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Abstract In recent years, in the setting of radial basis function, the study of approx-
imation algorithms has particularly focused on the construction of (stable) bases for
the associated Hilbert spaces. One of the ways of describing such spaces and their
properties is the study of a particular integral operator and its spectrum. We proposed
in a recent work the so-called WSVD basis, which is strictly connected to the eigen-
decomposition of this operator and allows to overcome some problems related to the
stability of the computation of the approximant for a wide class of radial kernels.
Although effective, this basis is computationally expensive to compute. In this paper
we discuss a method to improve and compute in a fast way the basis using methods
related to Krylov subspaces. After reviewing the connections between the two bases,
we concentrate on the properties of the new one, describing its behavior by numerical
tests.

Keywords Interpolation · Positive definite functions · Matrix factorization ·
Fast computation

Mathematics Subject Classification 41A05 · 42A82 · 15A23 · 65Y20

Communicated by Michiel Hochstenbach.

S. De Marchi · G. Santin (B)
Department of Mathematics, University of Padova, via Trieste 63, Padova, Italy
e-mail: gsantin@math.unipd.it

S. De Marchi
e-mail: demarchi@math.unipd.it

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-014-0537-6&domain=pdf


950 S. De Marchi, G. Santin

1 Introduction

In what follows K is a strictly positive definite and radial kernel defined on a set
� ⊂ R

s , and X is a finite set of n ∈ N distinct points in �. Since the kernel is
radial, there exist a unique function φ : [0,+∞) → R and a real number ε > 0 such
that K (x, y) = Kε(x, y) = φ(ε‖x − y‖) ∀x, y ∈ �, with ‖ · ‖ the usual Euclidean
norm. The number ε is called the shape parameter and plays an important role in the
approximation process.

We denote byNK (�) the native space of K on�, whileNK (X) is the subspace of
NK (�) spanned by {K (·, x), x ∈ X}. The unique interpolant inNK (X) of a function
f ∈ NK (�) on X will be denoted by sX ( f ).
It can be observed that the so-called direct method to compute the interpolant can be

really unstable in most cases, and this observation lead to a wide literature of methods
which discuss strategies to overcome the problem through the optimization of various
parameters involved in the approximation process (cf. e.g. [9,11]). Nevertheless, it
has been proved in [4] that the interpolation operator itself is stable in the function
spaceNK (�). This result suggests that the focus should be on the design of different
algorithms to compute in stable way the same interpolant.

In this view, one of the main research topic in the present study of RBF approxi-
mation is the construction of different bases of the same spaceNK (�), which avoids
the use of the ill-conditioned basis of translates of the kernel K on the data set X .

The construction of such bases and the corresponding algorithms used to approx-
imate functions, are known as stable algorithms. This kind of approach has been
introduced in [11] for the particular case of multiquadric kernels, and then extended to
a wider family of kernels on the sphere in [10] and to different domains (see [6,8,9])
for the Gaussian kernel. All these algorithms allow to compute an effective interpolant
also in the case of the flat limit ε → 0. This confirms that the problem is intrinsically
well posed and that the instability is a numerical issue. In fact, except for the previ-
ous cases, the direct method is still the most used approach for RBF approximation
for general � and kernels. In all these cases, our algorithm reduces significantly the
instability of the problem.

Another approach for the construction of a better basis has been introduced in [16]
(extending an idea already explored in [14] for the so-called Newton basis). Namely,
the authors provided a way to produce and characterize different kinds of orthonormal
bases, i.e. setsU = {u j }1� j�n ⊂ NK (X) such that span{u j , 1 � j � n} = NK (X)

and (ui , u j ) = δi j for 1 � i, j � n. This kind of construction can be applied in
the same way to any RBF kernel on any domain � and characterizes all the possible
orthonormal bases which span the same spaceNK (�).

In that paper has been remarked that the key tool to understand the behavior of these
different bases is the eigenbasis associated to a particular integral operator acting on
the space NK (�).

Using this idea, in [3] we built a particular orthonormal basis, that we called
weighted singular value decomposition basis (shortlyWSVD basis), which provides a
meaningful discrete approximation of the eigenbasis. In the setting of [16], theWSVD
basis allows to study the different eigenbases regardless to the particular kernel or
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Fast computation of orthonormal bases of RBF spaces 951

domain. Moreover, the WSVD basis allows to interpolate functions in NK (�) in a
more stable way.

Since the main issue of the WSVD basis was the computational cost, here we
present an efficient method to compute a (slightly) modified version of it, which turns
out to enjoy some further interesting properties. Themethod is based on Krylov spaces
techniques, which have already been proved to be an effective tool in connection with
RBF approximation (see e.g. [2,7]).

The paper is organized as follows. In Sect. 2 we recall the fundamental facts about
theWSVDbasis together with a couple of new properties that we did not notice before.
In Sect. 3 we present the new results and in the last Section we discuss some numerical
experiments which show the good behavior and effectiveness of the new basis.

2 WSVD bases

In [3], we have introduced the so-called WSVD basis. The basis has been constructed
by following the ideas already outlined in [16], and intended as a discrete approx-
imation of a particular basis of the native space NK (�). To be more precise, it is
well-known from the Mercer’s theorem (see e.g. [17, §10.4] for a discussion of this
construction) that the compact and self adjoint operator

TK : NK (�) → NK (�)

TK [ f ](·) =
∫

�

f (y)K (·, y)dy, (2.1)

has a countable set of eigenvectors {ϕ j } j>0 which form a basis ofNK (�), that is the
eigenbasis. The basis can be chosen to beNK (�)-orthonormal and L2(�)-orthogonal,
with ‖ϕ j‖2 = λ j , {λ j } j>0 being the set of eigenvalues of TK , and λ j → 0 as j → ∞.

Starting with this setting we considered a cubature formula with the set of nodes
being X itself, andwe approximated the eigenvectors of TK by the symmetric Nyström
method (see e.g. [1, §11.4]).

It turned out that this basis can be described in terms of the notation introduced in
[16]. We recall that each basis forNK (X) can be parametrized by a matrix of change
of basis, say CU = (ci j )1�i, j�n , such that u j = ∑n

i=1 ci j K (·, xi ), 1 � j � n, or
otherwise by the matrix of its values at X , say VU = (u j (xi ))1�i, j�n . In both cases
VU · CU

−1 = A, where A = (K (xi , x j ))1�i, j�n is the so-called kernel matrix.
In view of this, we defined the WSVD basis as follows.

Definition 2.1 A weighted SVD basis U is a basis for NK (X) characterized by the
matrix of change of basis

CU = √
W · Q · �−1

and the matrix VU = (u j (xi ))1�i, j�n at X given by

VU =
√
W−1 · Q · �,
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952 S. De Marchi, G. Santin

where

√
W · A · √

W︸ ︷︷ ︸
AW

= Q · �2 · QT

is a singular value decomposition (and a unitary diagonalization) of the scaled kernel
matrix AW . To be more precise, � is a diagonal matrix with � j j = σ j , j = 1, . . . , n
and σ 2

1 � · · · � σ 2
n > 0 are the singular values of AW , and W is a diagonal matrix

whereWj j = w j , j = 1, . . . , n are the positiveweights of the cubature rule (X, W )n .

Remark 2.1 While our main interest here is the solution of standard interpolation
problems, it is worthmentioning that the same approach can be usedwhen dealingwith
different approximation problems, namely in the case of generalized approximation.
In this latter setting the data are provided by the evaluation of some linear functionals
Li ∈ NK (�)∗, 1 � i � n and, under some assumptions on the linear independence of
the functionals, the problem can be solved as a standard interpolation problem using
the basis {Li K (·, x), 1 � i � n} instead of {K (·, xi ), 1 � i � n} (see e.g. [17,
Ch.16]).

2.1 Properties

The basis so defined has some interesting properties. First notice that, given a cubature
rule (X, W )n , we can define the 
2,w(X) inner product as

( f, g)
2,w(X) =
n∑

i=1

wi f (xi )g(xi ), f, g ∈ NK (�), (2.2)

which is a discrete version of (·, ·)L2(�). Hence, the operator

Tn : NK (�) → NK (X)

Tn[ f ](x) = ( f, K (·, x))
2,w(X)

(2.3)

which is the discrete version of TK , is defined just replacing the L2(�) product with
its discrete version 
2,w(X) in (2.1). In fact the operator is a compact (its range is
NK (X)) and self adjoint, as can be seen by direct computation. It has n eigenvectors,
which turns out to be exactly the basis {u j }nj=1. The functions u j are essentially a
discrete version of the {ϕ j } j>0, as summarized in the following theorem (whose proof
is in [3]).

Theorem 2.2 Every weighted SVD basis U satisfy the following properties:

(a) Tn[u j ] = σ j u j , 1 � j � n;
(b) U isNK (�)-orthonormal;
(c) U is 
2,w(X)-orthogonal;
(d) ‖u j‖2
2,w(X) = σ 2

j ∀u j ∈ U ;

(e)
∑n

j=1 σ 2
j = φ(0) |�|.
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Fast computation of orthonormal bases of RBF spaces 953

For a general set of weights we simply require that they are non negative and sum up
to the measure |�|. It is also possible to use a set of weights which does not provide
a cubature rule, but in this way we loose the connection with the eigenbasis.

Using the orthonormality property of the basis, the interpolant can then be written
as

sX ( f ) =
n∑
j=1

( f, u j )u j ∀ f ∈ NK (�) (2.4)

and the corresponding power function PK ,X (x), which is the operator norm of the
pointwise error functional Ex : NK (�) → R, Ex ( f ) = f (x) − sX ( f )(x), has the
simple representation

PK ,X (x) =
⎛
⎝φ(0) −

n∑
j=1

u j (x)
2

⎞
⎠

1/2

∀x ∈ �. (2.5)

This basis allows to go a step further and to consider another kind of approximation.
Indeed, as a consequence of the property (a), we have that ( f, u j )
2,w(X) = σ 2

j ( f, u j )

∀ f ∈ NK (�) and ∀ j = 1, . . . , n.
Thus for each f ∈ NK (�) we can define a discrete least-squares approximant

smX ( f ) as the minimizer of ‖ f −g‖
2,w(X) among all functions g ∈ span{u1, . . . , um},
and thanks to the latter property we have that smX ( f ) is obtained from the interpolant
sX ( f ) simply truncating the sum to the first m terms, i.e.

smX ( f )(x) =
m∑
j=1

σ−2
j ( f, u j )
2,w(X)u j (x) =

m∑
j=1

( f, u j )u j (x). (2.6)

This kind of approximation corresponds to the use of a low rank approximation of the
kernel matrix A, and provides a way to overcome the instability of the problem, while
solving just a little sub problem of the original one. This approach make sense since in
the singular values {σ 2

j }1� j�n of A accumulate to zero very fast, being in particular
a discrete approximation of the eigenvalues of the compact operator (2.1). Of course
the rate of decay of the singular values, and hence the effectiveness of the method,
strictly depends on the particular problem. Namely, it is well-known that the decay is
faster if the kernel is smoother and if the shape parameter is smaller, so in these cases
we can expect a better stabilization of the approximation process. An in-deep study
of the influence of the shape parameter ε on the decay of the singular values of the
matrix A can be found in [12, Sect. 5].

Hence, the truncated basis provides a good approximation and allows to deal with
a smaller problem.

Remark 2.2 One may argue that the same result can be obtained by choosing a proper
subset of samples, Xm ⊂ Xn , m < n. The question is “how to select such a subset?”
This is in general an hard task. A known approach is by means of greedy algorithms
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that recursively select a good interpolation set of samples, such as the ones described
in [5,16]. These algorithms are based on similar ideas, that is the extraction of a good
sub-basis starting from the complete data set. We have already compared them with
our method in [3].

Remark 2.3 When dealing with generalized interpolation problems (see Remark 2.1)
this truncation still works, but we need to take into account the action of the truncation
in the caseswhen the problem involves functionals of different kind. A typical example
is the solution of a PDE with boundary conditions, where we have to consider two
different sets of functionals: {Li }n1i=1 ∈ NK (�)∗ in the interior and {Bi }n2i=1 ∈ NK (�)∗
on the boundary. In this case our method extracts a reduced basis of the subspace
span{Li K (·, x), 1 � i � n1} ∪ span{Bi K (·, x), 1 � i � n2} ⊂ NK (�), not two
bases of the subspaces spanned by the different sets of functionals.

The fast computation of the most significant part of the basis, the set {u1, . . . , um} for
certain m < n, is the main topic of the next sections.

2.2 Stability and convergence

Before moving to the computational aspects, we stress here some results about the
stability and the convergence of this approximation.

Concerning the convergence we can define the analogous of the power function,
sayPm

K ,X (x), so that

| f (x) − smX ( f )(x)| � Pm
K ,X (x)‖ f ‖, ∀x ∈ �, (2.7)

where, thanks to (2.6), we have the explicit formula

Pm
K ,X (x)2 = φ(0) −

m∑
j=1

u j (x)
2, ∀x ∈ �. (2.8)

We may expect that, for a proper choice of m < n, the terms ‖u2j (x)‖L∞(�) are small
for j > m. We did not prove this fact yet, while it has clear numerical evidence as we
observed by many numerical tests.

To measure the stability we use two different estimates, which correspond to two
different norms used to measure the norm of f ∈ NK (�). If it is viewed as a function
of the native space, we can consider the bound (see [3,16])

|smX ( f )(x)| �

⎛
⎝ m∑

j=1

u j (x)
2

⎞
⎠

1
2

‖ f ‖ �
√

φ(0) ‖ f ‖ ∀x ∈ �. (2.9)

On the other hand, we can look at the sequence f|X and provide bounds in terms of
‖ f ‖
∞(X). To do this, we define a pseudo Lagrange basis as follows.
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Definition 2.3 Let {li }ni=1 be the unique Lagrange (or cardinal) basis ofNK (X). The
pseudo Lagrange basis {l̃i }ni=1 of order m is given by l̃i = smX (li ), 1 � i � n.

For m = n we obviously have l̃i = li , 1 � i � n.
Now we can give another bound on the stability of smX ( f ), based on the “pseudo-

Lebesgue constant”, which is equivalent to the usual one when using li instead of l̃i .

Theorem 2.4 Let {l̃i }ni=1 be the pseudo Lagrange basis associated to {u j }mj=1. Thus,
for 1 � i � n,

l̃i = wi

m∑
j=1

σ−2
j u j (xi )u j . (2.10)

Furthermore, ∀ f ∈ � the following bound holds:

‖smX ( f )‖L∞(�),� �̃X ‖ f ‖
∞(X), �̃X = max
x∈�

n∑
i=1

|l̃i (x)| (2.11)

where �̃X is the pseudo-Lebesgue constant.

Proof From Definition 2.3 we have, for 1 � i � n,

l̃i = smX (li ) =
m∑
j=1

σ−2
j (li , u j )
2,w(X)u j = wi

m∑
j=1

σ−2
j u j (xi )u j ,

which proves the first statement.
To prove the second one it suffices to rewrite the inner product in smX ( f ) and get

the approximant in cardinal form

smX ( f ) =
m∑
j=1

( f, u j )
2,w(X)

σ 2
j

u j =
n∑

i=1

f (xi ) wi

m∑
i=1

σ−2
j u j (xi )u j =

n∑
i=1

f (xi ) l̃i

which gives the desired bound in terms of �̃X . ��

3 The new basis

As seen in the previous section, we can compute an orthonormal basisU ofNK (X).
Its main property is that it allows to extract a sub basis {u1, . . . , um}, with m < n,
which gives an approximant smX ( f ) as good as the interpolant, while being much more
stable.

The main problem is the efficiency of this computation. Since the basis is found by
a singular value decomposition, we have to compute all the elements u j , 1 � j � n,
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and then to leave out the last n − m terms, the ones for which σ 2
j < τ , with τ a

prescribed tolerance.
Here we present a way to slightly modify our basis in order to compute its most

significant part. Although the connection between the two bases will be discussed in
details, we stress here that the new basis has some characteristic features coming from
its dependence on the data.Moreover, sincewewant to use our basis withmore general
data sets X than those associated to a cubature rule, we will omit the dependence on
the weights {wi }1�i�n , which is equivalent to take all weights wi = 1/n, ∀ i .

The proposedmethodmakes use of some tools from the theory ofKrylov subspaces,
recalled in the next subsection for readers convenience.

3.1 The Lanczos method and the approximation of the SVD

Our goal is finding the solution of the linear system A x = b with A the kernel matrix
and b = ( f (xi ))1�i�n .

To this aim, let Km(A, b) = span{b, Ab, . . . , Am−1b} be the Krylov subspace of
order m generated by A and b. The Lanczos method computes an orthonormal basis
{p1, . . . , pm} ofKm(A, b) through a Gram-Schmidt orthonormalization. If we denote
by Pm ∈ R

n×m thematrix having the vectors pi as columns,we canwrite the algorithm
in matrix form as

APm = Pm+1 H̄m, H̄m =
[
Hm

h̄eTm

]
, (3.1)

where Hm is a m × m tridiagonal matrix (because of the symmetry of the kernel),
h̄ ∈ R and em ∈ R

m is the m-th unit vector.
Once these matrices have been computed, the solution x can be approximated as

x = Pm y, where y ∈ R
m is such that H̄m y = ‖b‖2e1.

If A has a good low-rank approximation, which is our case, we expect that a good
approximation of x can be computed using m components with m 
 n.

This decomposition can be used for other purposes. Indeed, in the recent paper
[15] the authors studied the relation between the singular values of A and those of
H̄m . In particular, H̄m = Um�̄mV T

m is a singular value decomposition of H̄m , where
Um ∈ R

(m+1)×(m+1) and Vm ∈ R
m×m are unitary matrices and

�̄m =
[

�2
m

0

]
,

�2
m being the diagonalmatrix having the singular values as its entries. The authors then

analyzed the relationship between the SVDdecomposition of A and the decomposition(
Pm+1Um, �̄m, PmVm

)
. Although the paper shows a close connection between the two

decompositions, together with other results, for our purposes we use the second which
is indeed a good approximation of the SVD and coincide when m = n.

Remark 3.1 Since the last row of �̄m is the zero vector, the decomposition does not
change if we remove this row and the last column of Um . To simplify our notation,
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from now onward we will denote by Um the matrix without the last column, so that
the decomposition becomes H̄m = Um�2

mV
T
m . Moreover, the j-th diagonal element

of �2
m will be denoted by σ 2

j instead of σ 2
j,m when no confusion arises.

In view of this result, our idea is using the SVD of H̄m for constructing the new
basis.

3.2 Construction of the basis

Using the above observations, we can construct a new set of functions {ũ j }1� j�m ∈
NK (X) similarly to the construction of the WSVD basis. The set will be orthogonal
with respect to the 
2,w(X)-inner product and near-orthonormal in NK (�), in a way
that we will specify later. Moreover, this set can be computed iteratively, i.e. we can
choose to compute just the first m elements, the ones we are interested in, except for
the case when the complete WSVD basis is needed.

We stress that the set {ũ j }1� j�m does not span NK (X) (unlike m = n, when
the SVD of H̄m equals to that of A). This says that the term “basis” is not the most
appropriate to identify these functions, even ifwewill use it (with an abuse of language)
with the aim to avoid a more complicated statement.

Using the notation in [16], the basis can be defined as follows.

Definition 3.1 Let A be the kernel matrix for the set X of n distinct points. Let H̄m ,
Pm , Vm , Um , �2

m be as introduced above. Hence, the basis Ūm = {ūi , . . . , ūm} is
characterized by the matrix of change of basis

CŪm
= PmVm�−1

m (3.2)

or by the collocation matrix

VŪm
= Pm+1Um�m . (3.3)

In this case the basis strongly depends on the particular function f̄ ∈ NK (�) used
to construct the Krylov subspace. This dependence influences the behavior of the
approximant, as it will be more clear from the following properties of the basis.

3.3 Properties

We start by proving this Lemma.

Lemma 3.2 Let Ũm be the square matrix obtained from Um removing the last row
uTm. Then Ũm and Vm coincide except for the last row, namely only the m-th row dTm
of the difference is a non zero row vector.
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Proof Using the SVD of H̄m , it is immediate to see that

⎡
⎢⎢⎣
H2
m h̄Hmem

h̄eTmHm h̄2

⎤
⎥⎥⎦ = H̄m H̄

T
m =

⎡
⎢⎢⎣
Ũm�4

mŨ
T
m Ũm�4

mu

uT�4
mŨm uT�4

mu

⎤
⎥⎥⎦ ,

hence H2
m = Ũm�4

mŨ
T
m . On the other hand

H2
m + h̄eme

T
m = H̄ T

m H̄m = Vm�4
mVm .

From these two equalities easily follows

(
Vm − Ũm

)
�4

m

(
Vm − Ũm

)T = h̄eme
T
m .

We can conclude that each row of the difference matrix, Dm := Vm − Ũm , is the zero
vector except for the last one, say dTm , which satisfies dTm�4

mdm = h̄. ��
The new constructed basis enjoys the following properties summarized in the next

Theorem.

Theorem 3.3 Let the basis Ūm be defined as in the Definition 3.1. Then

(i) the basis is 
2,w(X)- orthogonal with ‖ū j‖2
2,w(X) = σ 2
j ;

(ii) the basis is near-orthonormal on NK (�), meaning that (ūi , ū j ) = δi j + r (m)
i j

where (R(m))i j := r (m)
i j is a rank one matrix for 1 � m < n, and r (m)

i j = 0 when
m = n;

(iii) when m = n, Ūm = U .

Proof It suffices to compute the gramianmatrix of the basiswith respect to the 
2,w(X)

andNK (�) inner products, that is
Ūm
andGŪm

, respectively. Using formulas in [16]
and the Definition 3.1 we get


Ūm
= (VŪm

T ) VŪm
= �mU

T
m PT

m+1Pm+1Um�m = �2
m,

and

GŪm
= (CŪm

T )VŪm
= �−1

m V T
m PT

m Pm+1Um�m

= �−1
m V T

m [Im | 0 ]Um�m = �−1
m V T

m Ũm�m .

From the above Lemma 3.2, Ũm = Vm + emdTm , hence if vTm is the last row of Vm ,

V T
m Ũm = V T

m

(
Vm + emd

T
m

)
= Im + vmd

T
m .
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This allows to conclude that

GŪm
= �−1

m

(
Im + vmd

T
m

)
�m = Im + Rm

with Rm = �−1
m vmdTm�m .

The last statement easily follows from the fact that theSVDof A is exactly computed
by the Lanczos method when m = n and from Definition 3.1. ��

Note that ri j = (Rm)i j is in general non vanishing if m < n. For m = n it vanishes
for all 1 � i, j � m since h̄ = 0. It is also worth noticing that from all the numerical
experiments we have done, the magnitude of ri j is close to the machine precision
except if both i and j are close to m. That is to say that the first elements of the basis
are orthonormal from a numerical point of view (see next Sect. 4).

3.4 Approximation

It comes now easy to compute the approximant obtained by solving the linear system.
If we take the function f̄ ∈ NK (�) from which the basis is constructed, we get the
approximant as a projection with respect to the 
2,w(X) inner product

smX ( f̄ )(x) =
m∑
j=1

σ−2
j

(
f̄ , ū j

)

2,w(X)

ū j (x) ∀x ∈ �. (3.4)

This follows straightforwardly from the fact that �−2
m VŪm

T is a left inverse of VŪm
.

What is a bit surprising is that it can be expressed in terms of the NK (�) inner
product as in (2.6).

Theorem 3.4 If the basis Ūm is constructed from f̄ ∈ NK (�), for all j = 1, . . . ,m
we have

(
f̄ , ū j

)

2,w(X)

= σ 2
j

(
f̄ , ū j

)
. (3.5)

Hence the approximant smX ( f̄ ) is a projection of NK (�), or equivalently

smX ( f̄ )(x) =
m∑
j=1

(
f̄ , ū j

)
ū j (x) ∀x ∈ �. (3.6)

Proof Observe that the coefficient
(
f, ū j

)

2,w(X)

, for a generic f ∈ NK (�), is the

j-th column of f TX VŪm
( fX is the column vector of the evaluations of f at X ). Using

again the Lemma 3.2 and denoting by uTm the last row of Um , we get

VŪm
= PmŨm�m + pm+1u

T
m�m = PmVm�m + pmd

T
m�m + pm+1u

T
m�m

= CŪm
�2

m + pmd
T
m�m + pm+1u

T
m�m .
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If we take f = f̄ , since f̄ X is orthogonal to the vectors {p2, . . . , pm+1}, we have
f TX VŪm

= f TX CŪm
�2

m , i.e. the equality (3.5) holds. This implies in particular that the
formula (3.6) is equivalent to (3.4). ��
Remark 3.2 If we take another function f ∈ NK (�), the equality (3.5) holds with a
residual term on the right hand side. This is due to the fact that in the case f �= f̄ the
terms depending on pm, pm+1 are not deleted.

On the other hand, the Eq. (3.4) depends only on the relation between the left inverse
of VŪm

and its transpose, not on the connection with CŪm
. This means that we can

compute the approximant of a function f �= f̄ also using the basis constructed starting
from f̄ . Although possible, this seems not a good idea, since the construction of the
basis is fast and we can obviously expect a better convergence for a data-dependent
basis.

To conclude, if the WSVD basis is replaced with the new one, the estimates (2.8) and
2.11 hold also in this case. It is important to notice that we do not have yet theoret-
ical results about their behavior. In the next section we will show some numerical
computations of the power function and the Lebesgue function.

4 Numerical experiments

In this sectionwe showsomeexamples in order to test the features of our approximation
scheme.

Since we have already analyzed the connection between the standard basis of trans-
lates and theWSVDbasis in [3], herewe focus only on the new features of the enhanced
basis. We simply observe that in all experiments we have obtained better approxima-
tion results.

We show two examples. In the first we approximate a function from the native
space of a Gaussian kernel with the aim of understanding the behavior of the method
in a known setting. In the second example we approximate real data by an inverse
multiquadric kernel.

All experiments have been performed with Matlab 7.14.0.739 (R2012a)
on a Intel Celeron Dual-Core CPU T3100, 1.90GHz, with 3 Gb of RAM.

4.1 A native space example

We consider the Gaussian kernel

K1(x, y) = e−ε2 ‖x−y‖2 ∀x, y ∈ �1,

where �1 is the unit circle in R2, and the shape parameter is ε = 1.
The function f1 we want to approximate is defined for all x ∈ R

2 as

f1(x) = K1(x, p1) + 2 K1(x, p2) − 2 K1(x, p3) + 3 K1(x, p4),

p1 = (0,−1.2), p2 = (−0.4, 0.5), p3 = (−0.4, 1.1), p4 = (1.2, 1.3),
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Fig. 1 Decay of the residual described in (4.1) compared with the corresponding RMSE for the example
of Sect. 4.1

which is clearly a function in the native space NK1(�1). The set of samples Xn

is chosen as the set of equally spaced points of [−1, 1]2 restricted to �1, so that
card(Xn) = n with n ∈ N.

The first problem is to choose how to stop the Lanczos iteration. For sure this is a key
point of this approximation and only few sophisticated stopping criteria are known.
On the other hand, we would like to use a stopping rule which tells us something on
the approximation process from a functional point of view. A reasonably good choice
for stopping the Lanczos iteration is when, for a certain tolerance τ > 0, we have

∣∣∣∣∣∣
1

n

m∑
j=1

(Hm) j j − 1

∣∣∣∣∣∣ < τ , (4.1)

which is motivated by the Property (e) of Theorem 2.2. This is a rough criterion, but it
seems good enough to control the iterations in the case of functions lying in the native
space of the kernel. This behavior is shown in Figure 1 in the case of τ = 1 × 10−15.

In Fig. 2 we show the plots of the basis elements u1, u11, u21, u31. Notice, as
happens by increasing the index j for the WSVD basis, the number of oscillations of
the sign of the basis increases, while its maximum value decreases.

To analyze the computational time required to solve the approximation problem,
we compared it with that required by the WSVD basis. We chose a restricted set of
Xn equally spaced points in �1, namely for n = 1, . . . , 402 (this restriction is due to
the slowness of the computation of the WSVD basis). For each n we computed the
optimal m using the new algorithm with tolerance τ = 1 × 10−14. Then we used this
value to select the corresponding number of WSVD basis elements. In Table 1 we
display this comparison, only for some values of n, in order to show the performance
of the method. It is worth to mention that the computational times of Table 1 are those
required by the truncated SVD, which are, in this case, computed from a full SVD.
The computational cost of the full and the truncated SVD are essentially the same.
We can also see that for all choices of n the method takes less than 7 s to construct
the approximant, which is a reasonable time for the architecture we used and the
number of points considered. Moreover, despite the approximation introduced by the
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Fig. 2 Basis functions computed in the first example of Sect. 4.1. From top left to bottom right u1, u11,
u21, u31

Table 1 Comparison of the WSVD basis and the new basis. Computational time in seconds and corre-
sponding RMSE for the example in Sect. 4.1, restricted to n = 152, 232, 312, 392 equally spaced points

n 225 529 961 1521
m 110 114 115 116

RMSE new 3.4 × 10−10 6.7 × 10−11 5.5 × 10−11 3.4 × 10−11

RMSE WSVD 3.3 × 10−9 1.1 × 10−9 8.3 × 10−10 7.9 × 10−10

Time new 3.4 × 10−1 1.0 × 100 2.6 × 100 6.5 × 100

Time WSVD 7.2 × 10−1 4.2 × 100 2.5 × 101 1.1 × 102

new truncated basis, the computed errors are comparable or even better to the one of
the original basis. This behavior is due to the function-dependent construction of the
basis.

Using these observations we can construct the approximation on the full data set.
In this case, choosing τ = 1 × 10−14 we obtain m = 115 basis elements out of
3,600 = 602 points with RMSE = 1.03 × 10−10. The overall computation takes 45
seconds, with the first 40 s used to construct the basis, and the remaining 5 s required
to compute the approximant.

The approximated power function and the approximated generalized Lebesgue
function (introduced in Sect. 2) are depicted in Fig. 3. It is clear that both the quantities
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Fig. 3 Approximated power function (left, logarithmic plot) and approximated Lebesgue function (right)
associated to the example of Sect. 4.1

Table 2 Number m of selected bases and the corresponding RMSE by decreasing ε

ε 2 2−2 2−4 2−6 2−7

RMSE 1.0 × 10−8 2.1 × 10−6 1.7 × 10−3 6.5 × 10−2 3.75 × 10−1

m 249 64 26 16 12

These experiments refer to the Example of Sect. 4.1 for n = 252 equally spaced points

are quite uniform in the domain �1. The maximum value of the approximated power
function on the grid is of order 10−13, while the value of �̃X is 10.20.

To conclude this experiment, we show in Table 2 the effect of the shape parameter
ε. In particular, we use the example of this section, with n = 252 equally spaced
points, to show how the number m of selected bases, and thus the RMSE, changes as
ε → 0. It is clear that the number of selected bases decreases with ε, affecting also
the corresponding RMS error.

4.2 A general example

In this case we take the inverse multiquadric kernel (IMQ)

K2(x, y) =
(√

1 + ε2‖x − y‖2
)−1

∀x, y ∈ �2,

where ε = 2 and �2 is a lune, namely, the set defined by the difference of two disks
of radius 0.5 with centers in (0, 0) and (0.5, 0.5).

We tried to approximate the well-known Franke’s test function (see [13]), say f2,
plotted in Fig. 4, top left. To make the test as general as possible, we used a set of
randomly distributed data sites Xn with n = 602.

The results of the test are depicted in Fig. 4. The method used m = 176 basis
elements selected among 602 points giving a RMSE = 1.38×10−6 and the pointwise
error as in Fig. 4 (bottom right). The whole computation required one minute of CPU.

123



964 S. De Marchi, G. Santin

0

0.5

1

0
0.5

1

0

0.5 0

0.5

10 0.2 0.4 0.6 0.8 1

0
0.2
0.4
0.6

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−9

−8

−7

−6

−5

Fig. 4 Franke’s Function (top left); approximation obtained with a IMQ kernel with ε = 2 (top right) using
602 randomly distributed data pints (bottom left); pointwise error computed on a grid of 60 × 60 equally
spaced points (bottom right)

It is important to remark that in this case the tolerance of the stopping rule have
been set to τ = 1 × 10−10, since a smaller value led to an increase of the RMS error.
The failure of the stopping rule in this case is due to the fact that the function f2 does
not belong to the native space of the kernel.

5 Conclusions

The method here presented for computing a new approximation of the WSVD basis
seems to be very effective both from the point of viewof the computational time and the
approximation properties. Actually, the reasons for the study of this new method were
mainly motivated by computational issues: the computation of the original WSVD
basis was too slow and costly.

The new computation of the basis is based on the Lanczos algorithm, which is used
in order to provide an approximation of the truncated SVD of the kernel matrix A.
This introduces an error in the construction, but, thanks to the fact that the new basis
is built using information coming from the sampling of the unknown function, we are
now able to obtain a better approximation.

Both this new approach and the one proposed in [3] for the WSVD basis, aim to
reduce the instability of the direct method for the computation of RBF approximants.
Several stable algorithms are known in literature for solving this task in particular
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instances, as recalled in Sect. 1. In these particular cases we are not able to reach the
same stable convergence of the aforementioned algorithms, since both our methods
rely on a low-rank approximation of A by omitting the elements of the spectrum
corresponding to small eigenvalues, not on an “a priori” knowledge of a stable basis.
This is particularly evident in the “flat limit” case, as discussed in Sect. 4.

Nevertheless, in all other cases where an explicit basis is not known, our methods
provide an effective way to face the approximation problems, and the omission of
some redundant information results in an improved and more stable process.

Some features of the basis require further investigations. In particular, the stopping
rule we used in the numerical experiments, seems to be too rough and needs to be
improved.

For interested readers, at the web page of the second author, http://www.math.
unipd.it/~gsantin/soft.html, it is available a set of Matlab programs which contains
the functions implementing the new basis as well as the codes used to produce the
examples here presented.
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