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Abstract A spectral method based on operational matrices of Bernstein polynomials
using collocation method is elaborated and employed for solving nonlinear ordinary
and partial differential equations with multi-point boundary conditions. First, proper-
ties of Bernstein polynomial, operational matrices of integration, differentiation and
product are introduced and then utilized to reduce the given differential equation to
the solution of a system of algebraic equations. This new approach provides a signifi-
cant computational advantage by converting the given original problem to an equiva-
lent integro-differential equation which implies all boundary condition. Approximate
solution is achieved by expanding the desired function in terms of a Bernstein basis
and employing operational matrices. Unknown coefficients are determined by col-
location. The method is compared with modified Adomian decomposition method,
Birkhoff-type interpolation method, reproducing kernel Hilbert space method, fixed
point method, finite-difference Keller-box method, multilevel augmentation method
and shooting method. Illustrative examples are included to demonstrate the high pre-
cision, validity and good performance of the new scheme even for solving nonlinear
singular differential equations.

Keywords Nonlinear differential equations · Multi-point boundary value problem ·
Bernstein basis · Operational matrix · Collocation spectral method

Mathematics Subject Classification 34B15 · 34K28 · 35G25 · 65N35 · 78M22

Communicated by Jan Hesthaven.

M. Behroozifar (B)
Faculty of Basic Sciences, Babol University of Technology, 47148-71167 Babol,
Mazandaran, Iran
e-mail: m_behroozifar@nit.ac.ir; m_behroozifar@yahoo.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-015-0544-2&domain=pdf


902 M. Behroozifar

1 Introduction

In this paper, we aim to exhibit a collocation spectral method for numerically solving
the nonlinear boundary value problems (BVPs) using operational matrices of Bern-
stein polynomials to make a comparison between the proposed method and the some
other existing methods. Therefore, we utilize all of the boundary values to derive an
equivalent integro-differential equation before applying the scheme to calculate the
solution components. Unknown functions in the equivalent integro-differential equa-
tion are approximated in terms of Bernstein polynomials. By applying the operational
matrices and collocation method, a system of algebraic equations is obtained which
is solved by MathematicaT M .

As mentioned in [10], for the sake of generality, kth-order nonlinear differential
equation is considered as

dku(x)

dxk
= Nu(x) + g(x), k ≥ 2 (1.1)

subject to k boundary conditions

u(p0)(x0) = α0 , u(p1)(x1) = α1 , . . . , u(pk−1)(xk−1) = αk−1 , (1.2)

where x0, x1, . . . , xk−1 are not all equal, 0 = p0 ≤ p1 ≤ · · · ≤ pk−1 ≤ k − 1,
p j ≤ j for j = 1, 2, . . . , k − 1, pi �= p j if xi = x j . The field of x in Eq. (1.1) is
min{x0, x1, . . . , xk−1} ≤ x ≤ max{x0, x1, . . . , xk−1}. If there are l different points
in x0, x1, . . . , xk−1 then we treat an l-point BVP. By p0 = 0 we presume that the
boundary value problem is in the Dirichlet form. Nu is an analytic nonlinear operator,
and g(x) is the system input, which is a given continuous function. We consider the
nonlinear BVPs subject to multi-point boundary conditions for at most k = 8 and
suppose that their solutions exist uniquely [2]. Presented method in this paper can be
generalized similarly for appropriate higher order differential equations and partial
differential equations [28,29].

We continue in Sect. 2 by presenting the properties of Bernstein polynomials. In
Sect. 3, we describe function approximation by using the Bernstein polynomial basis
and an upper bound of the approximation error is deduced. We introduce shortly oper-
ational matrices of integration, differentiation, dual and product of Bernstein poly-
nomial in Sect. 4. Numerical scheme for the solution of (1.1)–(1.2) is elaborated in
Sect. 5. In Sect. 6, we report our numerical findings and make comparisons between
the presentedmethod and some othermethods. Section 7 consists of a brief conclusion.

2 Properties of Bernstein polynomials

The Bernstein polynomials ofmth degree are defined on the interval [a, b] as [27–29]

Bi,m(x) =
(
m

i

)
(x − a)i (b − x)m−i

(b − a)m
, 0 ≤ i ≤ m
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High order nonlinear boundary value problems 903

where

(
m

i

)
= m!

i !(m − i)! .

These Bernstein polynomials form a basis on [a,b]. In Bernstein polynomials of
mth degree, there are m + 1 mth degree polynomials which this causes to increase
the efficiency and performance of the new method in comparison with methods which
use of other polynomials. For convenience, we set Bi,m(x) = 0, if i < 0 or i > m. A
recursive definition can also be used to generate the Bernstein polynomials over [a, b]
such that the i th mth-degree Bernstein polynomials can be written

Bi,m(x) = (b − x)

b − a
Bi,m−1(x) + x − a

b − a
Bi−1,m−1(x).

It can easily be shown that the Bernstein polynomials are positive, linear independent
and the sum of all the Bernstein polynomials is unity for all real x ∈ [a, b], i.e.,∑m

i=0 Bi,m(x) = 1 (it is said that the Bernstein polynomials have the partition unity
property). It is easy to show that any given polynomial of degreem can be expanded in
terms of these basis functions. It is well known [4,12] that the Bernstein–Vandermonde
matrix A is a strictly totally positive matrix when the points satisfy 0 < t0 < t1 <

. . . < tm < 1 which A = [ai+1, j+1] and ai+1, j+1 = Bj,m(ti ) for i, j = 0, · · · ,m. It
is noteworthy that matrix A is used in this method for solving the system of algebraic
equations by collocation technique.

3 Approximation of functions

Suppose that H = L2[a, b] where a, b ∈ R, let {B0,m, B1,m, . . . , Bm,m} ⊂ H is the
set of Bernstein polynomials of mth degree and

Y = Span{B0,m, B1,m, . . . , Bm,m}

and f is an arbitrary element in H . Since Y is a finite dimensional vector space, f has
a unique best approximation out of Y , say y0 ∈ Y , that is

∃y0 ∈ Y ; ∀y ∈ Y || f − y0||2 ≤ || f − y||2,

where || f ||2 = √〈 f, f 〉 and 〈 f, g〉 = ∫ b
a f(t)g(t)dt .

In [27], it is shown that the unique coefficient vector cT = [c0, c1, . . . , cm] exists
such as

f � y0 =
m∑
i=0

ci Bi,m = cTφ,

123



904 M. Behroozifar

where φT = [B0,m, B1,m, . . . , Bm,m] and cT can be obtained

cT =
(∫ b

a
f (x)φ(x)T dx

)
Q−1,

which Q is said dual matrix of φ and is defined as

Q = 〈φ , φ〉 =
∫ b

a
φ(x)φ(x)T dx .

Theorem 1 Suppose that H be a Hilbert space and Y be a closed subspace of H
such that dim Y < ∞ and {y1, y2, . . . , yn} is any basis for Y . Let x be an arbitrary
element in H and y0 be the unique best approximation to x out of Y . Then

||x − y0||22 = G(x, y1, y2, . . . , yn)

G(y1, y2, . . . , yn)
,

where

G(x, y1, y2, . . . , yn) =

∣∣∣∣∣∣∣∣∣∣

〈x, x〉 〈x, y1〉 · · · 〈x, yn〉
〈y1, x〉 〈y1, y1〉 · · · 〈y1, yn〉

...
...

...

〈yn, x〉 〈yn, y1〉 · · · 〈yn, yn〉

∣∣∣∣∣∣∣∣∣∣
.

Proof [18].
The exact value of approximation error is presented by the Theorem 1 and in the
following lemma we present an upper bound of approximation error.

Lemma 1 Suppose that the function g : [a, b] → R be m + 1 times continuously
differentiable, g ∈ Cm+1[a, b], and Y = Span{B0,m, B1,m, . . . , Bm,m}. If cTφ be the
best approximation g out of Y then the mean error bound is presented as follows:

∣∣∣
∣∣∣g − cTφ

∣∣∣
∣∣∣
2

≤ M(b − a)
2m+3

2

(m + 1)!√2m + 3
,

where M = maxx∈[a,b] |g(m+1)(x)|.
Proof [27].
Lemma 1 shows that the method of approximation converges to f when m → ∞.

4 Operational matrices of Bernstein polynomial

Operational matrices of the integration P , differentiation D, dual Q and product Ĉ
are introduced as following which the details of obtaining of these matrices are given
in [27]
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High order nonlinear boundary value problems 905

∫ x
0 φ(t)dt � Pφ(x), d

dx φ(x) � Dφ(x),

Q = ∫ b
a φ(x)φT (x)dx, cTφ(x)φ(x)T � φ(x)T Ĉ .

5 Solution of problem

In this section, we convert the main problem to an equivalent integro-differential
equationwhich implies all conditions ofmain problem.Then, the unknowncoefficients
are identified by a numerical scheme which will be described in the following.

It should be noticed that:

1. Without loss of generality, we can assume that the given differential equation is
defined on interval [0, 1], otherwise we transfer the given interval from [a, b] to
[0, 1] (e.g. see Example 3).

2. Since there are many different cases of differential equation with multi-point
boundary conditions, therefore we perform our method on the following forth
order differential equation (similar to Example 2). This method can be generalized
analogously to other second, third, fourth and higher order differential equations.

Consider the following differential equation (similar to Example 2)

u(4)(x) = Nu(x) + g(x), (5.1)

u(0) = A, u′′(x1) = B, u′′′(x2) = E, u(1) = F, 0 ≤ x2 < x1 ≤ 1 (5.2)

which A, B, F, E are scalar values and Nu is an analytic nonlinear operator, and g(x)
is the system input, which is a known continuous function. Using integration, we have

u(3)(x) = u(3)(0) +
∫ x

0
u(4)(s)ds, (5.3)

u(2)(x) = u(2)(0) + xu(3)(0) +
∫ x

0

∫ r

0
u(4)(s)dsdr, (5.4)

u′(x) = u′(0) + xu(2)(0) + x2

2
u(3)(0) +

∫ x

0

∫ z

0

∫ r

0
u(4)(s)dsdrdz,

u(x) = A + xu′(0) + x2

2
u(2)(0) + x3

6
u(3)(0) +

∫ x

0

∫ n

0

∫ z

0

∫ r

0
u(4)(s)dsdrdzdn,

(5.5)

which u′(0), u(2)(0) and u(3)(0) are unknown and are determined by (5.2). From (5.2),
(5.3), (5.4) and (5.5), we achieve

u(3)(0) = E −
∫ x2

0
u(4)(s)ds,

u(2)(0) = B −
[
x1u

(3)(0) +
∫ x1

0

∫ r

0
u(4)(s)dsdr

]
,
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906 M. Behroozifar

and

u′(0) = F −
[
A + u(2)(0)

2
+ u(3)(0)

6
+

∫ 1

0

∫ n

0

∫ z

0

∫ r

0
u(4)(s)dsdrdzdn

]
.

Now, an equivalent integro-differential equation which implies all conditions of main
problem is obtained by substituting achieved values u′(0), u(2)(0) and u(3)(0) in (5.5),
i.e.

u(x) = A + x

(
F−

[
A+ u(2)(0)

2
+ u(3)(0)

6
+

∫ 1

0

∫ n

0

∫ z

0

∫ r

0
u(4)(s)dsdrdzdn

])

+ x2

2

(
B −

[
x1u

(3)(0) +
∫ x1

0

∫ r

0
u(4)(s)dsdr

])

+ x3

6

(
E −

∫ x2

0
u(4)(s)ds

)
+

∫ x

0

∫ n

0

∫ z

0

∫ r

0
u(4)(s)dsdrdzdn. (5.6)

If we expand the function u(4)(x) in terms of Bernstein polynomial as

u(4)(x) � cTφ(x) (5.7)

and utilize the operational matrix, then we will have

u(3)(0) = E − cT
∫ x2

0
φ(s)ds = y4,

u(2)(0) = B −
[
x1y4 + cT p

∫ x1

0
φ(s)ds

]
= y3,

u′(0) = F −
[
A + y3

2
+ y4

6
+ cT p3

∫ 1

0
φ(s)ds

]
= y2.

Replacing them in (5.6) gives

u(x) = A + xy2 + x2

2
y3 + x3

6
y4 + cT p4φ(x) = y1(x). (5.8)

Since the approximate solution (5.8)must satisfy in (5.1),we define the error remainder
function y(x) as

y(x) = u(4)(x) − Nu(x) − g(x)

and substitute the (5.7) and (5.8) in y(x)

y(x) = cTφ(x) − Ny1(x) − g(x)

and then specify the unknown coefficient c using collocation.
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High order nonlinear boundary value problems 907

This method can readily generalized to appropriate two-dimensional partial differ-
ential equations (see Example 4) and higher order ordinary differential equations by
multi-points boundary conditions.

6 Illustrative examples

To demonstrate the validity, application and efficiency of the described method, the
obtained results for several examples are presented in this section. In all examples the
package of Mathematica (8.0) has been used to solve the test problems.

Example 1 This example is adapted from [21] and studied by modified Adomian
decomposition method [10] and also in [5,6]. Consider the two-point BVP for the
second-order nonlinear differential equation with an exponential nonlinearity

u′′(x) = eu(x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = 0,

which has the exact solution

u∗(x) = 2 ln

(
k sec

k(2x − 1)

4

)
− ln(2) ,

where k satisfies k sec
( k
4

) = √
2, hence, with 16 significant figures k =

1.336055694906108. As mentioned in [21], the problem is mildly nonlinear and is
easy to solve. In fact, if an algorithm does not work well on this problem, the algorithm
should be suspect. Using proposed method, we present the error values u(x) in some
points and ||um − u∗||∞ for m = 3, 6, 9 in Table 1 to highlight the rapid rate of
convergence and plot the error function for m = 9 in Fig. 1.

In contrast to the new approach, we note that the maximum approximation error
of modified Adomian decomposition method related to E3(x) in [10] is a multiple
of 10−3 whereas the maximum approximation error of the presented method is a
multiple of 10−8 when bothmethods yield a polynomial of degree 6. Also, theminimal
approximation errors of recursion scheme (the multilevel augmentation method) in
[5] are a multiple of 10−4 and 10−8 for norms ||.||1 and ||.||0, respectively, and the
maximum approximation error of the presented method is a multiple of 10−10 with
m = 9 by ||.||∞. Furthermore, the maximum approximation absolute errors of the
presented methods in [21] and [6] are a multiple and 10−11 and of 10−8, respectively.

We see that the value of m (degree of Bernstein polynomial) can affect the rate of
convergence of method. Thus we can use this phenomenon to design more efficient
schemes by increasing the value of m. Our method does not depend on any parameter
while the method in [10] includes a parameter and the scheme in [5] contains three
undetermined coefficients.

Example 2 Consider the four-point BVP for the fourth-order nonlinear differential
equation with a product nonlinearity [10,22]
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908 M. Behroozifar

Table 1 Error values of u(x) of method in Example 1

x m = 3 m = 6 m = 9

0 −0.000513999 5.62176× 10−9 −4.65181×10−10

0.1 0.000105718 −2.29883×10−8 −2.05659× 10−10

0.2 0.00019385 −6.15119× 10−9 1.16237× 10−10

0.3 0.0000515635 1.74553× 10−8 −1.77296× 10−11

0.4 −0.000113844 −1.61038× 10−8 −2.07494× 10−11

0.5 −0.000181124 −4.45384× 10−8 1.60203× 10−10

0.6 −0.000110612 −2.16532× 10−8 −1.60264× 10−11

0.7 0.0000572202 −5.84318× 10−11 −1.27651× 10−11

0.8 0.000200315 −4.15635× 10−8 1.39026× 10−10

0.9 0.000110567 −6.79627× 10−8 −1.2632× 10−10

1 −0.000513999 −5.62176× 10−9 −4.65181× 10−10

||um − u∗||∞ 0.000513999 7.21702× 10−8 4.65181× 10−10

Fig. 1 Error function in Example 1

u(4)(x) + u(x)u′(x) − 4x7 − 24 = 0, 0 ≤ x ≤ 1

u(0) = 0, u′′′(0.25) = 6, u′′(0.5) = 3, u(1) = 1,

with the exact solution u(x) = x4. In Fig. 2, we plot the error of u(x) for m = 6 and
display the error values u(t) for m = 3, 6 in some points in Table 2.

In contrast to the newmethod,wenote that, in [10]maximumapproximation error of
modified Adomian decomposition method related to E1(x) and E2(x) (which yields
polynomials of degree 25 and 39, respectively,) are a multiple of 10−4 and 10−7,
respectively, but maximum approximation error of the presented method for m = 6
(which yields a polynomial of degree 6) is a multiple of 10−16 which it shows the high
preciseness and good performance of method.We also note that the convergence of the
newmethod does not depend on any parameter while the scheme in [22] contains three
undetermined coefficients and the scheme in [10] includes an undetermined parameter.
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Fig. 2 Error figure of u(x) for m = 6 in Example 2

Table 2 Error values of u(x)
for m = 3, 6 in Example 2

x m = 3 m = 6

0 −0.0142852 −5.42101×10−19

0.1 0.00332894 2.06676× 10−17

0.2 0.00582865 3.70797× 10−17

0.3 0.00161403 5.0307× 10−17

0.4 −0.00331487 5.55112× 10−17

0.5 −0.005358 6.93889× 10−17

0.6 −0.00331529 8.32667× 10−17

0.7 0.00161329 8.32667× 10−17

0.8 0.0058278 5.55112× 10−17

0.9 0.0033283 1.11022× 10−17

1 −0.0142852 0

Example 3 Consider the BVP for the fourth-order nonlinear differential equation with
an exponential nonlinearity [10,23]

u(4)(x) = −6 e−4u(x), 0 ≤ x ≤ 4 − e,

u(0) = 1, u′′(0) = − 1

e2
, u(4 − e) = ln(4), u′′(4 − e) = − 1

16
,

which has the exact solution u(x) = ln(e + x).
We first let x = (4 − e)t to transfer the differential equation from the interval

[0, (4 − e)] to [0, 1], so the original differential equation is altered to

v(4)(t) = −6(4 − e)4 e−4v(t), 0 ≤ t ≤ 1

v(0) = 1, v′′(0) = − (4 − e)2

e2
, v(1) = ln(4), v′′(1) = − (4 − e)2

16
,
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910 M. Behroozifar

Fig. 3 Error figure of v(t) for m = 9 in Example 3

Table 3 Error values of v(t) for
m = 3, 6, 9 in Example 3

x m = 3 m = 6 m =9

0 0.0000797358 5.28958× 10−8 3.94209× 10−11

0.1 −0.0000205312 −1.83897× 10−8 1.20577× 10−11

0.2 −0.0000286405 2.20312× 10−9 −8.9484× 10−12

0.3 −1.35209×10−6 −2.42924× 10−8 7.60036× 10−12

0.4 0.0000253848 −4.07791× 10−8 6.89115× 10−12

0.5 0.0000331912 −2.64039× 10−8 −5.29665× 10−12

0.6 0.000018626 −1.48458× 10−8 1.04627× 10−11

0.7 −8.97284×10−6 −3.01546× 10−8 5.7121× 10−12

0.8 −0.0000292688 −3.95987× 10−8 −6.01341× 10−12

0.9 −0.000012409 4.75189× 10−10 1.27183× 10−11

1 0.0000797358 −5.28958× 10−8 3.94209× 10−11

with the exact solution v(t) = ln((4 − e)t + e) which v(t) = u((4 − e)t). In Fig. 3,
we plot the error of v(t) for m = 9 and exhibit the error values v(t) for m = 3, 6, 9
in some points in Table 3.

In contrast with the new scheme, we notice that in [10] maximum approximation
error of modified Adomian decomposition method related to E2(x), E3(x) and E4(x)
(which yields polynomials of degree 8, 12, 16, respectively,) are a multiple of 10−3,
10−3 and 10−4, but maximum approximation error of the presented method form = 6
and m = 9 (which yields polynomials of degree 6 and 9) are a multiple of 10−8 and
10−11. Numerical results in Table 3 demonstrate a remarkable accuracy for such low
orders of approximation by the presented method because the error function quickly
approaches zero by increasing the value of m. We also notice that the scheme in [23]
contains two undetermined coefficients while our method does not depend on any
parameter.

Example 4 Consider the nonlinear second-order homogeneous partial differential
equation [10,26]
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High order nonlinear boundary value problems 911

θxx (x, t) + ε

1 + εθ(x, t)
(θx (x, t))

2 − K 2 θ(x, t)

1 + εθ(x, t)
− θt (x, t)

1 + εθ(x, t)
= 0,

where K depends on the physical properties and design parameters, and θ(x, t) has
the domain of definition x ∈ [0, 1], t ∈ [0,∞) and subject to a mixed set of homoge-
neous Neumann and inhomogeneous Dirichlet boundary conditions which includes a
sinusoidally varying boundary value,

θx (0, t) = 0, θ(1, t) = 1 + S cos(βt).

The physical variables and parameters are θ, x, t, ε, K , S and β, which represent
the dimensionless temperature, distance, time, thermal conductivity parameter, fin
parameter, amplitude of oscillation and frequency of oscillation, respectively. The
interested reader can refer to [25,26] for further details in regard to the derivation and
design limitations of this engineering model.

Exact solution θ∗(x, t) of this problem is unknown. In order to investigate the
approximate solution θn,m(x, t) and examine the convergence of method to the exact
solution, we consider the error remainder function

E(θn,m(x, t)) = ∂2

∂x2
θn,m(x, t) + ε

1 + εθn,m(x, t)

(
∂

∂x
θn,m(x, t)

)2

− K 2 θn,m(x, t)

1 + εθn,m(x, t)
−

∂
∂t θn,m(x, t)

1 + εθn,m(x, t)
,

which θn,m(x, t) = φT
n (x)Cφm(t)where φm andC are Bernstein polynomials of order

m and a (n + 1) × (m + 1) matrix, respectively.
For S = 0.1, β = 1, K = 0.5, ε = 0.2, we plot the error surfaces Eθn,m(x, t) for

0 ≤ x ≤ 1, 0 ≤ t ≤ 4π and n = m = 3 in Fig. 4.
In contrast to the new method, we note that in [10] maximum approximation error

of modified Adomian decomposition method is a multiple of 10−2, while maximum
approximation error of the presented method for m = n = 3 is a multiple of 10−4

which shows the high accuracy of method. In Figs. 5, 6 and 7, we plot the the error
surfaces E(θ3,3(x, t)) on 0 ≤ x ≤ 1, 0 ≤ t ≤ 4π for S = 0.1, β = 1, K = 0.5 and
different values ε = 0.3, 0,−0.3, respectively.

Example 5 Consider the nonlinear third-order differential equation [9,16]

u′′′(x) + (2 + u(x))(1 − u′(x))2 + (u′′′(x))3 = 0, 0 < x < 1

with boundary conditions

u(0) = 0, u′′(0) = 0, −2u′(1) − (u′′(1))2 = 0.

The existence and uniqueness of the solution for this problem are shown in [8] for
x ∈ [0, 1]. Applying the presented method with m = 3, 6, 9, we plot in Fig. 8 the
error remainder function
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912 M. Behroozifar

Fig. 4 Error remainder function E(θ3,3(x, t)) for ε = 0.2 in Example 4

Fig. 5 Error remainder function E(θ3,3(x, t)) for ε = 0.3 in Example 4

Em(x) = u′′′
m (x) + (2 + um(x))(1 − u′

m(x))2 + (u′′′
m (x))3

for m = 9 on [0,1] and list some values of Em(x) in Table 4. In contrast to the
new scheme, we notice that in [9] the maximum approximation error of the Adomian
decomposition method is a multiple of 10−2, whereas the maximum approximation
error of the presented method for m = 6 and m = 9 (which yields polynomials of
degree 6 and 9) are a multiple of 10−4 and 10−6.

Example 6 Consider the nonlinear differential equation for a cantilever nano-electro
mechanical system (NEMS) [11,20]

u(4)(x) + αK

u(x)K
+ β

u(x)2
+ γ

u(x)
= 0, 0 < x < 1, K = 3, 4,

u(0) = 1, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0.
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High order nonlinear boundary value problems 913

Fig. 6 Error remainder function E(θ3,3(x, t)) for ε = 0 in Example 4

Fig. 7 Error remainder function E(θ3,3(x, t)) for ε = −0.3 in Example 4

Fig. 8 Error remainder function E9(x) in Example 5
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914 M. Behroozifar

Table 4 Some values of error
remainder function Em (x) in
Example 5

x m = 3 m = 6 m = 9

0 −3.33067×10−16 4.44089× 10−16 −1.11022× 10−16

0.1 0.00804987 −0.0000442405 2.60384× 10−7

0.2 0.00900237 7.77156× 10−16 −1.94849× 10−7

0.3 0.0054599 −5.55112× 10−16 2.56746× 10−8

0.4 5.55112× 10−16 1.11022 × 10−16 −7.52284× 10−8

0.5 −0.00461963 0.0000104312 −4.60867× 10−8

0.6 −0.00546145 −0.0000327157 1.66533× 10−16

0.7 2.22045× 10−16 −0.0000327157 −5.88821× 10−8

0.8 0.0117656 −2.22045× 10−16 1.49767× 10−8

0.9 0.0216599 0.000763789 6.87119× 10−8

1 4.44089× 10−16 −6.66134× 10−16 −7.27368× 10−6

Table 5 Some values of error
remainder function Em (x) in
Example 6

x m = 3 m = 6 m = 9

0 −1.11022× 10−16 0 −1.11022× 10−16

0.1 0.00157288 3.50132× 10−6 −7.64006× 10−8

0.2 0.00159817 −8.35215× 10−7 3.81028× 10−8

0.3 0.000458466 1.96164× 10−7 −2.79425× 10−9

0.4 −0.00106802 −9.31966× 10−7 2.93434× 10−9

0.5 −0.00207336 −1.46916× 10−6 −5.20285× 10−10

0.6 0.00180238 0 2.22045× 10−16

0.7 0 −2.4264× 10−7 −3.49627 × 10−9

0.8 0.0026551 3.09624× 10−6 9.70546× 10−10

0.9 0.00403533 0.0000161642 4.33997× 10−9

1 2.22045× 10−16 −0.0000917497 −4.18427× 10−7

We take K = 3, for the range of separation where the van der Waals force predom-
inates, and αK = 0.2, β = 0.5, γ = 0.25 to compute the approximate solution.
Applying the presented method with m = 3, 6, 9, we list some values of the error
remainder function

Em(x) = u(4)
m (x) + αK

um(x)K
+ β

um(x)2
+ γ

um(x)
,

in Table 5. In contrast to our new approach, in Table 1 from [11] it is expressed that the
maximal error remainder parameter for m = 15 is 0.0000188629, whereas the error
remainder function Em(x) form = 9 is a multiple of 10−7 from Table 5. New method
does not depend on any parameter too.

Example 7 Consider the nonlinear differential equation for a double cantilever nano-
electro mechanical system (NEMS) [11,20]
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Table 6 Some values of error
remainder function Em (x) in
Example 7

x m = 3 m = 6 m = 9

0 −4.44089× 10−16 0 0

0.1 −0.000226047 −0.0000120871 3.50729× 10−7

0.2 −0.000192261 3.06549× 10−6 −2.4583× 10−7

0.3 −0.0000473781 −7.76787× 10−7 2.83649× 10−8

0.4 0.0000964918 4.14385× 10−6 −6.83721× 10−8

0.5 0.00016594 8.10947× 10−6 −3.26103× 10−8

0.6 0.000129179 8.88178× 10−16 4.44089× 10−16

0.7 0 −4.40265× 10−6 −2.23903× 10−8

0.8 −0.000157015 5.94871× 10−6 4.13628× 10−9

0.9 −0.000219751 −2.42261× 10−6 1.7564× 10−8

1 0 0 0

u(4)(x) + αK

u(x)K
+ β

u(x)2
+ γ

u(x)
= 0, 0 < x < 1, K = 3, 4,

u(0) = 1, u′(0) = 0, u(1) = 1, u′(1) = 0.

We take K = 4, for the range of separation where the Casimir force predominates,
and αK = 1, β = 1.5, γ = 0.5 to compute the approximate solution. Applying
the presented method with m = 3, 6, 9, we list in Table 6 some values of the error
remainder function

Em(x) = u(4)
m (x) + αK

um(x)K
+ β

um(x)2
+ γ

um(x)
.

In comparison with the new method, in Table 2 from [11] it is expressed that the
maximal error remainder parameter for m = 3 which yields a polynomial of degree
12, is 0.0400777, whereas from Table 6 the error remainder function Em(x) form = 9
(which yields a polynomial of degree 9) is a multiple of 10−7. A clear advantage of this
technique over theAdomian decompositionmethod is that no calculation of Adomians
polynomials is needed.

Example 8 In [1,3], it is shown that the unsteady one-dimensional gas flow in a porous
medium is modeled by a nonlinear ordinary differential equation as follows

y′′(x) + 2x√
1 − αy(x)

y′(x) = 0, x > 0, 0 < α < 1,

y(0) = 1 , lim
x→∞ y(x) = 0.

A substantial amount of numerical and analytical work has been invested so far on this
model [19,24]. This problem was also handled by Kidder [17]. Also, finite-difference
Keller-box method and shooting method were employed to solve this problem [1]. In
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Table 7 Residual values of Eq. 6.1 with α = 0.2 for Example 8

t m = 3 m = 6 m = 9 m = 12 m = 15

0.1 −0.0534597 0.0321189 −1.38778× 10−17 4.16334× 10−17 −5.20417× 10−17

0.2 −0.0767772 0.0139518 5.55112× 10−17 0.000122905 −2.77556× 10−17

0.3 1.66533× 10−16 5.55112× 10−17 1.11022× 10−16 1.11022× 10−16 −5.55112× 10−17

0.4 0.128366 −5.55112× 10−17 −0.00101015 −4.77933× 10−6 3.60791× 10−6

0.5 0.213035 0.000831948 0.000671637 6.68188× 10−7 5.55112× 10−17

0.6 0.174699 6.93889× 10−18 −0.00100417 −1.59595× 10−16 −6.245× 10−17

0.7 −2.77556× 10−16 −0.0000768896 0.00349653 −6.23937× 10−7 0

0.8 −0.227923 −0.0000624029 −3.33067× 10−16 0 1.11022× 10−16

0.9 −0.321388 0.000727156 −2.22045× 10−16 −3.33067× 10−16 0

1 0 0 4.44089× 10−16 −4.44089× 10−16 0

Table 8 Values of u(0), u(1) and y′(0) with α = 0.2 for Example 8

m = 3 m = 6 m = 9 m = 12 m = 15

u(0) 0.0173401 0.00153705 −0.00029644 −0.0000112151 2.13671×10−7

u(1) 1 1 1 1 1

y′(0) −0.945112 −1.16978 −1.15863 −1.1501 −1.15024

order to approximate the solution of this problem, we first transfer main problem from
interval 0 ≤ x < ∞ to 0 < t ≤ 1 by transformation function t = e−x , thus our
problem convert to

t2u′′(t) + tu′(t)
(
1 + 2 ln t√

1 − αu(t)

)
= 0, 0 < t < 1, 0 < α < 1,

u(1) = 1 , lim
t→0

u(t) = 0.
(6.1)

where u(t) = y(− ln t). We apply the presented method for problem 6.1 and propose
the some residual values of Eq. 6.1 with α = 0.2, 0.5 in Tables 7 and 9, respectively.

To compare our method with numerical findings presented in [1], values of u(0),
u(1) and y′(0) for α = 0.2, 0.5 are exhibited in Tables 8 and 10, respectively, which
y′(x) = dy(x)

dx = −e−x du(t)
dt |t=e−x . Numerical results show that the high preciseness

of our method and this method can be considered a good scale for comparison with
other methods existing in [1].

Example 9 Consider the following high order nonlinear differential equation with
multi-point boundary conditions on [−1, 1]

y(8)(x) − y′′(x)y(3)(x) = −ex (x + 5)(11 + x + ex (1 + 5x + 5x2 + x3)),

y(−1) + y(1) = 0,
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Table 9 Residual values of Eq. 6.1 with α = 0.5 for Example 8

t m = 3 m = 6 m = 9 m = 12 m = 15

0.1 −0.0534597 0.0289134 1.73472×10−17 −2.42861×10−17 6.93889×10−18

0.2 −0.0767772 0.0121143 1.11022×10−16 0.000104543 0

0.3 1.66533×10−16 5.55112×10−17 5.55112×10−17 0 −5.55112×10−17

0.4 0.128366 −1.11022×10−16 −0.000977605 −7.08453×10−6 3.34621×10−6

0.5 0.213035 0.000502075 0.000634453 7.82314×10−7 5.55112×10−17

0.6 0.174699 2.77556×10−17 −0.000977605 −2.22045×10−16 −9.71445×10−17

0.7 −2.77556×10−16 0.0000552033 0.0030881 −6.21959×10−7 −2.77556×10−17

0.8 −0.227923 −0.000149113 −3.33067×10−16 0 −5.55112×10−17

0.9 −0.321388 0.000903993 −2.22045×10−16 0 −1.11022×10−16

1 0 0 −4.44089×10−16 −2.22045×10−16 0

Table 10 Values of u(0), u(1) and y′(0) with α = 0.5 for Example 8

m = 3 m = 6 m = 9 m = 12 m = 15

u(0) 0.0173401 0.00138089 −0.000277258 −0.0000111168 1.80426×10−7

u(1) 1 1 1 1 1

y′(0) −0.945112 −1.20923 −1.19967 −1.19143 −1.19157

y(1)(−1) + y(1)(1) = 2e−1 − 2e,

y(2)(−1) + y(2)(1) = 2e−1 − 6e,

y(3)(−1) + y(3)(1) = −12e,

y(4)(−1) + y(4)(1) = −4e−1 − 20e,

y(5)(−1) + y(5)(1) = −10e−1 − 30e,

y(6)(−1) + y(6)(1) = −18e−1 − 42e,

y(7)(−1) + y(7)(1) = −28e−1 − 56e

Analytic solution of the above differential system is y∗(x) = (1 − x2)ex . Using
transformation function x = 2t − 1, the problem is altered from interval x ∈ [−1, 1]
to t ∈ [0, 1] as follows

u(8)(t)

28
− u(2)(t)u(3)(t)

25

= −4e2t−2(2 + t)
(
e(5 + t) + 2te2t (−1 + 2t + 2t2)

)
, 0 ≤ t ≤ 1

u(−1) + u(1) = 0,

u(1)(0) + u(1)(1) = 4e−1 − 4e,

u(2)(0) + u(2)(1) = 8e−1 − 24e,

u(3)(0) + u(3)(1) = −96e,
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Table 11 Absolute error values
of u(t) for Example 9

t m = 3 m = 6 m = 8

0 0.105451 0.000595088 4.78156 × 10−6

0.1 0.0797359 0.000159328 2.29618 × 10−6

0.2 0.0350764 0.000165537 1.06322 × 10−6

0.3 0.0196851 0.0000449246 2.63573 × 10−7

0.4 0.0754498 0.00026514 1.8448 × 10−7

0.5 0.123493 0.000321529 1.34234 × 10−6

0.6 0.156322 0.000307641 2.46215 × 10−6

0.7 0.168943 0.000377997 1.76328 × 10−6

0.8 0.160832 0.000438202 1.79086 × 10−6

0.9 0.139058 0.000211407 1.8511 × 10−6

1 0.123165 0.000347221 2.62644 × 10−6

||um − u∗||∞ 0.16902 0.000595088 4.78156 × 10−6

u(4)(0) + u(4)(1) = −64e−1 − 320e,

u(5)(0) + u(5)(1) = −320e−1 − 960e,

u(6)(0) + u(6)(1) = −1152e−1 − 2688e,

u(7)(0) + u(7)(1) = −3584e−1 − 7168e,

where u(t) = y(2t − 1) and dk y(x)
dxk

= 1
2k

dku(t)
dtk

. In Table 11, some values of absolute
error of u(t) and ||um − u∗||∞ of method are presented. Results show that the method
is accurate and rapidly converges to the exact solution by increasing order of Bernstein
polynomials.

Example 10 In this numerical test, the proposed method is applied for the following
sixth order nonlinear equation [7]

y(6)(x) = e−x y2(x), x ∈ [0, 1],

subject to the initial conditions y( j)(0) = 1 for j = 0, 1, 2, 3, 4, 5, whose exact solution
is y∗(x) = ex . This example was numerically solved by Birkhoff-type interpolation
method in [7]. In order to investigate the performance of our method and compare
with [7], numerical results form = 3, 6, 8 are presented in Table 12 which the results
support the efficiency and accuracy of our method.

Example 11 Let us to consider the nonlinear stiff equation [7]

{
y′
1(x) = −(2 + ε−1)y1(x) + ε−1y2(x)2, y1(0) = 1,

y′
2(x) = y1(x) − y2(x) − y2(x)2, y2(0) = 1,

which ε = 103. The exact solutions are

y∗
1 (x) = e−2x , y∗

2 (x) = e−x .
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Table 12 Absolute error values of u(t) for Example 10

t m = 3 m = 6 m = 8

0 0.000106159 9.62369 × 10−8 9.41371 × 10−11

0.1 0.0000115318 2.42432 × 10−8 1.68736 × 10−11

0.2 0.0000442877 3.08218 × 10−8 3.19678 × 10−12

0.3 0.0000267931 4.02436 × 10−10 1.86302 × 10−11

0.4 8.61142 × 10−6 2.82524 × 10−8 2.26732 × 10−11

0.5 0.0000347962 1.86932 × 10−9 1.28475 × 10−12

0.6 0.0000340629 2.79955 × 10−8 2.35025 × 10−11

0.7 3.86032 × 10−6 3.18008 × 10−9 1.68412 × 10−11

0.8 0.0000358469 3.10703 × 10−8 5.4694 × 10−12

0.9 0.0000333831 2.18672 × 10−8 1.84124 × 10−11

1 0.000105853 9.61924 × 10−8 9.40821 × 10−11

||ym − y∗||∞ 0.000105853 9.62369 × 10−8 9.41371 × 10−11

In Tables 13 and 14, the numerical results with m = 3, 6, 9, 12 of using the present
method are showed for y1 and y2, respectively. In comparison with Birkhoff-type
interpolation method in [7], our method gives solutions with higher precision. This
high accuracy of results guaranties the good performance of the method.

Example 12 Consider the nonlinear singular initial value problem (IVP) [15]

u′′(x) + 10

x sin(x)
u′(x) + 6 u(x)

cos(
√
x)

+ sin(
√
u(x)) = f (x), 0 < x ≤ 1

u(0) = 2, u′(0) = 0,

which

f (x) = x
[
10(3 − 4x)x sin x + cos

√
x

(
6(2 + x3 − x4) + sin x ( 6x(1 − 2x)

+ sin
√
2 + x3 − x4

))]
,

and the exact solution is u∗(x) = x3 − x4 + 2.
In [15], combination of homotopy perturbation method and reproducing kernel

Hilbert space method was employed for solving this nonlinear singular initial value
problem. Presented method is applied form = 3, 4 and the error values in some points

are proposed in Table 15 and the relative error function
(∣∣∣ um (x)−u∗(x)

u∗(x)

∣∣∣) for m = 4 is

plotted in Fig. 9. Approximate solution using Bernstein polynomials of order m = 4
is

u4(x) = x3 − x4 + 2 − 3.46945 × 10−17x + 9.36751 × 10−17x2.

123



920 M. Behroozifar

Table 13 Absolute error values of y1(t) for Example 11

t m = 3 m = 6 m = 9 m = 12

0 0.00375937 2.82865 × 10−6 5.76849 × 10−10 4.72955 × 10−14

0.1 0.00104388 6.05455 × 10−7 1.7536 × 10−10 1.11022 × 10−14

0.2 0.00140951 9.09535 × 10−7 1.4502 × 10−10 1.92069 × 10−14

0.3 0.000135927 1.43139 × 10−7 6.71196 × 10−11 1.66533 × 10−15

0.4 0.00105819 8.08512 × 10−7 6.23511 × 10−11 1.249 × 10−14

0.5 0.0013381 1.08361 × 10−7 1.40687 × 10−10 5.32907 × 10−15

0.6 0.000592825 8.23244 × 10−7 8.52606 × 10−11 1.60982 × 10−15

0.7 0.000696093 6.46967 × 10−8 4.34841 × 10−11 1.06859 × 10−14

0.8 0.00156197 8.93715 × 10−7 1.34435 × 10−10 3.747 × 10−15

0.9 0.000640929 7.4555 × 10−7 1.69992 × 10−10 2.63678 × 10−15

1 0.0037561 2.82836 × 10−6 5.76809 × 10−10 4.50751 × 10−14

||y1m − y1∗ ||∞ 0.00375937 2.82865 × 10−6 5.76849 × 10−10 4.73437 × 10−14

Table 14 Absolute error values of y2(t) for Example 11

t m = 3 m = 6 m = 9 m = 12

0 0.000380749 6.72605 × 10−8 7.7236 × 10−12 3.10862 × 10−15

0.1 0.000114529 1.10369 × 10−7 1.5547 × 10−10 1.77525 × 10−13

0.2 0.000130775 1.5991 × 10−7 1.34249 × 10−10 1.4766 × 10−13

0.3 0.000219129 1.10979 × 10−7 9.40644 × 10−11 1.16351 × 10−13

0.4 0.000251242 3.96129 × 10−8 8.4298 × 10−11 9.10383 × 10−14

0.5 0.000172968 9.74315 × 10−9 6.23439 × 10−11 7.41629 × 10−14

0.6 2.69114 × 10−6 2.43575 × 10−8 4.3533 × 10−11 5.973 × 10−14

0.7 0.000201982 5.01974 × 10−8 4.6628 × 10−11 4.90719 × 10−14

0.8 0.000296177 5.20433 × 10−8 2.97835 × 10−11 4.10783 × 10−14

0.9 0.000106808 2.12784 × 10−8 6.3155 × 10−12 3.45279 × 10−14

1 0.0005896 3.51521 × 10−7 5.43202 × 10−11 3.17524 × 10−14

||y2m − y2∗ ||∞ 0.0005896 3.51521 × 10−7 1.6367 × 10−10 1.8003 × 10−13

In contrast to the new method, we note that in [15] the minimum approximation
relative error is a multiple of 10−7, while the maximum approximation relative error
of the present method with m = 4 is a multiple of 10−16 which it shows the good
performance of method in comparison with other methods.

Example 13 Consider the nonlinear stiff equation [13]{
y′′
1 (x) = y1(x)y′

2(x) − x, y1(0) = 1, y2(0) = 0

y′′
2 (x) = y22 (x) − y1(x)y2(x) + xex , y′

1(0) = 2, y′
2(0) = 1

whose exact solutions are y∗
1 (x) = x + ex , y∗

2 (x) = x .

123



High order nonlinear boundary value problems 921

Table 15 Error values of u(x)
for m = 3, 4 in Example 12

x m = 3 m = 4

0 0.0144406 0

0.1 −0.00311637 0

0.2 −0.00556828 0

0.3 −0.00131791 0

0.4 0.00363197 0

0.5 0.00567859 0

0.6 0.00361915 0

0.7 −0.00134911 0

0.8 −0.00562898 0

0.9 −0.00322324 0

1 0.0142653 0

Fig. 9 Relative error function for m = 4 in Example 12

In [13], this problemwas solved using a method which is based on the Banach fixed
point theorem. Achieved minimum absolute error in [13] for y1, y2 are a multiple
of 10−7 and 10−11, respectively, with n = 33,m = 5 (which n, m indicate the
numbers of nodes and of iterations). In Tables 16 and 17, the numerical results with
m = 3, 6, 9 of using the present method are exhibited for y1 and y2, respectively.
From numerical findings, maximum absolute error y1, y2 are a multiple of 10−12 and
10−14, respectively, with m = 9 (which m indicates Bernstein polynomial order).

Example 14 Consider the following nonlinear fourth-order boundary value problem
[14]

u(4)(x) − exu′′(x) + u(x) + sin(u(x)) = 1 + sin(1 + sinh(x)) − (ex − 2) sinh(x)

u(0) = 1, u′(0) = 1, u(1) = 1 + sinh(1), u′(1) = cosh(1),

whose exact solution is u∗(x) = 1+ sinh(x). This BVP has been solved in [14] by the
reproducing kernel Hilbert space method which its maximum absolute error is a mul-
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Table 16 Absolute error values
of y1(t) for Example 13

t m = 3 m = 6 m = 9

0 0.000999768 9.62487 × 10−8 2.47546 × 10−12

0.1 0.000203671 2.42446 × 10−8 7.37854 × 10−13

0.2 0.000416156 3.08378 × 10−8 5.90639 × 10−13

0.3 0.000152583 4.28627 × 10−10 2.12941 × 10−13

0.4 0.000194499 2.82128 × 10−8 3.40172 × 10−13

0.5 0.000367751 1.79385 × 10−9 6.15508 × 10−13

0.6 0.000259265 2.8135 × 10−8 2.80442 × 10−13

0.7 0.0000737182 3.39824 × 10−9 2.43805 × 10−13

0.8 0.000391444 3.07798 × 10−8 6.44373 × 10−13

0.9 0.000252446 2.22242 × 10−8 7.07878 × 10−13

1 0.00100767 9.57076 × 10−8 2.42295 × 10−12

Table 17 Absolute error values
of y2(t) for Example 13

t m = 3 m = 6 m = 9

0 3.18746 × 10−6 2.4232 × 10−11 1.40799 × 10−15

0.1 3.90853 × 10−7 4.65937 × 10−11 3.91354 × 10−15

0.2 2.05134 × 10−6 8.65468 × 10−11 1.24623 × 10−14

0.3 2.13112 × 10−6 1.01278 × 10−10 2.04836 × 10−14

0.4 9.67303 × 10−7 1.51306 × 10−10 2.93099 × 10−14

0.5 1.103 × 10−6 2.59996 × 10−10 3.71925 × 10−14

0.6 3.74268 × 10−6 3.82077 × 10−10 4.36318 × 10−14

0.7 6.61462 × 10−6 4.32679 × 10−10 5.05151 × 10−14

0.8 9.3817 × 10−6 3.76907 × 10−10 5.68434 × 10−14

0.9 0.0000117068 3.79939 × 10−10 5.52891 × 10−14

1 0.0000132529 1.01766 × 10−9 6.26166 × 10−14

Table 18 Absolute error values
for Example 14

t m = 3 m = 6 m = 9

0 0.00031637 6.58204 × 10−8 7.82374 × 10−13

0.1 0.0000577113 1.45506 × 10−8 2.23419 × 10−13

0.2 0.000147711 2.70465 × 10−8 2.12469 × 10−13

0.3 0.000089263 1.19681 × 10−8 8.77076 × 10−15

0.4 2.16739 × 10−6 9.95623 × 10−10 1.22125 × 10−15

0.5 0.0000416166 2.84905 × 10−8 3.78253 × 10−13

0.6 0.0000147351 5.73902 × 10−8 1.8574 × 10−13

0.7 0.000158511 4.85464 × 10−8 2.76335 × 10−13

0.8 0.000317562 3.3788 × 10−8 6.85341 × 10−13

0.9 0.000343756 7.68594 × 10−8 3.85025 × 10−13

1 0 0 0

123



High order nonlinear boundary value problems 923

tiple of 10−7. Numerical results in Table 18 show that approximate solution obtained
is in good agreement with the exact solution and only a few order of Bernstein poly-
nomial can be used to obtain a solution with a high degree of accuracy. Therefore, the
present method can be applied as an accurate and reliable technique for the nonlinear
BVPs.

7 Conclusion

In this paper the operationalmatrices of integration, differentiation, product and dual of
Bernstein polynomials basis are utilized to reduce the nonlinear boundary value prob-
lems to the solution of algebraic equations. In Bernstein polynomials of mth degree,
there are m + 1 mth degree polynomials which this causes to increase the efficiency
and performance of the new method in comparison with methods which use of other
polynomials. Comparisons between spectral method based on operational matrices of
Bernstein polynomials using collocation method and modified Adomian decompo-
sition method, Birkhoff-type interpolation method, reproducing kernel Hilbert space
method, fixed point method, finite-difference Keller-box method, multilevel augmen-
tation method and shooting method for solving the nonlinear ordinary and partial
differential equations with multi-point boundary conditions are made. These compar-
isons enhance the use of the newmethod if we wish to obtain an accurate approximate
solution that converges faster to the exact solution. Moreover, new presented method
is also effective for solving appropriate higher order differential equations even for
singular differential equations.

We have applied the proposed method to solve the exponential second-order non-
linear differential equation, fourth-order nonlinear differential equation with a product
nonlinearity, fourth-order nonlinear differential equation with an exponential nonlin-
earity, second-order homogeneous partial differential equation, nonlinear third-order
differential equation, differential equation related to a cantilever nano-electromechan-
ical system, differential equation related to a double cantilever nano-electro mechani-
cal system, differential equation related to the unsteady one-dimensional gas flow in a
porous medium, eighth order nonlinear differential equation, sixth order nonlinear dif-
ferential equation, nonlinear stiff differential equation, singular initial value problem,
nonlinear stiff differential equation, nonlinear fourth-order boundary value problem in
a straightforward procedure, respectively. The obtained numerical tests demonstrate
the practicality and efficiency of our new method and show that the method produces
acceptable results. Independence of the new method on any parameter can be consid-
ered as a strength point of the thismethod.Our expository examples have demonstrated
that only a low-order of Bernstein polynomial does provide an excellent approxima-
tion even for the cases of nonlinear and nonlinear singular BVPs. A clear advantage
of this technique over the Adomian decomposition method is that no calculation of
Adomians polynomials is needed. This method can be considered a good scale for
comparison with other existing methods.
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