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Abstract A high-order compact finite difference method is proposed for solving a
class of time fractional convection-subdiffusion equations. The convection coefficient
in the equation may be spatially variable, and the time fractional derivative is in the
Caputo’s sense with the order α (0 < α < 1). After a transformation of the original
equation, the spatial derivative is discretized by a fourth-order compact finite difference
method and the time fractional derivative is approximated by a (2− α)-order implicit
scheme. The local truncation error and the solvability of the method are discussed
in detail. A rigorous theoretical analysis of the stability and convergence is carried
out using the discrete energy method, and the optimal error estimates in the discrete
H1, L2 and L∞ norms are obtained. Applications using several model problems give
numerical results that demonstrate the effectiveness and the accuracy of this new
method.

Keywords Fractional convection-subdiffusion equation · Variable coefficients ·
Compact finite difference method · Stability and convergence · Error estimate

Communicated by Jan Hesthaven.

This work was supported in part by E-Institutes of Shanghai Municipal Education Commission No.
E03004 and Shanghai Leading Academic Discipline Project No. B407.

Y.-M. Wang (B)
Department of Mathematics, Shanghai Key Laboratory of Pure Mathematics and Mathematical
Practice, East China Normal University, Shanghai 200241, People’s Republic of China
e-mail: ymwang@math.ecnu.edu.cn

Y.-M. Wang
Scientific Computing Key Laboratory of Shanghai Universities, Division of Computational Science,
E-Institute of Shanghai Universities, Shanghai Normal University, Shanghai 200234,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-014-0532-y&domain=pdf


1188 Y.-M. Wang

Mathematics Subject Classification 65M06 · 65M12 · 65M15 · 35R11

1 Introduction

Fractional differential equations have proved to be valuable tools in the modeling
of many different processes and systems. Some applications of these equations in
various fields of science and engineering can be found in [1,3,16,18,19,21,31–33,35,
39,43,46,49]. Fractional convection-subdiffusion equations describe a special type of
anomalous diffusion process, and have been considered by a number of researches
(see [13,14,20,34,36]).

Although analytic solutions of fractional differential equations can be found in
some special cases (see [39]), in general it is difficult to obtain them for most of the
equations. In general cases, numerical methods have become important in obtaining
the approximate solutions of fractional differential equations. The finite difference
method is one of the most popular numerical methods used for solving time and/or
space fractional differential equations (see [5–7,11,15,22,26,50,51,54,56,57]). There
are also a few other interesting studies by the finite element method [4,23,55], the
spectral method [2,24,25], the implicit meshless method [17] and the radial basis
function approximation method [29].

In recent years, a great deal of work has been devoted to numerical methods for
fractional convection-subdiffusion equations. We mention only a few works here.
Liu et al. [27] and Shen et al. [44] proposed some implicit and explicit difference
methods for space-time fractional convection-subdiffusion equations. The authors of
[8] and [58] developed some numerical methods for a variable-order convection-
subdiffusion equation with a nonlinear source term. A radial basis function approxi-
mation method was implemented in [47] for a time fractional convection-subdiffusion
equation on a bounded domain. A finite element method for a space fractional
convection-subdiffusion equation with non-homogeneous initial-boundary conditions
was given in [58]. Saadatmandi et al. [41] constructed a Sinc–Legendre collocation
method for a class of fractional convection-subdiffusion equations. A numerical tech-
nique for a two-dimensional fractional convection-subdiffusion equation on a finite
domainwas proposed in [9].More recently, Liu’s group discussed the radial basis func-
tion approximationmethods for a fractionalmobile/immobile convection-subdiffusion
equation [30] and analyzed the finite difference methods for a time variable fractional
order mobile/immobile convection-subdiffusion equation [52] and a class of frac-
tional convection-diffusion equations that include four different fractional convection-
subdiffusion equations [28].

In all above works, the proposed methods are convergent only with second-
order spatial accuracy. To improve the spatial accuracy, Cui [12] and Mohebbi
et al. [37] proposed, respectively, a compact exponential method and a compact finite
difference method for a time fractional convection-subdiffusion equation so that the
spatial accuracy is improved to the fourth-order. However, their methods and analyses
are only for the equations with constant coefficients. In particular, the discussions in
[37] are limited to a special time fractional convection-subdiffusion equation where
the diffusion and convection coefficients are assumed to be one. In the real world,
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Compact difference method for fractional convection-subdiffusion equations 1189

the coefficients in the equations are usually spatially and/or temporally variable. This
motivated us to look for high-order numerical methods that can be efficiently used
to solve time fractional convection-subdiffusion equations with variable coefficients.
This paper is to report our finding in this effort. Specifically, we will propose and
analyze a high-order compact finite difference method for a class of time fractional
convection-subdiffusion equations with variable convection coefficients. The class of
equations under consideration is given by

β2
∂αv

∂tα
(x, t) + β1

∂v

∂t
(x, t) = d

∂2v

∂x2
(x, t) − p(x)

∂v

∂x
(x, t)

+ f (x, t), (x, t) ∈ (0, L) × (0, T ) (1.1)

with the boundary conditions

v(0, t) = φ0(t), v(L , t) = φL(t), t ∈ (0, T ], (1.2)

and the initial condition

v(x, 0) = ϕ(x), x ∈ [0, L], (1.3)

where β1, β2 and d are known parameters with β1 ≥ 0, β2 > 0 and d > 0, and the
fractional derivative ∂αv

∂tα is given in the Caputo’s sense:

∂αv

∂tα
(x, t) = 1

�(1 − α)

∫ t

0

∂v

∂s
(x, s)(t − s)−αds, 0 < α < 1. (1.4)

In terms of convection-diffusion problems, the first two terms on the right-hand side
of (1.1) describe “diffusion” and “convection”, respectively. In particular, d is called
the diffusivity or diffusion coefficient and p(x) is referred to as the average convec-
tive velocity or convection coefficient. If β1 = 0, Eq. (1.1) is just the commonly
discussed time fractional convection-subdiffusion equations (see [12,28,37,53] and
the references therein). If β1 �= 0, Eq. (1.1) governs a fractal mobile/immobile trans-
port process and is called the time fractional mobile/immobile subdiffusion equation
(p(x) ≡ 0) (see [30]) or the fractional mobile/immobile convection-subdiffusion
equation (p(x) �≡ 0) (see [28,52,53] and the references therein).

When the coefficient p(x) is independent of the variable x , i.e., p(x) ≡ p is a
constant, some numerical treatments to Eq. (1.1) with the boundary and initial condi-
tions (1.2) and (1.3) were given in [28]. The main purpose there is to present a stable
implicit numericalmethod by the basic finite difference discretization. The accuracy of
themethod proposed in that paper is only of orderO(β2τ

2−α+β1τ +h), where τ is the
time step and h is the spatial step. In [10], a finite difference method was developed to
solve a fractional Fokker–Planck equationwhich is formally a convection-subdiffusion
equation with a spatially variable convection coefficient. That method can be directly
applied to the Eq. (1.1) when β1 = 0, but its accuracy is only of orderO(τ 2−α + h2).
As mentioned before, the compact finite difference methods given by Cui [12] and
Mohebbi et al. [37] improve the spatial accuracy to the fourth-order. However, their
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methods and analyses are only for time fractional convection-subdiffusion equations
with constant coefficients and cannot be generalized to the present equation (1.1). In
this paper, we propose a high-order compact finite difference method for the problem
(1.1)–(1.3), where the coefficient p(x) may be spatially variable. In our method, we
use a fourth-order compact finite difference approximation for the spatial discretiza-
tion and apply the L1 approximation [10,38,45] coupled with the Crank–Nicolson
technique for the temporal discretization. The resulting difference scheme from this
new method has the local truncation error O(τ 2−α + h4). Moreover, it is stable and
convergent with the same order as the truncation error, and thus improves the known
methods.

Unlike the constant coefficient case, a direct compact difference discretization of
Eq. (1.1) in the same manner as in [12,37] is much more complicated. One inconve-
nience is that it is often not clear how to analyze theoretically the resulting schemes due
to the dependence on the spatial variable x of p(x). In order to overcome this difficulty,
we here use an indirect approach by transforming (1.1) into a special and equivalent
form. This approach makes it possible to apply the idea and technique for time frac-
tional subdiffusion equations to the present time fractional convection-subdiffusion
equation. The main advantage behind this approach is that it yields a very simple and
effective high-order scheme for the variable convection coefficient problems, espe-
cially when the equation is not convection dominated. More importantly, it is very
convenient for us to use the discrete energy method to carry out the stability and con-
vergence analyses of the derived scheme for the present variable coefficient problem.

The outline of the paper is as follows. In Sect. 2, we transformEq. (1.1) into a special
and equivalent form, and then discretize the equivalent form into a finite difference
system. The local truncation error and the solvability of the resulting finite difference
scheme are discussed in Sect. 3. In Sects. 4 and 5, we use the discrete energymethod to
prove the stability and convergence of the proposed method, and provide the optimal
error estimates (i.e., the error estimate with the same order as the truncation error) of
the numerical solution in the discrete H1, L2 and L∞ norms. In Sect. 6, we give some
applications to several model problems, and use some numerical results to confirm the
theoretical analysis and to illustrate the effectiveness of this new method. The final
section contains some concluding remarks.

2 Compact finite difference method

Assume that the coefficient p(x) is integrable in x ∈ [0, L]. Let

v(x, t) = exp

(
1

2d

∫ x

0
p(s)ds

)
u(x, t).

We transform the problem (1.1)–(1.3) into
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β2
∂αu

∂tα
(x, t) + β1

∂u

∂t
(x, t) = d

∂2u

∂x2
(x, t) + q(x)u(x, t) + g(x, t), (x, t) ∈ (0, L) × (0, T ),

u(0, t) = φ∗
0 (t), u(L , t) = φ∗

L (t), t ∈ (0, T ],
u(x, 0) = ϕ∗(x), x ∈ [0, L],

(2.1)
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Compact difference method for fractional convection-subdiffusion equations 1191

where

q(x) = 1

2

(
dp

dx
(x) − p2(x)

2d

)
,

g(x, t) = exp

(
− 1

2d

∫ x

0
p(s)ds

)
f (x, t), φ∗

0 (t) = φ0(t),

φ∗
L(t) = exp

(
− 1

2d

∫ L

0
p(s)ds

)
φL(t),

ϕ∗(x) = exp

(
− 1

2d

∫ x

0
p(s)ds

)
ϕ(x).

(2.2)

It is clear that v(x, t) is a solution of (1.1)–(1.3) if and only if u(x, t) =
exp

(− 1
2d

∫ x
0 p(s)ds

)
v(x, t) is a solution of (2.1).

Our compact finite difference method for the problem (1.1)–(1.3) is based on the
above equivalent form (2.1). For a positive integer N , we let τ = T/N be the time
step. Denote tn = nτ (0 ≤ n ≤ N ) and tn− 1

2
= (n − 1

2 )τ (1 ≤ n ≤ N ). Given a grid

function w = {wn | 0 ≤ n ≤ N }, we define

wn− 1
2 = 1

2

(
wn + wn−1

)
, δtw

n− 1
2 = 1

τ

(
wn − wn−1

)
.

Let h = L/M be the spatial step, where M is a positive integer. We partition [0, L]
into a mesh by the mesh points xi = ih (0 ≤ i ≤ M). Denote xi− 1

2
= (i − 1

2 )h

(1 ≤ i ≤ M). For any grid function w = {wi | 0 ≤ i ≤ M}, we define spatial finite
difference operators

δxwi− 1
2

= 1

h
(wi − wi−1) , δ2xwi = 1

h2
(wi+1 − 2wi + wi−1) ,

Hxwi =
(
I + h2

12
δ2x

)
wi ,

where I denotes the identical operator. Let u(x, t) be the solution of (2.1), and define
the grid functions

Un
i = u(xi , tn), Wn

i = ∂u

∂t
(xi , tn), Zn

i = ∂2u

∂x2
(xi , tn), qi = q(xi ),

gni = g(xi , tn), φ
∗,n
0 = φ∗

0 (tn), φ
∗,n
L = φ∗

L(tn), ϕ∗
i = ϕ∗(xi ).

We now discretize (2.1) into a finite difference system. Let μ = τα�(2 − α) and let

ak = (1 − α)

∫ k+1

k
t−αdt = (k + 1)1−α − k1−α, k = 0, 1, . . . .
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Using the L1 approximation of ∂αu
∂tα (x, t) at (xi , tn) (see [10,38,45]), we have

∂αu

∂tα
(xi , tn) = 1

μ

(
Un
i −

n−1∑
k=1

(an−k−1 − an−k)U
k
i − an−1U

0
i

)
− (Rα

t )ni , (2.3)

where the truncation error (Rα
t )ni satisfies

∣∣(Rα
t )ni

∣∣ ≤ 1

�(2 − α)

(
1 − α

12
+ 22−α

2 − α
− 1 − 2−α

)
max
0≤t≤tn

∣∣∣∣∂
2u

∂t2
(xi , t)

∣∣∣∣ τ 2−α. (2.4)

Substituting (2.3) into the first equation of (2.1), we obtain

β2

μ

(
Un
i −

n−1∑
k=1

(an−k−1 − an−k)U
k
i − an−1U

0
i

)
+ β1W

n
i

= dZn
i + qiU

n
i + gni + β2(R

α
t )ni , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (2.5)

For the second-order spatial derivative Zn
i , we adopt the following fourth-order com-

pact approximation (see, e.g., [54]):

Hx Z
n
i = δ2xU

n
i + (Rx )

n
i , (2.6)

where

(Rx )
n
i = h4

360

∫ 1

0

(
∂6u

∂x6
(xi − sh, tn) + ∂6u

∂x6
(xi + sh, tn)

)
ζ(s)ds (2.7)

with ζ(s) = 5(1 − s)3 − 3(1 − s)5. Multiplying (2.5) by μ and then applying Hx to
both sides yields

β2Hx

(
Un
i −

n−1∑
k=1

(an−k−1 − an−k)U
k
i − an−1U

0
i

)
+ μβ1HxW

n
i

= μ
(
dδ2xU

n
i + Hx

(
qiU

n
i

) + Hx g
n
i + (R(1)

xt )ni

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

(2.8)

where

(R(1)
xt )ni = β2Hx (R

α
t )ni + d(Rx )

n
i . (2.9)
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Compact difference method for fractional convection-subdiffusion equations 1193

Case 1. β1 �= 0. In this case, it is necessary to discretize Wn
i . On the time level

n − 1, we have

β2Hx

(
Un−1
i −

n−2∑
k=1

(an−k−2 − an−k−1)U
k
i − an−2U

0
i

)
+ μβ1HxW

n−1
i

= μ
(
dδ2xU

n−1
i + Hx

(
qiU

n−1
i

)
+ Hx g

n−1
i + (R(1)

xt )n−1
i

)
,

1 ≤ i ≤ M − 1, 2 ≤ n ≤ N . (2.10)

Since

−
n−2∑
k=1

(an−k−2 − an−k−1)U
k
i − an−2U

0
i = −

n−1∑
k=1

(an−k−1 − an−k)U
k−1
i − an−1U

0
i ,

Eq. (2.10) can be reformulated as

β2Hx

(
Un−1
i −

n−1∑
k=1

(an−k−1 − an−k)U
k−1
i − an−1U

0
i

)
+ μβ1HxW

n−1
i

= μ
(
dδ2xU

n−1
i + Hx

(
qiU

n−1
i

)
+ Hx g

n−1
i + (R(1)

xt )n−1
i

)
,

1 ≤ i ≤ M − 1, 2 ≤ n ≤ N . (2.11)

Letting t = 0 in (2.1), it holds that β1W 0
i = dZ0

i + qiU 0
i + g0i which implies that

(2.11) holds true also for n = 1 with (R(1)
xt )0i = d(Rx )

0
i . Taking the arithmetic mean

of (2.8) and (2.11), we conclude that

β2Hx

(
U

n− 1
2

i −
n−1∑
k=1

(an−k−1 − an−k)U
k− 1

2
i − an−1U

0
i

)
+ μβ1HxW

n− 1
2

i

= μ

(
dδ2xU

n− 1
2

i + Hx

(
qiU

n− 1
2

i

)
+ Hx g

n− 1
2

i + (R(1)
xt )

n− 1
2

i

)
,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (2.12)

An application of the Crank–Nicolson technique (see, e.g., [54]) gives

W
n− 1

2
i = δtU

n− 1
2

i + (Rc
t )

n− 1
2

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (2.13)

where

(Rc
t )

n− 1
2

i = τ 2

16

∫ 1

0

(
∂3u

∂t3

(
xi , tn− 1

2
+ sτ

2

)
+ ∂3u

∂t3

(
xi , tn− 1

2
− sτ

2

))
(1 − s2)ds.

(2.14)
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This implies that

β2Hx

(
U

n− 1
2

i −
n−1∑
k=1

(an−k−1 − an−k)U
k− 1

2
i − an−1U

0
i

)
+ μβ1HxδtU

n− 1
2

i

= μ

(
dδ2xU

n− 1
2

i + Hx

(
qiU

n− 1
2

i

)
+ Hx g

n− 1
2

i + (R(2)
xt )

n− 1
2

i

)
,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (2.15)

where

(R(2)
xt )

n− 1
2

i = (R(1)
xt )

n− 1
2

i − β1Hx (R
c
t )

n− 1
2

i . (2.16)

Omitting the small term μ(R(2)
xt )

n− 1
2

i in (2.15), we obtain the following compact finite
difference scheme for β1 �= 0:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2Hx

(
u
n− 1

2
i −

n−1∑
k=1

(an−k−1 − an−k)u
k− 1

2
i − an−1u

0
i

)
+ μβ1Hx δt u

n− 1
2

i

=μ

(
dδ2xu

n−1
2

i +Hx

(
qi u

n− 1
2

i

)
+Hx g

n− 1
2

i

)
, 1≤ i≤M − 1, 1≤n ≤ N ,

un0 = φ
∗,n
0 , unM = φ

∗,n
L , 1 ≤ n ≤ N ,

u0i = ϕ∗
i , 0 ≤ i ≤ M,

(2.17)

where uni denotes the finite difference approximation to Un
i .

Case 2. β1 = 0. For this case, we omit the small term μ(R(1)
xt )ni in (2.8) to obtain

the following compact finite difference scheme:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2Hx

(
uni −

n−1∑
k=1

(an−k−1−an−k)u
k
i − an−1u

0
i

)
=μ

(
dδ2xu

n
i + Hx

(
qi u

n
i

) + Hx gni

)
,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N ,

un0 = φ
∗,n
0 , unM = φ

∗,n
L , 1 ≤ n ≤ N ,

u0i = ϕ∗
i , 0 ≤ i ≤ M.

(2.18)

3 Truncation error and solvability

Wenow estimate the truncation errors (R(1)
xt )ni and (R(2)

xt )
n− 1

2
i . Assume that the solution

u(x, t) of the problem (2.1) is in C(6,2)((0, L)×[0, T ]). It follows from (2.7) and (2.4)
that
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∣∣(Rx )
n
i

∣∣ ≤ h4

240
max

x∈[0,L]

∣∣∣∣∂
6u

∂x6
(x, tn)

∣∣∣∣ ,
∣∣(Rα

t )ni

∣∣ ≤ Cα

�(2 − α)
max
t∈[0,T ]

∣∣∣∣∂
2u

∂t2
(xi , t)

∣∣∣∣ τ 2−α,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (3.1)

where Cα = 1−α
12 + 22−α

2−α
− 1 − 2−α . If the solution u(x, t) is thrice continuously

differentiable in t , we have from (2.14) that

∣∣∣∣(Rc
t )

n− 1
2

i

∣∣∣∣ ≤ τ 2

12
max
t∈[0,T ]

∣∣∣∣∂
3u

∂t3
(xi , t)

∣∣∣∣ , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N . (3.2)

Since Hxwi = 1
12 (wi−1 + 10wi + wi+1), we apply the estimates (3.1) and (3.2) in

(2.16), and the estimate (3.1) in (2.9) to get following results immediately.

Theorem 3.1 Assume that the solution u(x, t) of problem (2.1) (β1 �= 0) is in

C(6,3)((0, L) × [0, T ]). Then the truncation error (R(2)
xt )

n− 1
2

i of the scheme (2.17)
satisfies

∣∣∣∣(R(2)
xt )

n− 1
2

i

∣∣∣∣ ≤ C∗
2

(
τ 2−α + h4

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (3.3)

where C∗
2 is a positive constant independent of the step sizes τ and h and the time

level n.

Theorem 3.2 Assume that the solution u(x, t) of problem (2.1) (β1 = 0) is in
C(6,2)((0, L)×[0, T ]). Then the truncation error (R(1)

xt )ni of the scheme (2.18) satisfies

∣∣∣(R(1)
xt )ni

∣∣∣ ≤ C∗
1

(
τ 2−α + h4

)
, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (3.4)

where C∗
1 is a positive constant independent of the step sizes τ and h and the time

level n.

For implementing the schemes (2.17) and (2.18), it is more convenient to consider
their matrix forms. To do this, we define the following column vectors:

un = (
un1, u

n
2, . . . , u

n
M−1

)T
, gn = (

gn1 , g
n
2 , . . . , g

n
M−1

)T
,

un−1,∗ =
(
un−1,∗
1 , un−1,∗

2 , . . . , un−1,∗
M−1

)T
,

where

un−1,∗
i =

⎧⎪⎨
⎪⎩

∑n−1
k=1(an−k−1 − an−k)u

k− 1
2

i + an−1u0i , for (2.17),

∑n−1
k=1(an−k−1 − an−k)uki + an−1u0i , for (2.18),

1 ≤ i ≤ M − 1.

(3.5)
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We also define the following (M − 1)-order tridiagonal or diagonal matrices:

A = tridiag(−1, 2,−1), B = tridiag

(
1

12
,
5

6
,
1

12

)
, Q = diag (q1, q2, . . . , qM−1) .

A simple process shows that the scheme (2.17) can be expressed in the matrix form
as

((τ

2
β2 + μβ1

)
B + d

2

μτ

h2
A − μτ

2
BQ

)
un

=
((

μβ1− τ

2
β2

)
B− d

2

μτ

h2
A+ μτ

2
BQ

)
un−1+τ B

(
β2un−1,∗+μgn− 1

2

)
+ rn,

(3.6)

where rn absorbs the boundary values of the solution vector and the source terms.

Theorem 3.3 The compact finite difference scheme (2.17) is uniquely solvable if and
only if the matrix

Q∗ ≡
(τ

2
β2 + μβ1

)
B + d

2

μτ

h2
A − μτ

2
BQ (3.7)

is nonsingular.

Define

q = max
x∈[0,L] q(x), q = min

x∈[0,L] q(x). (3.8)

A sufficient condition for the matrix Q∗ to be nonsingular is given by

μτ max

{
q

2
,
5q − q

8

}
≤ τ

2
β2 + μβ1. (3.9)

Corollary 3.1 The compact finite difference scheme (2.17) is uniquely solvable if the
condition (3.9) holds true.

Proof In fact, Q∗ = tridiag(p∗
i−1, q

∗
i , p∗

i+1) with p∗
0 = p∗

M = 0 and

p∗
i = 1

12

(τ

2
β2 + μβ1

)
− d

2

μτ

h2
− qi

24
μτ,

q∗
i = 5

6

(τ

2
β2 + μβ1

)
+ d

μτ

h2
− 5qi

12
μτ(1 ≤ i ≤ M − 1).

The condition (3.9) implies that q∗
i > 0 for each 1 ≤ i ≤ M − 1.
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Case 1. Assume that p∗
i �= 0 for all 1 ≤ i ≤ M − 1. In this case, the matrix Q∗ is

irreducible. By the condition (3.9), we have that for 2 ≤ i ≤ M − 2,

|p∗
i−1| + |p∗

i+1| ≤ 1

6

(τ

2
β2 + μβ1

)
+ d

μτ

h2
− qi−1 + qi+1

24
μτ

≤ 1

6

(τ

2
β2 + μβ1

)
+ d

μτ

h2
− μτ

12
q

≤ 5

6

(τ

2
β2 + μβ1

)
+ d

μτ

h2
− 5qi

12
μτ = |q∗

i |.

Similarly,

|p∗
2 | ≤ 1

12

(τ

2
β2 + μβ1

)
+ d

2

μτ

h2
− q2

24
μτ

≤ 1

12

(τ

2
β2 + μβ1

)
+ d

2

μτ

h2
− μτ

24
q ≤ q∗

1

2
< |q∗

1 |,

|p∗
M−2| ≤ 1

12

(τ

2
β2 + μβ1

)
+ d

2

μτ

h2
− qM−2

24
μτ ≤ q∗

M−1

2
< |q∗

M−1|.

This proves that Q∗ is irreducibly diagonally dominant and thus nonsingular (see
[48]).

Case 2. Assume that p∗
i0

= 0 for some 1 ≤ i0 ≤ M − 1. In this case, we complete
the proof by partitioning Q∗ and considering the submatrices of Q∗. 	

Corollary 3.2 The compact finite difference scheme (2.17) is uniquely solvable if the
function q(x) is nonpositive and convex in [0, L].
Proof We write Q∗ = tridiag(p∗

i−1, q
∗
i , p∗

i+1) as in Corollary 3.1. Since the function
q(x) is nonpositive and convex, we have that for 2 ≤ i ≤ M − 2,

|p∗
i−1| + |p∗

i+1| ≤ 1

6

(τ

2
β2 + μβ1

)
+ d

μτ

h2
− qi−1 + qi+1

24
μτ

<
5

6

(τ

2
β2 + μβ1

)
+ d

μτ

h2
− 5qi

12
μτ = |q∗

i |,

and

|p∗
2 | ≤ 1

12

(τ

2
β2 + μβ1

)
+ d

2

μτ

h2
− q2

24
μτ

<
5

6

(τ

2
β2 + μβ1

)
+ d

μτ

h2
− 5q1

12
μτ = |q∗

1 |,

|p∗
M−2| ≤ 1

12

(τ

2
β2 + μβ1

)
+ d

2

μτ

h2
− qM−2

24
μτ < |q∗

M−1|.

This shows that the matrix Q∗ is strictly diagonally dominant and thus nonsingular
(see [48]). 	
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The matrix form of the scheme (2.18) is written as

(
β2B + μd

h2
A − μBQ

)
un = B

(
β2un−1,∗ + μgn

)
+ rn, (3.10)

where rn absorbs the boundary values of the solution vector and the source terms.
Using the same argument as that for Theorem 3.1 and Corollaries 3.1 and 3.2, we have
the following results for the solvability of the scheme (2.18).

Theorem 3.4 The compact finite difference scheme (2.18) is uniquely solvable if and
only if the matrix β2B + μd

h2
A − μBQ is nonsingular.

Corollary 3.3 The compact finite difference scheme (2.18) is uniquely solvable if the
condition (3.9) holds true with β1 = 0 or the function q(x) is nonpositive and convex
in [0, L].
Remark 3.1 When q(x) ≡ q is independent of x and q ≤ 0, the conditions in Corol-
laries 3.1–3.3 are trivially satisfied. We notice that if the convection coefficients p(x)
in the original equation (1.1) is independent of x , i.e., p(x) ≡ p, we must have

q(x) ≡ − p2

4d ≤ 0. Therefore, for the fractional convection-subdiffusion equation
(1.1) with constant coefficients, the corresponding compact finite difference scheme
(2.17) or (2.18) is always uniquely solvable without any additional constraints.

4 Stability and convergence of the scheme (2.17)

We now carry out the stability and convergence analysis of the compact differ-
ence scheme (2.17) using the discrete energy method. Let Sh = {u | u =
(u0, u1, . . . , uM ), u0 = uM = 0} be the space of the grid functions defined in the
spatial mesh and vanishing on two boundary points. For any grid functions v,w ∈ Sh ,
we define the inner product (v,w), L2 norm ‖v‖ and L∞ norm ‖v‖∞ by

(v,w) = h
M−1∑
i=1

viwi , ‖v‖ = (v, v)
1
2 , ‖v‖∞ = max

0≤i≤M
|vi |.

We also define

(δxv, δxw] = h
M∑
i=1

δxvi− 1
2
δxwi− 1

2
, |v|1 = (δxv, δxv] 12 .

For any v ∈ Sh , its H1 norm is defined by ‖v‖1 = (‖v‖2 + |v|21)
1
2 . Some simple

calculations show that for any grid functions v,w ∈ Sh ,

(δ2xv,w) = −(δxv, δxw], h‖δ2xv‖ ≤ 2|v|1, h|v|1 ≤ 2‖v‖. (4.1)
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The inverse estimate h‖δ2xv‖ ≤ 2|v|1 in (4.1) shows that |v|21 − h2
12‖δ2xv‖2 ≥ 2

3 |v|21.
For convenience, we introduce the following notation:

‖v‖∗ =
(

|v|21 − h2

12
‖δ2xv‖2

) 1
2

.

Then we have

2

3
|v|21 ≤ ‖v‖2∗ ≤ |v|21. (4.2)

This means that ‖v‖∗ is an equivalent norm to |v|1.
Lemma 4.1 For any grid functions v,w ∈ Sh,

(Hxv,−δ2xv) = ‖v‖2∗,
∣∣∣(Hxv,−δ2xw)

∣∣∣ ≤ ‖v‖∗‖w‖∗. (4.3)

Proof The first relation follows from (v, δ2xv) = −|v|21 and the definition of Hx . To
prove the second one, we observe that (Hxv,−δ2xw) = (Hxw,−δ2xv). This implies
that for arbitrary real number λ,

‖v + λw‖2∗ =
(
Hx (v + λw),−δ2x (v + λw)

)
= ‖v‖2∗

+2λ(Hxv,−δ2xw) + λ2‖w‖2∗ ≥ 0.

This is equivalent to the second relation in (4.3). 	

Lemma 4.2 For any grid function v ∈ Sh,

‖v‖2 ≤ 3L2

16
‖v‖2∗, ‖v‖2∞ ≤ 3L

8
‖v‖2∗, ‖v‖21 ≤ 3(8 + L2)

16
‖v‖2∗.

Proof It is known that ‖v‖2 ≤ L2

8 |v|21 and ‖v‖2∞ ≤ L
4 |v|21 (see [42], pp. 111 and 112).

Thus, the desired inequalities follow from |v|21 ≤ 3
2‖v‖2∗ in (4.2) immediately. 	


Lemma 4.3 Let γ (x) be a continuous function in [0, L]. For any grid function v ∈ Sh,
we have ‖Hx (γ v)‖ ≤ ‖γ ‖∞‖v‖.
Proof We have from (4.1) that

‖Hx (γ v)‖2=‖γ v‖2− h2

6
|γ v|21+

h4

144
‖δ2x (γ v)‖2≤‖γ v‖2− 5h2

36
|γ v|21 ≤ ‖γ v‖2.

(4.4)

It is clear that ‖γ v‖2 ≤ ‖γ ‖2∞‖v‖2. This completes the proof. 	
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Lemma 4.4 (Discrete Gronwall lemma [40]) Assume that {kn} and {sn} are nonneg-
ative sequences, and that the sequence {φn} satisfies

φ0 ≤ g0, φn ≤ g0 +
n−1∑
l=0

sl +
n−1∑
l=0

klφl , n ≥ 1,

where g0 ≥ 0. Then the sequence {φn} satisfies

φn ≤
(
g0 +

n−1∑
l=0

sl

)
exp

(
n−1∑
l=0

kl

)
, n ≥ 1.

Based on the above lemmas, we now discuss the stability of the compact difference
scheme (2.17) with respect to the initial value ϕ∗ and the forcing term g.

Theorem 4.1 Let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact difference

scheme (2.17) with un0 = unM = 0. Then when τ‖q‖2∞ ≤ 16dβ1
3L2 , it holds that

∥∥un∥∥2∗ ≤
(
G0 + 2τ

dβ1

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2
)
exp

(
3T ‖q‖2∞L2

8dβ1

)
, 1 ≤ n ≤ N ,

(4.5)

where

G0 = 2

β1

(
β1 + β2T 1−α

�(2 − α)

) ∥∥ϕ∗∥∥2∗ + τ

dβ1
‖q‖2∞

∥∥ϕ∗∥∥2 . (4.6)

Proof Let bn,k = an−k−1 − an−k . It is clear that bn,k ≥ 0. Taking the inner product

of (2.17) with −δ2xu
n− 1

2 gives

β2

(
Hxu

n− 1
2 ,−δ2xu

n− 1
2

)
− μβ1

(
Hxδt u

n− 1
2 , δ2xu

n− 1
2

)

= β2

n−1∑
k=1

bn,k

(
Hxu

k− 1
2 ,−δ2xu

n− 1
2

)
+ β2an−1

(
Hxu

0,−δ2xu
n− 1

2

)

−μd
∥∥∥δ2xu

n− 1
2

∥∥∥2 − μ
(
Hx (qu

n− 1
2 ), δ2xu

n− 1
2

)
− μ

(
Hx g

n− 1
2 , δ2xu

n− 1
2

)
.

(4.7)

ByLemma 4.1, the relation (δ2xv,w) = −(δxv, δxw] in (4.1) and theCauchy–Schwarz
inequality,
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β2

(
Hxu

n− 1
2 ,−δ2xu

n− 1
2

)
= β2

∥∥∥un− 1
2

∥∥∥2∗ ,

β2

n−1∑
k=1

bn,k

(
Hxu

k− 1
2 ,−δ2xu

n− 1
2

)
≤ β2

2

n−1∑
k=1

bn,k

(∥∥∥uk− 1
2

∥∥∥2∗ +
∥∥∥un− 1

2

∥∥∥2∗
)

= β2

2

(
n−1∑
k=1

an−k−1

∥∥∥uk− 1
2

∥∥∥2∗ −
n−1∑
k=1

an−k

∥∥∥uk− 1
2

∥∥∥2∗ + (1 − an−1)

∥∥∥un− 1
2

∥∥∥2∗
)

,

−μβ1

(
Hxδt u

n− 1
2 , δ2xu

n− 1
2

)

= −μβ1

(
δt u

n− 1
2 , δ2xu

n− 1
2

)
− μβ1

(
h2

12
δ2xδt u

n− 1
2 , δ2xu

n− 1
2

)

= μβ1

(
δtδxu

n− 1
2 , δxu

n− 1
2

]
− μβ1h2

12

(
δtδ

2
xu

n− 1
2 , δ2xu

n− 1
2

)

= μβ1

2τ

(∣∣un∣∣21 −
∣∣∣un−1

∣∣∣2
1

)
− μβ1h2

24τ

(∥∥∥δ2xu
n
∥∥∥2 −

∥∥∥δ2xu
n−1

∥∥∥2
)

= μβ1

2τ

(∥∥un∥∥2∗ −
∥∥∥un−1

∥∥∥2∗
)

(4.8)

and

β2an−1

(
Hxu

0,−δ2xu
n− 1

2

)
≤ β2an−1

2

(
‖u0‖2∗ +

∥∥∥un− 1
2

∥∥∥2∗
)

,

−μ
(
Hx g

n− 1
2 , δ2xu

n− 1
2

)
≤ μ

2d

∥∥∥Hx g
n− 1

2

∥∥∥2 + μd

2

∥∥∥δ2xu
n− 1

2

∥∥∥2 . (4.9)

We have from Lemma 4.3 that

− μ
(
Hx (qu

n− 1
2 ), δ2xu

n− 1
2

)
≤ μ

2d

∥∥∥Hx (qu
n− 1

2 )

∥∥∥2 + μd

2

∥∥∥δ2xu
n− 1

2

∥∥∥2

≤ μ‖q‖2∞
2d

∥∥∥un− 1
2

∥∥∥2 + μd

2

∥∥∥δ2xu
n− 1

2

∥∥∥2 . (4.10)

Let

F0 = μβ1

∥∥∥u0
∥∥∥2∗ , Fn = β2τ

n∑
k=1

an−k

∥∥∥uk− 1
2

∥∥∥2∗ + μβ1
∥∥un∥∥2∗ (1 ≤ n ≤ N ).

Substituting the inequalities (4.8)–(4.10) into (4.7), we obtain

Fn ≤ Fn−1 + τμ

d

(
‖q‖2∞

∥∥∥un− 1
2

∥∥∥2 +
∥∥∥Hx g

n− 1
2

∥∥∥2
)

+ τβ2an−1‖u0‖2∗
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or equivalently,

Fn ≤ F0 + τμ

d

n∑
k=1

(
‖q‖2∞

∥∥∥uk− 1
2

∥∥∥2 +
∥∥∥Hx g

k− 1
2

∥∥∥2
)

+ τβ2n
1−α‖u0‖2∗.

Furthermore, by the relation ‖uk− 1
2 ‖2 ≤ 1

2 (‖uk‖2 + ‖uk−1‖2), we have

Fn ≤ F0 + τμ

2d
‖q‖2∞

(∥∥∥u0
∥∥∥2 + 2

n−1∑
k=1

∥∥∥uk
∥∥∥2 + ∥∥un∥∥2

)

+τμ

d

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 + μβ2T 1−α

�(2 − α)
‖u0‖2∗. (4.11)

In view of the definitions of Fn and F0, it follows that

2dβ1
∥∥un∥∥2∗ − τ‖q‖2∞

∥∥un∥∥2 ≤ 2d

(
β1 + β2T 1−α

�(2 − α)

) ∥∥∥u0
∥∥∥2∗ + τ‖q‖2∞

∥∥∥u0
∥∥∥2

+2τ‖q‖2∞
n−1∑
k=1

∥∥∥uk
∥∥∥2 + 2τ

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 . (4.12)

An application of Lemma 4.2 gives

(
2dβ1 − 3τ‖q‖2∞L2

16

) ∥∥un∥∥2∗ ≤ 2d

(
β1 + β2T 1−α

�(2 − α)

) ∥∥∥u0
∥∥∥2∗ + τ‖q‖2∞

∥∥∥u0
∥∥∥2

+3τ‖q‖2∞L2

8

n−1∑
k=1

∥∥∥uk
∥∥∥2∗ + 2τ

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 . (4.13)

When τ‖q‖2∞ ≤ 16dβ1
3L2 , we have

∥∥un∥∥2∗ ≤ G0 + 3τ‖q‖2∞L2

8dβ1

n−1∑
k=1

∥∥∥uk
∥∥∥2∗ + 2τ

dβ1

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 . (4.14)

The estimate (4.5) follows from Lemma 4.4 (Discrete Gronwall lemma) immediately.
	


Theorem 4.1 shows that the compact difference scheme (2.17) is almost uncondi-
tionally stable to the initial value ϕ∗ and the forcing term g, or more precisely, it is
stable under the mild condition τ‖q‖2∞ ≤ 16dβ1

3L2 for the general q(x). For the spe-

cial case when q(x) ≡ q is independent of x and q ≤ (2ε−1)β2
4εT α�(1−α)

for some positive

constant ε ≥ 1
2 , this mild condition is no longer required to obtain the unconditional

stability of the compact difference scheme (2.17). Specifically, we have the following
result.
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Theorem 4.2 Let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact difference

scheme (2.17) with un0 = unM = 0. Assume that q(x) ≡ q is independent of x and that

q ≤ (2ε−1)β2
4εT α�(1−α)

for some positive constant ε ≥ 1
2 . Then it holds that

∥∥un∥∥2∗ ≤
(
1 + 2εβ2T 1−α

β1�(2 − α)

) ∥∥ϕ∗∥∥2∗ + τ

2dβ1

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 . (4.15)

Proof The proof follows from the similar argument as that in the proof of Theorem 4.1.
When q(x) ≡ q is independent of x and q ≤ (2ε−1)β2

4εT α�(1−α)
for some positive constant

ε ≥ 1
2 , we have from Lemma 4.1 and μ ≤ T α�(1 − α)an−1 that

−μ
(
Hx (qu

n− 1
2 ), δ2xu

n− 1
2

)
=μq

∥∥∥un− 1
2

∥∥∥2∗ ≤
(
1

2
− 1

4ε

)
β2an−1

∥∥∥un−1
2

∥∥∥2∗ . (4.16)

By Lemma 4.1 and the Cauchy–Schwarz inequality

β2an−1

(
Hxu

0,−δ2xu
n− 1

2

)
≤ β2an−1

(
ε‖u0‖2∗ + 1

4ε

∥∥∥un− 1
2

∥∥∥2∗
)

,

−μ
(
Hx g

n− 1
2 , δ2xu

n− 1
2

)
≤ μ

4d

∥∥∥Hx g
n− 1

2

∥∥∥2 + μd
∥∥∥δ2xu

n− 1
2

∥∥∥2 . (4.17)

Using (4.7) (with q(x) ≡ q), (4.8), (4.16) and (4.17), we obtain

∥∥un∥∥2∗ ≤
(
1 + 2εβ2τ

μβ1

n∑
k=1

ak−1

)∥∥∥u0
∥∥∥2∗ + τ

2dβ1

n∑
k=1

∥∥∥Hx g
k− 1

2

∥∥∥2 . (4.18)

The estimate (4.15) follows from

τ

n∑
k=1

ak−1 = τn1−α ≤ μT 1−α

�(2 − α)
.

The proof is completed. 	


Remark 4.1 The condition q ≤ (2ε−1)β2
4εT α�(1−α)

for some positive constant ε ≥ 1
2 is

automatically satisfied if q ≤ 0. The latter is certainly satisfied if the convection
coefficient p(x) in the original equation (1.1) is independent of x , i.e., p(x) ≡ p. This
implies that for the fractional convection-subdiffusion equation (1.1) with constant
coefficients, the corresponding compact difference scheme (2.17) is unconditionally
stable.
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We now consider the convergence of the compact difference scheme (2.17). Let
eni = Un

i − uni . From (2.15) and (2.17), we get the following error equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2Hx

(
e
n− 1

2
i −

n−1∑
k=1

(an−k−1 − an−k)e
k− 1

2
i

)
+ μβ1Hxδt e

n− 1
2

i

= μ

(
dδ2x e

n− 1
2

i +Hx

(
qi e

n− 1
2

i

)
+(R(2)

xt )
n− 1

2
i

)
, 1≤ i ≤M − 1, 1 ≤ n≤ N ,

en0 = enM = 0, 1 ≤ n ≤ N ,

e0i = 0, 0 ≤ i ≤ M.

(4.19)

Let C∗
2 be the constant as that in (3.3), and define

C1 =
(
2T LC∗

2
2

dβ1
exp

(
3T ‖q‖2∞L2

8dβ1

)) 1
2

, C2 =
(
T LC∗

2
2

2dβ1

) 1
2

. (4.20)

Based on the error equation (4.19), we have the following convergence results.

Theorem 4.3 Let Un
i denote the value of the solution u(x, t) of (2.1) (β1 �= 0) at

the mesh point (xi , tn) and let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact

difference scheme (2.17). Assume that the condition in Theorem 3.1 is satisfied. Then
when τ‖q‖2∞ ≤ 16dβ1

3L2 , we have

∥∥Un − un
∥∥∗ ≤ C1

(
τ 2−α + h4

)
, 1 ≤ n ≤ N . (4.21)

Proof It follows from (4.19) and Theorem 4.1 that

∥∥en∥∥2∗ ≤ 2τ

dβ1
exp

(
3T ‖q‖2∞L2

8dβ1

) n∑
k=1

∥∥∥(R(2)
xt )k−

1
2

∥∥∥2 .

Applying Theorem 3.1, we get

∥∥en∥∥2∗ ≤ C2
1

(
τ 2−α + h4

)2
.

The estimate (4.21) is proved. 	


Theorem 4.4 Let Un
i denote the value of the solution u(x, t) of (2.1) (β1 �= 0) at

the mesh point (xi , tn) and let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact

difference scheme (2.17). Assume that q(x) ≡ q is independent of x and that q ≤
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(2ε−1)β2
4εT α�(1−α)

for some positive constant ε ≥ 1
2 . Also assume that the condition in

Theorem 3.1 is satisfied. Then we have

∥∥Un − un
∥∥∗ ≤ C2

(
τ 2−α + h4

)
, 1 ≤ n ≤ N . (4.22)

Proof The proof follows from (4.19) and Theorems 3.1 and 4.2. 	

Combining Lemma 4.2 with Theorems 4.3 and 4.4, we get immediately the follow-

ing two theorems concerning with the error estimates in the discrete L2, H1 and L∞
norms.

Theorem 4.5 Assume that the condition in Theorem 4.3 is satisfied. Then

∥∥Un − un
∥∥ ≤ C1L

√
3

4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N ,

∥∥Un − un
∥∥
1 ≤ C1

√
3(8 + L2)

4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N , (4.23)

∥∥Un − un
∥∥∞ ≤ C1

√
6L

4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N .

Theorem 4.6 Assume that the condition in Theorem 4.4 is satisfied. Then

∥∥Un − un
∥∥ ≤ C2L

√
3

4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N ,

∥∥Un − un
∥∥
1 ≤ C2

√
3(8 + L2)

4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N , (4.24)

∥∥Un − un
∥∥∞ ≤ C2

√
6L

4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N .

Remark 4.2 In Theorem 4.5, the optimal error estimates (i.e., the error estimate with
the same order as the truncation error) of the compact difference scheme (2.17) in the
discrete L2, H1 and L∞ norms are obtained under the mild condition τ‖q‖2∞ ≤ 16dβ1

3L2

for the general q(x). Theorem 4.6 shows that this mild condition is no longer required
to obtain the same optimal error estimate if q(x) ≡ q is independent of x and that
q ≤ (2ε−1)β2

4εT α�(1−α)
for some positive constant ε ≥ 1

2 . In particular, this is the case for
the fractional convection-subdiffusion equation (1.1) with constant coefficients.

5 Stability and convergence of the scheme (2.18)

Similar technique for the analysis of the compact difference scheme (2.17) can be used
to analyze the scheme (2.18).

Theorem 5.1 Let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact difference

scheme (2.18) with un0 = unM = 0. Assume that ‖q‖2∞ ≤ 4(4ε−1)(2ε−1)dβ2
3ε2L2T α�(1−α)

for some

positive constant ε ≥ 1
2 . Then it holds that
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∥∥un∥∥2∗ ≤ 2ε

(
‖ϕ∗‖2∗ + T α�(1 − α)

dβ2
max

1≤n≤N

∥∥Hx g
n
∥∥2

)
, 1 ≤ n ≤ N . (5.1)

Proof Let bn,k = an−k−1 − an−k as before. Taking the inner product of (2.18) with
−δ2xu

n gives

β2

(
Hxu

n,−δ2xu
n
)

= β2

n−1∑
k=1

bn,k

(
Hxu

k,−δ2xu
n
)

+ β2an−1

(
Hxu

0,−δ2xu
n
)

−μd
∥∥∥δ2xu

n
∥∥∥2 − μ

(
Hx (qu

n), δ2xu
n
)

− μ
(
Hx g

n, δ2xu
n
)

.

(5.2)

ByLemma 4.1, the relation (δ2xv,w) = −(δxv, δxw] in (4.1) and theCauchy–Schwarz
inequality,

β2

(
Hxu

n,−δ2xu
n
)

= β2
∥∥un∥∥2∗ ,

β2

n−1∑
k=1

bn,k

(
Hxu

k,−δ2xu
n
)

≤ β2

2

n−1∑
k=1

bn,k

(∥∥∥uk
∥∥∥2∗ + ∥∥un∥∥2∗

)

= β2

2

(
n−1∑
k=1

(an−k−1 − an−k)

∥∥∥uk
∥∥∥2∗ + (1 − an−1)

∥∥un∥∥2∗
)

(5.3)

and

β2an−1

(
Hxu

0,−δ2xu
n
)

≤ β2an−1

(
ε‖u0‖2∗ + 1

4ε

∥∥un∥∥2∗
)

,

−μ
(
Hx g

n, δ2xu
n
)

≤ εμ

d

∥∥Hx g
n
∥∥2 + μd

4ε

∥∥∥δ2xu
n
∥∥∥2 , (5.4)

where ε ≥ 1
2 is the constant such that ‖q‖2∞ ≤ 4(4ε−1)(2ε−1)dβ2

3ε2L2T α�(1−α)
. We have from

Lemmas 4.2 and 4.3 and the Cauchy–Schwarz inequality that

−μ
(
Hx (qu

n), δ2xu
n
)

≤ εμ

(4ε − 1)d

∥∥Hx (qu
n)

∥∥2 + (4ε − 1)μd

4ε

∥∥∥δ2xu
n
∥∥∥2

≤ 3εμL2‖q‖2∞
16(4ε − 1)d

∥∥un∥∥2∗ + (4ε − 1)μd

4ε

∥∥∥δ2xu
n
∥∥∥2 .

Since μ ≤ T α�(1 − α)an−1 and ‖q‖2∞ ≤ 4(4ε−1)(2ε−1)dβ2
3ε2L2T α�(1−α)

, the above inequality
implies that
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− μ
(
Hx (qu

n), δ2xu
n
)

≤
(
1

2
− 1

4ε

)
β2an−1

∥∥un∥∥2∗ +
(
1 − 1

4ε

)
μd

∥∥∥δ2xu
n
∥∥∥2 .

(5.5)

Substituting the inequalities (5.3), (5.4) and (5.5) into (5.2) and then multiplying the
resulting inequality by 2

β2
yield

∥∥un∥∥2∗ ≤
n−1∑
k=1

(an−k−1 − an−k)

∥∥∥uk
∥∥∥2∗ + 2εan−1‖u0‖2∗ + 2εμ

dβ2

∥∥Hx g
n
∥∥2 .

A simple induction using ak > ak+1 for each k ≥ 0 and
n−1∑
k=1

(an−k−1 − an−k) =
1 − an−1 shows that

∥∥un∥∥2∗ ≤ 2ε‖u0‖2∗ + 2εμ

dβ2an−1
max

1≤n≤N

∥∥Hx g
n
∥∥2 , 1 ≤ n ≤ N . (5.6)

The proof is completed since μ ≤ T α�(1 − α)an−1. 	

Theorem 5.2 Let un = (un0, u

n
1, . . . , u

n
M ) be the solution of the compact difference

scheme (2.18) with un0 = unM = 0. Assume that q(x) ≡ q is independent of x and that

q ≤ (2ε−1)β2
4εT α�(1−α)

for some positive constant ε ≥ 1
2 . Then it holds that

∥∥un∥∥2∗ ≤ 2ε‖ϕ∗‖2∗ + T α�(1 − α)

2dβ2
max

1≤n≤N

∥∥Hx g
n
∥∥2 , 1 ≤ n ≤ N . (5.7)

Proof When q(x) ≡ q is independent of x and q ≤ (2ε−1)β2
4εT α�(1−α)

for some positive

constant ε ≥ 1
2 , we have from Lemma 4.1 and μ ≤ T α�(1 − α)an−1 that

− μ
(
Hx (qu

n), δ2xu
n
)

= μq
∥∥un∥∥2∗ ≤

(
1

2
− 1

4ε

)
β2an−1

∥∥un∥∥2∗ . (5.8)

By Lemma 4.1 and the Cauchy–Schwarz inequality,

β2an−1

(
Hxu

0,−δ2xu
n
)

≤ β2an−1

(
ε‖u0‖2∗ + 1

4ε

∥∥un∥∥2∗
)

,

−μ
(
Hx g

n, δ2xu
n
)

≤ μ

4d

∥∥Hx g
n
∥∥2 + μd

∥∥∥δ2xu
n
∥∥∥2 . (5.9)

We thus have from (5.2), (5.3), (5.8) and (5.9) that

∥∥un∥∥2∗ ≤
n−1∑
k=1

(an−k−1 − an−k)

∥∥∥uk
∥∥∥2∗ + 2εan−1‖u0‖2∗ + μ

2dβ2

∥∥Hx g
n
∥∥2 , 1≤n≤N .

The remaining proof is the same as that of Theorem 5.1. 	
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Remark 5.1 The condition q ≤ (2ε−1)β2
4εT α�(1−α)

for some positive constant ε ≥ 1
2 is

certainly satisfied if the convection coefficient p(x) in the original equation (1.1)
is independent of x . Therefore, the compact difference scheme (2.18) is uncondi-
tionally stable for the fractional convection-subdiffusion equation (1.1) with constant
coefficients.

Let C∗
1 be the constant as that in (3.4), and define

C3 =
(
T αL�(1 − α)C∗

1
2

dβ2

) 1
2

.

Applying Theorem 3.2, Theorem 5.1 and Lemma 4.2, we obtain the following con-
vergence results of the compact difference scheme (2.18).

Theorem 5.3 Let Un
i denote the value of the solution u(x, t) of (2.1) (β1 = 0) at

the mesh point (xi , tn) and let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact

difference scheme (2.18). Assume that the condition in Theorem 3.2 is satisfied and
‖q‖2∞ ≤ 4(4ε−1)(2ε−1)dβ2

3ε2L2T α�(1−α)
for some positive constant ε ≥ 1

2 . Then we have

∥∥Un − un
∥∥
2 ≤ C3L

√
6ε

4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N ,

∥∥Un − un
∥∥
1 ≤ C3

√
6(8 + L2)ε

4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N , (5.10)

∥∥Un − un
∥∥∞ ≤ C3

√
3Lε

2

(
τ 2−α + h4

)
, 1 ≤ n ≤ N .

Theorem 5.4 Let Un
i denote the value of the solution u(x, t) of (2.1) (β1 = 0) at

the mesh point (xi , tn) and let un = (un0, u
n
1, . . . , u

n
M ) be the solution of the compact

difference scheme (2.18). Assume that the condition in Theorem 3.2 is satisfied. Also
assume that q(x) ≡ q is independent of x and q ≤ (2ε−1)β2

4εT α�(1−α)
for some positive

constant ε ≥ 1
2 . Then we have

∥∥Un − un
∥∥ ≤ C3L

√
6

8

(
τ 2−α + h4

)
, 1 ≤ n ≤ N ,

∥∥Un − un
∥∥
1 ≤ C3

√
6(8 + L2)

8

(
τ 2−α + h4

)
, 1 ≤ n ≤ N , (5.11)

∥∥Un − un
∥∥∞ ≤ C3

√
3L

4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N .

Remark 5.2 The constraint condition ‖q‖2∞ ≤ 4(4ε−1)(2ε−1)dβ2
3ε2L2T α�(1−α)

for some positive

constant ε ≥ 1
2 in Theorems 5.1 and 5.3 is only for the analyses of the stability

and convergence of the scheme (2.18) with the general q(x). This condition is easily
verifiable for practical problems. One of the numerical experiments in the next section
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shows that it is only a sufficient condition. Improvement of this condition can be
interesting both theoretically and computationally. It will be a subject of our future
investigations. The same remark holds for Theorems 5.2, 5.4, 4.2 and 4.4.

6 Applications and numerical results

In this section, we give some applications of the proposed compact finite difference
method for several model problems. The exact analytical solution v(x, t) of each
problem is explicitly known and is mainly used to compare with the computed solution
vni = exp

( 1
2d

∫ xi
0 p(s)ds

)
uni to check the accuracy of the compact finite difference

method, where uni is the solution of the compact difference scheme (2.17) or (2.18).
In order to demonstrate the high efficiency of the compact difference scheme (2.17)
or (2.18), we also make some numerical comparisons of it with the difference scheme
given in [28].

Let V n
i = v(xi , tn) be the value of the solution v(x, t) of the original problem

(1.1)–(1.3) at the mesh point (xi , tn). Since V n
i = exp( 1

2d

∫ xi
0 p(s)ds)Un

i , we have
from (4.23), (4.24), (5.10) or (5.11) that

Table 1 The temporal errors and convergence orders of the compact difference scheme (2.17) for Exam-

ple 6.1 (h ≈ τ
2−α
4 )

α τ e1(τ, h) ordert1(τ, h) e2(τ, h) ordert2(τ, h) e∞(τ, h) ordert∞(τ, h)

1/4 1/5 1.159231e−02 8.747147e−03 7.160539e−03

1/10 3.154293e−03 1.877780 2.591611e−03 1.754963 2.214214e−03 1.693274

1/20 8.690576e−04 1.859793 7.680173e−04 1.754638 6.460078e−04 1.777171

1/40 2.446836e−04 1.828534 2.270543e−04 1.758101 1.904792e−04 1.761918

1/80 7.027478e−05 1.799839 6.742597e−05 1.751661 5.718006e−05 1.736049

1/160 2.037507e−05 1.786202 1.988192e−05 1.761848 1.685016e−05 1.762749

1/320 5.987465e−06 1.766788 5.909774e−06 1.750282 5.002065e−06 1.752167

1/2 1/5 2.743002e−02 1.934726e−02 1.572759e−02

1/10 8.868821e−03 1.628941 6.998664e−03 1.466978 5.817808e−03 1.434750

1/20 2.943292e−03 1.591312 2.486277e−03 1.493092 2.075589e−03 1.486955

1/40 9.841057e−04 1.580545 8.825647e−04 1.494213 7.377612e−04 1.492295

1/80 3.345552e−04 1.556569 3.127394e−04 1.496741 2.607525e−04 1.500473

1/160 1.153136e−04 1.536681 1.106034e−04 1.499565 9.243747e−05 1.496131

1/320 4.008049e−05 1.524591 3.903921e−05 1.502400 3.265359e−05 1.501236

3/4 1/5 6.009934e−02 4.234614e−02 3.401744e−02

1/10 2.416886e−02 1.314199 1.813286e−02 1.223624 1.425564e−02 1.254742

1/20 9.444374e−03 1.355622 7.735402e−03 1.229058 6.431572e−03 1.148289

1/40 3.851782e−03 1.293929 3.250078e−03 1.251002 2.688707e−03 1.258259

1/80 1.534126e−03 1.328109 1.375118e−03 1.240919 1.138435e−03 1.239861

1/160 6.243115e−04 1.297079 5.787861e−04 1.248454 4.732938e−04 1.266243

1/320 2.561607e−04 1.285217 2.436318e−04 1.248328 2.010653e−04 1.235072
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‖V n − vn‖ν ≤ C4

(
τ 2−α + h4

)
, 1 ≤ n ≤ N , (6.1)

where the norm ‖ · ‖ν stands for ‖ · ‖, ‖ · ‖1 or ‖ · ‖∞, and C4 is a positive constant
independent of the step sizes τ and h and the time level n. To check this accuracy, we
compute L2, H1 and L∞ norm errors:

e2(τ, h) = max
0≤n≤N

‖V n − vn‖, eν(τ, h) = max
0≤n≤N

‖V n − vn‖ν(ν = 1,∞). (6.2)

The temporal and spatial convergence orders are computed, respectively, by

ordertν(τ, h)= log2

(
eν(2τ, h)

eν(τ, h)

)
, ordersν(τ, h)= log2

(
eν(τ, 2h)

eν(τ, h)

)
(ν =1, 2,∞).

(6.3)

Example 6.1 We first consider a time fractional mobile/immobile
convection-subdiffusion problem with a variable convection coefficient. This prob-
lem is governed by Eq. (1.1) in the domain [0, π ] × [0, 1] with β2 = β1 = d = 1
and

p(x) = − sin x, f (x, t) = t2
(
3 + t + 6t1−α

�(4 − α)

)
cos x + t3 sin2 x . (6.4)

Table 2 The spatial errors and convergence orders of the compact difference scheme (2.17) for Example 6.1

(τ ≈ h
4

2−α )

α h e1(τ, h) orders1(τ, h) e2(τ, h) orders2(τ, h) e∞(τ, h) orders∞(τ, h)

1/4 π/4 9.054761e−02 5.333505e−02 4.771523e−02

π/8 4.561485e−03 4.311101 3.603802e−03 3.887492 3.045428e−03 3.969733

π/16 2.344240e−04 4.282311 2.174955e−04 4.050463 1.828687e−04 4.057765

π/32 1.358813e−05 4.108701 1.331566e−05 4.029789 1.129336e−05 4.017261

π/64 8.284234e−07 4.035835 8.241409e−07 4.014089 6.974320e−07 4.017278

1/2 π/4 1.324734e−01 7.755133e−02 6.833064e−02

π/8 7.243942e−03 4.192783 5.712991e−03 3.762833 4.751261e−03 3.846150

π/16 3.583618e−04 4.337286 3.322834e−04 4.103760 2.746581e−04 4.112602

π/32 2.116011e−05 4.081998 2.073369e−05 4.002365 1.734532e−05 3.985018

π/64 1.300865e−06 4.023804 1.294126e−06 4.001927 1.082253e−06 4.002436

3/4 π/4 2.876741e−01 1.683076e−01 1.483876e−01

π/8 9.862490e−03 4.866340 7.767336e−03 4.437537 6.370044e−03 4.541923

π/16 5.270940e−04 4.225820 4.885871e−04 3.990732 4.000144e−04 3.993179

π/32 3.121569e−05 4.077717 3.058462e−05 3.997738 2.536793e−05 3.978974

π/64 1.920459e−06 4.022748 1.910483e−06 4.000797 1.584566e−06 4.000846

123



Compact difference method for fractional convection-subdiffusion equations 1211

Table 3 Comparisons of the temporal accuracy between the scheme (2.17) and the scheme (24) in [28]
for Example 6.2

α τ Scheme (2.17) (h ≈ τ
2−α
4 ) Scheme (24) in [28] (h = τ )

e∞(τ, h) ordert∞(τ, h) e∞(τ, h) ordert∞(τ, h)

1/4 1/5 8.493144e−03 1.049700e−01

1/10 2.542312e−03 1.740157 5.555552e−02 0.917975

1/20 7.565994e−04 1.748540 2.848179e−02 0.963890

1/40 2.259409e−04 1.743584 1.439354e−02 0.984619

1/80 6.905517e−05 1.710124 7.230966e−03 0.993161

1/160 2.054686e−05 1.748831 3.620905e−03 0.997838

1/320 6.093114e−06 1.753667 1.811164e−03 0.999433

1/2 1/5 1.977515e−02 1.144777e−01

1/10 7.128628e−03 1.471992 5.939113e−02 0.946747

1/20 2.531298e−03 1.493747 2.991727e−02 0.989269

1/40 8.990839e−04 1.493350 1.489852e−02 1.005809

1/80 3.200676e−04 1.490079 7.396544e−03 1.010246

1/160 1.162969e−04 1.460564 3.669928e−03 1.011099

1/320 4.101519e−05 1.503583 1.822882e−03 1.009531

3/4 1/5 4.408425e−02 1.367068e−01

1/10 1.897219e−02 1.216378 7.052039e−02 0.954973

1/20 8.056342e−03 1.235690 3.516453e−02 1.003919

1/40 3.387146e−03 1.250055 1.728413e−02 1.024673

1/80 1.427802e−03 1.246274 8.455831e−03 1.031430

1/160 6.202351e−04 1.202909 4.132394e−03 1.032969

1/320 2.607243e−04 1.250290 2.022251e−03 1.031016

The boundary and initial conditions are given by (1.2) and (1.3) with

φ0(t) = t3, φL(t) = −t3, ϕ(x) ≡ 0. (6.5)

It is easy to check that v(x, t) = t3 cos x is the solution of this problem.
We first test the temporal error and the temporal convergence order of the compact

difference scheme (2.17) for different α. In this test, we let the spatial step h ≈ τ
2−α
4

(M = �πτ− 2−α
4 �). Table 1 gives the errors eν(τ, h) (ν = 1, 2,∞) and the temporal

convergence orders ordertν(τ, h) (ν = 1, 2,∞) of the computed solution vni for α =
1/4, 1/2, 3/4 and different time step τ . As expected from our theoretical analysis, the
computed solution vni has the temporal accuracy of order (2 − α).

Wenext compute the spatial error and the spatial convergence order. Table 2 presents
the errors eν(τ, h) (ν = 1, 2,∞) and the spatial convergence orders ordersν(τ, h)

(ν = 1, 2,∞) of the computed solution vni for α = 1/4, 1/2, 3/4 and different

spatial step h, where the time step τ ≈ h
4

2−α (N = �h− 4
2−α �). The data in this table
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Table 4 Comparisons of the spatial accuracy between the scheme (2.17) and the scheme (24) in [28] for
Example 6.2

α h Scheme (2.17) (τ ≈ h
4

2−α ) Scheme (24) in [28] (τ = h)

e∞(τ, h) orders∞(τ, h) e∞(τ, h) orders∞(τ, h)

1/4 1/4 5.639974e−04 1.238308e−01

1/8 3.593287e−05 3.972312 6.813194e−02 0.861967

1/16 2.254666e−06 3.994318 3.531737e−02 0.947954

1/32 1.411095e−07 3.998027 1.795510e−02 0.975984

1/2 1/4 9.055239e−04 1.359193e−01

1/8 5.725178e−05 3.983360 7.329767e−02 0.890912

1/16 3.593017e−06 3.994053 3.729139e−02 0.974925

1/32 2.252105e−07 3.995850 1.866658e−02 0.998385

3/4 1/4 1.345057e−03 1.623870e−01

1/8 8.595884e−05 3.967878 8.724798e−02 0.896243

1/16 5.379673e−06 3.998056 4.398852e−02 0.987995

1/32 3.371999e−07 3.995842 2.175152e−02 1.016011

demonstrate that the compact difference scheme (2.17) generates the fourth-order
spatial accuracy. This coincides well with the analysis.

Example 6.2 The work in [28] develops a finite difference scheme (i.e., the differ-
ence scheme (24) in [28]) for solving time fractional mobile/immobile convection-
subdiffusion problems with constant coefficients. To compare it with the compact
difference scheme (2.17) given here, we consider Eq. (1.1) and the boundary and ini-
tial conditions (1.2) and (1.3) in the domain [0, 1] × [0, 1] with β2 = β1 = d = 1
and

p(x) = 1, f (x, t) = 3t2
(
1 + 2t1−α

�(4 − α)

)
ex , φ0(t) = t3, φL(t) = t3e,

ϕ(x) ≡ 0. (6.6)

The exact analytical solution to this problem is given by v(x, t) = t3ex .
We now use the compact difference scheme (2.17) in this paper and the difference

scheme (24) in [28] to solve the above problemnumerically. Tables 3 and 4 list the error
e∞(τ, h), the temporal convergence order ordert∞(τ, h) and the spatial convergence
order orders∞(τ, h) of these two schemes for α = 1/4, 1/2, 3/4. It is seen that the
compact difference scheme (2.17) is more accurate than the difference scheme (24)
in [28]. Specifically, the compact difference scheme (2.17) possesses the fourth-order
spatial accuracy and the (2−α)-order temporal accuracy, while the difference scheme
(24) in [28] has only the first-order spatial and temporal accuracy.
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Table 5 The temporal errors and convergence orders of the compact difference scheme (2.18) for Exam-

ple 6.3 (h ≈ τ
2−α
4 )

α τ e1(τ, h) ordert1(τ, h) e2(τ, h) ordert2(τ, h) e∞(τ, h) ordert∞(τ, h)

1/4 1/5 4.124352e−03 2.896423e−03 3.939703e−03

1/10 1.327206e−03 1.635775 9.318899e−04 1.636041 1.269138e−03 1.634238

1/20 3.782167e−04 1.811107 2.977792e−04 1.645916 4.024511e−04 1.656963

1/40 1.063259e−04 1.830720 9.380683e−05 1.666478 1.265025e−04 1.669648

1/80 3.184076e−05 1.739546 2.892912e−05 1.697171 4.020798e−05 1.653612

1/160 9.373375e−06 1.764234 8.916914e−06 1.697906 1.238913e−05 1.698407

1/320 2.804192e−06 1.740984 2.720475e−06 1.712686 3.768936e−06 1.716846

1/2 1/5 2.022743e−02 1.167831e−02 1.651562e−02

1/10 6.477435e−03 1.642818 4.549090e−03 1.360182 6.186164e−03 1.416715

1/20 2.133564e−03 1.602157 1.680217e−03 1.436931 2.271178e−03 1.445604

1/40 7.706419e−04 1.469133 6.068407e−04 1.469257 8.202593e−04 1.469289

1/80 2.483948e−04 1.633426 2.191660e−04 1.469294 2.955155e−04 1.472846

1/160 8.615085e−05 1.527698 7.828273e−05 1.485258 1.087442e−04 1.442296

1/320 2.964453e−05 1.539099 2.789839e−05 1.488512 3.862951e−05 1.493163

3/4 1/5 6.273970e−02 3.622278e−02 5.122675e−02

1/10 2.356677e−02 1.412625 1.655106e−02 1.129974 2.250577e−02 1.186603

1/20 1.014375e−02 1.216163 7.123921e−03 1.216180 9.687726e−03 1.216065

1/40 3.881342e−03 1.385963 3.056580e−03 1.220753 4.130884e−03 1.229707

1/80 1.642148e−03 1.240972 1.293156e−03 1.241022 1.747661e−03 1.241026

1/160 6.480796e−04 1.341341 5.470745e−04 1.241087 7.604264e−04 1.200545

1/320 2.542193e−04 1.350097 2.310052e−04 1.243812 3.207882e−04 1.245188

19/20 1/5 1.389259e−01 8.020890e−02 1.134325e−01

1/10 6.977262e−02 0.993583 4.028324e−02 0.993583 5.696910e−02 0.993583

1/20 2.937064e−02 1.248286 2.062644e−02 0.965685 2.805390e−02 1.021978

1/40 1.431931e−02 1.036413 1.005610e−02 1.036425 1.367802e−02 1.036342

1/80 6.241400e−03 1.198020 4.914873e−03 1.032844 6.640025e−03 1.042599

1/160 3.020139e−03 1.047255 2.378208e−03 1.047279 3.212970e−03 1.047281

1/320 1.365216e−03 1.145485 1.152400e−03 1.045233 1.601500e−03 1.004483

Example 6.3 In this example, we test the error and the convergence order of the com-
pact difference scheme (2.18). Consider the following problem
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂αv

∂tα
(x, t) = ∂2v

∂x2
(x, t) − 1

1 + x

∂v

∂x
(x, t) + 1

2
(1 + x)2t2�(3 + α), (x, t) ∈ (0, 1) × (0, 1),

v(0, t) = 1 + t2+α, v(1, t) = 4
(
1 + t2+α

)
, t ∈ (0, 1],

v(x, 0) = (1 + x)2, x ∈ [0, 1].

(6.7)

Its exact analytical solution is given by v(x, t) = (1 + t2+α)(1 + x)2.
We use the compact difference scheme (2.18) to solve the above problem numer-

ically. In Table 5, we give the errors eν(τ, h) (ν = 1, 2,∞) and the temporal
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Table 6 The spatial errors and convergence orders of the compact difference scheme (2.18) for Example 6.3

(τ ≈ h
4

2−α )

α h e1(τ, h) orders1(τ, h) e2(τ, h) orders2(τ, h) e∞(τ, h) orders∞(τ, h)

1/4 1/4 2.833516e−04 2.230668e−04 3.014609e−04

1/8 1.659221e−05 4.094016 1.538594e−05 3.857792 2.126240e−05 3.825594

1/16 1.043506e−06 3.990995 1.022563e−06 3.911351 1.418693e−06 3.905670

1/32 6.678075e−08 3.965863 6.643664e−08 3.944067 9.238105e−08 3.940822

1/2 1/4 7.689741e−04 6.055287e−04 8.185084e−04

1/8 4.191734e−05 4.197316 3.887417e−05 3.961311 5.366307e−05 3.930996

1/16 2.511753e−06 4.060780 2.461416e−06 3.981252 3.413396e−06 3.974650

1/32 1.553795e−07 4.014827 1.545799e−07 3.993063 2.147968e−07 3.990163

3/4 1/4 1.543423e−03 1.215411e−03 1.642618e−03

1/8 8.244890e−05 4.226489 7.646377e−05 3.990524 1.055178e−04 3.960438

1/16 4.879802e−06 4.078606 4.782012e−06 3.999087 6.629499e−06 3.992443

1/32 3.004891e−07 4.021438 2.989430e−07 3.999675 4.152629e−07 3.996803

19/20 1/4 2.438603e−03 1.920264e−03 2.594299e−03

1/8 1.297929e−04 4.231771 1.203673e−04 3.995789 1.660862e−04 3.965340

1/16 7.677727e−06 4.079389 7.523792e−06 3.999840 1.042757e−05 3.993457

1/32 4.726902e−07 4.021712 4.702568e−07 3.999939 6.531025e−07 3.996950

Table 7 The spatial errors and convergence orders of the difference scheme (24) in [28] for Example 6.3

(τ ≈ h
1

2−α )

α h e1(τ, h) orders1(τ, h) e2(τ, h) orders2(τ, h) e∞(τ, h) orders∞(τ, h)

1/4 1/4 6.245331e−02 4.953211e−02 6.769048e−02

1/8 2.473031e−02 1.336498 2.301397e−02 1.105854 3.137208e−02 1.109472

1/16 1.017115e−02 1.281797 9.977398e−03 1.205774 1.359290e−02 1.206628

1/32 5.517696e−03 0.882345 5.490764e−03 0.861657 7.497315e−03 0.858408

1/2 1/4 8.234918e−02 6.521693e−02 8.888138e−02

1/8 3.155685e−02 1.383801 2.934165e−02 1.152296 3.986271e−02 1.156841

1/16 1.713311e−02 0.881167 1.680298e−02 0.804233 2.300541e−02 0.793066

1/32 8.589647e−03 0.996116 8.547189e−03 0.975195 1.170585e−02 0.974744

3/4 1/4 1.527910e−01 1.208332e−01 1.643243e−01

1/8 5.866241e−02 1.381051 5.450556e−02 1.148541 7.387351e−02 1.153417

1/16 2.761038e−02 1.087226 2.707169e−02 1.009619 3.725583e−02 0.987591

1/32 1.358620e−02 1.023069 1.351817e−02 1.001885 1.860726e−02 1.001600

convergence orders ordertν(τ, h) (ν = 1, 2,∞) of the computed solution vni for

α = 1/4, 1/2, 3/4, 19/20 and different time step τ , where the spatial step h ≈ τ
2−α
4

(M = �τ− 2−α
4 �). It is seen that the computed solution vni has the temporal accuracy of

order (2− α). The numerical results in Table 6 give the errors eν(τ, h) (ν = 1, 2,∞)
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and the spatial convergence orders ordersν(τ, h) (ν = 1, 2,∞) of the computed solu-
tion vni for α = 1/4, 1/2, 3/4, 19/20 and different spatial step h, where the time step

τ ≈ h
4

2−α (N = �h− 4
2−α �). These results show that the compact difference scheme

(2.18) generates the fourth-order spatial accuracy.
We notice that when α = 19/20, the constraint condition on ‖q‖2∞ in Theorems 5.1

and 5.3 does not hold for the present problem since ‖q‖2∞ = 9
16 > 32

3�(0.05) . How-
ever, the corresponding numerical results in Tables 5 and 6 show that compact dif-
ference scheme (2.18) is still stable and convergent. This implies that the constraint
condition on ‖q‖2∞ in Theorems 5.1 and 5.3 is only a sufficient condition for the
stability and convergence of the compact difference scheme (2.18) with the general
q(x).

For comparison, we also use the difference scheme (24) in [28] to solve the above
problem numerically. Table 7 lists the errors eν(τ, h) (ν = 1, 2,∞) and the spatial
convergence orders ordersν(τ, h) (ν = 1, 2,∞) of this scheme for α = 1/4, 1/2, 3/4

and different spatial step τ , where the time step τ ≈ h
1

2−α (N = �h− 1
2−α �). It is seen

that the scheme has only the first-order spatial accuracy.

7 Concluding remarks

We have presented and analyzed a high-order compact finite difference method for a
class of time fractional convection-subdiffusion equations. The convection coefficients
maybe spatially variable, and the time fractional derivative is in theCaputo’s sensewith
the order α (0 < α < 1). The class of the equations under consideration includes time
fractional mobile/immobile subdiffusion or convection-subdiffusion equations with
spatially variable convection coefficients. We have proved that the proposed compact
finite difference method is uniquely solvable, stable and convergent, and provided
the optimal error estimates in the discrete H1, L2 and L∞ norms. The error estimate
shows that the method has the fourth-order spatial accuracy and the (2 − α)-order
temporal accuracy. Numerical results confirm our analysis and show the efficiency of
the method.

In this paper, we use an indirect approach so that the scheme derived in this way
has a very simple and practical form for the variable convection coefficient problems.
The related theoretical analysis is also quite transparent. The proposed method may
be extended to the multi-dimensional problems. It is also straightforward to apply our
method to Eq. (1.1) with a linear zero-order damping term p1(x)v(x, t) being added.
However, since our method requires an exponential transformation to eliminate the
convection term, the method for the present form may not be suitable for the con-
vection dominated problems, namely the problems of |p(x)| � d. Whether it can be
extended to solve the convection dominated problems efficiently will be an interesting
subject.
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