and the discrete Legendre polynomials as described in the next section. As the coef-
ficients of the conversion formula are equal to the ones of the continuous case, i.e.,
the case h = 0, the results in [8] can be used to study the efficiency and the stability
of the method. Another method, the one we will adopt here, is as follows: Let P be a
polynomial of degree n with h-Bézier coefficients ph = (ph

0 , ph
1 , . . . , ph

n ), i.e.,

P(t) =
n∑

j=0

ph
j Bn

j (t; h) =
N∑

j=0

p(N )
j B N

j (t; h).

Denote by Vh = (P(0), P(h), P(2h), . . . , P(1))T . Then by (2.4) we have

AN ,n

(
ph
0 , ph

1 , . . . , ph
n

)T =
(

p(N )
0 , p(N )

1 , . . . , p(N )
N

)T = Vh .

Therefore, we can compute the h-Bézier coefficients of P using the pseudo-inverse as

ph = A†
N ,n Vh . (4.3)

Hence, according to (4.2), the solution to the problem (3.4) as a function of the para-
meter h is given by

qh = A†
n,m A†

N ,n Vh .

Summarizing:

Theorem 4.1 The h-Bézier coefficients of the solution Q = Bm
h qh to the minimization

problem (3.4) are given by
qh = A†

n,m A†
N ,n Vh,

where m ≤ n ≤ N, h = 1/N, Vh = (P(0), P(h), P(2h), . . . , P(1))T and Ai, j

denote the degree raising matrices.

Figure 2 shows an application of Theorem 4.1 to the best discrete degree reduction of
a polynomial of degree five to degree three and one polynomials for various values of
the sampling parameter h.
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10 R. Ait-Haddou

Fig. 2 Best discrete degree reduction of a Bézier curve of degree five to degree three (left) and degree one
(right) at different sampling rate h. Black the original Bézier curve and its control polygon. Green h = 1/6.
Blue h = 1/10. Red the best degree reduction for the classical L2 norm obtained when h = 0. Note that
the right figure can be interpreted as the regression lines at different sampling of the Bézier curve (color
figure online)

5 An application to discrete and classical Legendre polynomials

The discrete Legendre polynomials Lh
0, Lh

1, . . . , Lh
N with h = 1/N are defined as the

polynomials orthogonal with respect to the h-discrete inner product (3.1) and normal-
ized with the conditions Lh

k (1) = (−1)k, k = 0, 1, . . . , N . An explicit expression for
Lh

k , k = 0, 1, . . . N is given by [15]

Lh
k (x) =

k∑
j=0

(−1) j
(

k

j

)(
k + j

j

)
x(x − h) . . . (x − ( j − 1)h)

h j N (N − 1) . . . (N − j + 1)
.

When the parameter h goes to zero, the discrete Legendre polynomials converge to
the classical Legendre polynomial Lk over the interval [0, 1] (the Legendre polyno-
mials here are normalized with the conditions Lk(1) = (−1)k, k = 0, 1, . . .. Discrete
Legendre polynomials are particular cases of Hahn polynomials defined in terms of
the terminating generalized hypergeometric functions as:2

Qk(x;α, β, h) = 3F2

(−k − x
h k + α + β + 1

α + 1 −N
; 1

)
. (5.1)

For the parameters α = β = 0, we have Lh
k (x) = Qk(x; 0, 0, h). The conversion

formula between the classical Legendre polynomials and the Bernstein basis over the
interval [0, 1] is given by [8]

2 For convenience, we normalize Hahn polynomials to be defined on {0, 1/N , 2/N , . . . , 1} instead of the
usual {0, 1, . . . , N }.
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Polynomial degree reduction... 11

Lk(x) =
k∑

i=0

(−1)i
(

k

i

)
Bk

i (x). (5.2)

We show now how we can use Corollary 3.1 and (5.2) to prove the following:

Proposition 5.1 The discrete Legendre polynomials Lh
k can be expressed in terms of

the h-Bernstein basis of order k as

Lh
k (x) =

k∑
i=0

(−1)i
(

k

i

)
Bk

i (x; h).

Proof Let P be the polynomial of exact degree k with h-control points ph =
(a, 0, . . . , 0) over the interval [0, 1], where a = (2k

k

)
. Denote by Q the polynomial

solution of degree k − 1 to the minimization problem (3.4). Using orthogonality and
comparing the leading coefficients of the polynomials P and Lh

k , we obtain

Q(x) = P(x) − Lh
k (x).

Denote by qh the h-Bézier coefficients of the polynomials Q over the interval [0, 1].
Using (4.2) we obtain

Lh
k (x)= P(x) − Q(x)= Bk

h

(
ph − Ak,k−1qh

)
= Bk

h

(
I − Ak,k−1A†

k,k−1

)
ph . (5.3)

The matrix I − Ak,k−1A†
k,k−1 and the h-control points ph are independent of the

parameter h. Therefore, the vector (I − Ak,k−1A†
k,k−1)ph is independent of h. For

h = 0, the h-Bernstein bases coincidewith the classical ones and the discrete Legendre
polynomials coincide with the classical Legendre polynomial Lk . Thus, by (5.2) and
(5.3) (

I − Ak,k−1A†
k,k−1

)
ph =

((
k

0

)
, . . . , (−1)i

(
k

i

)
, . . . , (−1)K

(
k

k

))
.

This concludes the proof. 	

Another interesting insight from the h-Bernstein basis and Proposition 5.1 is the abil-
ity to easily derive representations of the classical Legendre polynomials in higher
order Bernstein bases, i.e., degree raising of Legendre polynomials. Let us assume
we want explicit expressions for the coefficients bi , i = 0, . . . , M; (M ≥ k) in the
representation

Lk(x) =
M∑

j=0

b j B M
j (x); M ≥ k.

As degree elevation of the h-Bernstein basis is independent of the parameter h, we
can set h = 1/M and we have

Lh
k (x) =

M∑
j=0

b j B M
j (x; h).
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12 R. Ait-Haddou

From (2.4), we have b j = Lh
k ( j/M) and using (5.1), we get

Corollary 5.1 The Legendre polynomials Lk can be expressed in terms of the Bern-
stein basis of order M ≥ k as

Lk(x) =
M∑

j=0

3F2

(−k − j k + 1
1 −M

; 1
)

B M
j (x). (5.4)

The expression (5.4) is essentially the same as derived in [8] and proved using an
induction on the degree raising.Ciesielski [6]was the first to derive and generalize (5.4)
by showing that the Bézier coefficients of Jacobi polynomials are Hahn polynomials.

We can use Corollary 5.1 while arguing that degree raising does not depend on the
parameter h to deduce that for any h = 1/N , we have

Lh
k (x) = 3F2

(−k −x/h k + 1
1 −N

; 1
)

=
M∑

j=0

3F2

(−k − j k + 1
1 −M

; 1
)

B M
j (x; h).

The last expression was derived in [17] using the Olinde-Rodrigues formula for Hahn
polynomials.

6 Weighted discrete degree reduction

Let us fix N ≥ n and a set of positive real numbers ω j , j = 0, 1, . . . , N . Define the
following weighted discrete inner product on Pn

〈 f, g〉Lω
h

:=
N∑

j=0

ω j f (x j )g(x j ), (6.1)

where x j = hj; j = 0, 1, . . . , N and h = 1/N . Moreover, we define the following
weighted h-Euclidean inner product 〈·, ·〉Eω

h
over Pn by

〈Bn
h b, Bn

h c〉Eω
h

:=
N∑

j=0

ω j b
(N )
j c(N )

j , (6.2)

where b(N )
i (resp. c(N )

i ) are the h-Bézier coefficients of Bn
h b (resp. Bn

h c) once raised
to order N . Using (2.4), we easily deduce that

〈Bh
n b, Bh

n c〉Lω
h

= 〈Bn
h b, Bn

h c〉Eω
h
.

Therefore, given a polynomial P of degree n, the approximation problem

min
Q∈Pm

||P − Q||Lω
h

(6.3)
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can be solved using pseudo-inverses. To proceed with giving the solution, we denote
by W (resp.

√
W ) the diagonal (N +1)×(N +1)weightmatrixwith diagonal elements

ω j (resp.
√

ω j ); j = 0, 1, . . . , N . Denote by ph = (ph
0 , ph

1 , . . . , ph
n ) the h-Bézier

coefficients of the polynomial P . The h-Bézier coefficients qh of the polynomial Q,
solution to the minimization problem (6.3), are solutions to the least squares problem

min
qh∈Rm+1

∣∣∣
∣∣∣√W AN ,mqh − √

W AN ,n ph
∣∣∣
∣∣∣
2
. (6.4)

Using the pseudo-inverse, the solution to (6.4) is given by

qh =
(√

W AN ,m

)† √
W AN ,n ph =

(
At

N ,m W AN ,m

)−1
At

N ,m W AN ,n ph . (6.5)

Note that if the matrix W is the identity matrix, then the solution qh is given by

qh = A†
N ,m AN ,n ph, (6.6)

while by (4.2), we know that the solution qh is given by

qh = A†
n,m ph . (6.7)

The difference between the two proposed solutions (6.6) and (6.7) is that in order to
use (6.6) we need to raise the degree of the original polynomial to order N , while
the use of the second solution (6.7) requires degree raising to degree n ≤ N only.
Moreover, our proof for obtaining the solution (6.6) is rather trivial, while our proof
for obtaining the solution (6.7) uses in some sense the fact that Bernstein operators are
degree reducing. Comparing (6.6) and (6.7) we deduce that the fact that polynomial
reduction in the discrete Lh

2-norm is equal to the best Euclidean approximation of
the h-Bézier coefficients stems from the following relations between degree raising
matrices:

A†
N ,m AN ,n = A†

n,m, m ≤ n ≤ N . (6.8)

Relations (6.8) are not valid for degree raising, or more appropriately, for dimension
raising matrices of Gelfond–Bézier curves [2,4] or Müntz –Bézier curves in general
[3]. This may explain to some extent the lack of an analogous result to Corollary 3.1
for Chebyshev spaces other than the polynomial ones.

Using (6.5) and (4.3), we conclude

Theorem 6.1 The h-Bézier coefficients of the polynomial solution to the minimization
problem (6.3) are given by

qh =
(

At
N ,m W AN ,m

)−1
At

N ,m W AN ,n A†
N ,n Vh,

where m ≤ n ≤ N, h = 1/N, Vh = (P(0), P(h), P(2h), . . . , P(1))T , Ai, j are the
degree raising matrices and W is the diagonal weight matrix.
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14 R. Ait-Haddou

7 Conclusion

In this work we provided a discrete analogue to the main Theorem in [14]. We also
revealed the adequacy of using the h-Bernstein bases to solve the problem of discrete
weighted degree reduction. The most pressing research direction in our agenda is to
find a discrete counterpart to the results of [1] for the discrete degree reduction with
discrete endpoints constraints. Also in our agenda is the generalization of this work to
the multivariate setting.
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