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Abstract This paper discusses the upwinded local discontinuous Galerkin methods
for the one-term/multi-term fractional ordinary differential equations (FODEs). The
natural upwind choice of the numerical fluxes for the initial value problem for FODEs
ensures stability of the methods. The solution can be computed element by element
with optimal order of convergence k + 1 in the L2 norm and superconvergence of
order k + 1 + min{k, α} at the downwind point of each element. Here k is the degree
of the approximation polynomial used in an element and α (α ∈ (0, 1]) represents
the order of the one-term FODEs. A generalization of this includes problems with
classic m’th-term FODEs, yielding superconvergence order at downwind point as
k + 1 + min{k,max{α,m}}. The underlying mechanism of the superconvergence is
discussed and the analysis confirmed through examples, including a discussion of
how to use the scheme as an efficient way to evaluate the generalized Mittag-Leffler
function and solutions to more generalized FODE’s.
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1 Introduction

Fractional calculus is the generalization of classical calculus andwith a history parallel
to that of classical calculus. It was studied by many of the same mathematicians who
contributed significantly to the development of classical calculus. In recent years, it
has seen a growing use as an appropriate model for non classic phenomena in physical,
engineering, and biology fields [15].

To gain an understanding of the basic elements of fractional calculus, we recall

∫ t

a
dτn

∫ τn

a
dτn−1 · · ·

∫ τ2

a
x(τ1)dτ1 = 1

(n − 1)!
∫ t

a
(t − τ)n−1x(τ )dτ, t > a.

(1.1)
A slight rewriting yields

aD
−n
t x(t) = 1

�(n)

∫ t

a
(t − τ)n−1x(τ )dτ, t > a. (1.2)

Clearly, Eq. (1.2) still formally makes sense if n is replaced by α (∈ R+) leading to
the definition of the fractional integral as

aD
−α
t x(t) = 1

�(α)

∫ t

a
(t − τ)α−1x(τ )dτ, t > a, α ∈ R+. (1.3)

Here a ∈ R. This definition of the fractional integral is natural and simple, and
inherits many good mathematical properties, e.g., the semigroup property. Moreover
−α ‘connects’ −∞ to 0 in a natural way.

With the derivative as the inverse operation of the integral, the definition of the frac-
tional derivative naturally arises by combining the definitions of the classical derivative
and the fractional integral. In this way, the fractional derivative operator Dα can be
defined as D�α�D−(�α�−α) or D−(�α�−α)D�α�. Mathematically, the first one can be
regarded as preferred since DnD−n = I while D−nDn = I + · · · , which involves
additional information about the function at the left end point. When considering a
fractional derivative in the temporal direction, the second formulation is more pop-
ular due to its convenience when specifying the initial condition in a classic sense.
These two definitions of derivatives are referred to as the Riemann–Liouville deriva-
tive and Caputo derivative [18], respectively, with the Riemann–Liouville derivative
being defined as [4,18]

aD
α
t x(t) = 1

�(n − α)

dn

dtn

∫ t

a
(t − τ)n−α−1x(τ )dτ, t > a, α ∈ [n − 1, n); (1.4)
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and the Caputo derivative recovered as

C
a D

α
t x(t) = 1

�(n − α)

∫ t

a
(t − τ)n−α−1 d

nx(τ )

dτ n
dτ, t > a, α ∈ [n − 1, n). (1.5)

A third alternative definition is the Grünwald–Letnikov derivative, based on finite
differences to generalize the classical derivative. This is equivalent to the Riemann–
Liouville derivative if one ignores assumptions on the regularity of the functions.

For (1.4), the following holds [7]

lim
α→(n−1)+

aD
α
t x(t) = dn−1x(t)

dtn−1 , lim
α→n− aD

α
t x(t) = dnx(t)

dtn
;

and for (1.3), limα→n aD
−α
t x(t) = aD

−n
t x(t). Hence, the operator aDα

t (α ∈ R)

makes sense and ‘connects’ the orders of the fractional derivative from −∞ to +∞.
However, for (1.5), one recovers

lim
α→(n−1)+

C
a D

α
t x(t) = dn−1x(t)

dtn−1 − dn−1x(t)

dtn−1

∣∣
t=a, lim

α→n−
C
a D

α
t x(t) = dnx(t)

dtn
.

The Riemann–Liouville derivative and the Caputo derivative are equivalent if x(t) is
sufficiently smooth and satisfies x ( j)(a) = 0, j = 0, 2, . . . , n − 1.

At times, (1.3) and (1.4) are referred to as the left Riemann–Liouville fractional
integral and the left Riemann–Liouville fractional derivative, respectively. In some
cases it is natural to consider the interval [x, b] instead of [a, x], leading to the right
Riemann–Liouville fractional integral being defined as

t D
−α
b x(t) = 1

�(α)

∫ b

t
(τ − t)α−1x(τ )dτ, t < b, α ∈ R+,

where b ∈ R and b can be +∞.
In this work, we develop a local discontinuous Galerkin (LDG) methods for the

one-term and multi-term initial value problems for fractional ordinary differential
equations (FODEs). For ease of presentation, we shall focus the discussion on the
following two types of FODEs

C
a D

α
t x(t) = f (x, t), (1.6)

and
C
a D

α
t x(t) + d(t)

dmx(t)

dtm
= f (x, t), (1.7)

where α ∈ (0, 1], and m is a positive integer and also include examples of α ∈ [1, 2]
in the interest of generalization. For (1.6) and (1.7), the initial conditions can be
specified exactly as for the classical ODEs, i.e., the values of x ( j)(a) must be given,
where j = 0, 1, 2, . . . , �α� for (1.6) and j = 0, 1, 2, . . . ,max{�α�,m − 1} for (1.7).

123



970 W. Deng, J. S. Hesthaven

It appears that the earliest numerical methods used in the engineering community
for such problems are the predictor-corrector approach originally presented in [9],
later slightly improved in [7], and a method using a series of classical derivatives to
approximate the fractional derivative, realized by using frequency domain techniques
based onBode diagrams [12]. For the secondmethod,ways to evaluate the time domain
error introduced in the frequency domain approximations remains open.

The discontinuous Galerkin (DG) methods have been well developed to solve clas-
sical differential equations [13], initiated for the classical ODEs [6] with substantial
later work, mostly related to discontinuous Galerkin methods for the related Volterra
integro-differential equation, including a priori analysis [19], hp-adaptive methods
[3,16] and recent work on super convergence in the h-version [17]. This has been
extended to approximate the fractional spatial derivatives [8] to solve fractional diffu-
sion equation by using the idea of local discontinuous Galerkin (LDG) methods [2,5].
In this work, we discuss DG methods to allow for the approximate solution of general
FODEs. All the advantages/characteristics of the spatial DG methods carries over to
this case with a central one being the ability to solve the equation interval by interval
when the upwind flux, taking the value of x(t) at a discontinuity point t j as x(t

−
j ),

is used. However, this is a natural choice, since for the initial value problems for the
fractional (or classical) ODEs, the information travels forward in time. This implies
that we just invert a local low order matrix rather than a global full matrix. The LDG
methods for the first order FODEs (1.6) have optimal order of convergence k+1 in the
L2 norm and we observe superconvergence of order k + 1 + min{k, α} at the down-
wind point of each element. Here k is the degree of the approximation polynomial
used in an element. For the two-term FODEs (1.7), the LDG methods retain optimal
convergence order in L2-norm, and superconvergence at the downwind point of each
element as k + 1 + min{k,max{α,m}}. We shall discuss the underlying mechanism
of this superconvergence and illustrate the results of the analysis through a number of
examples, including some going beyond the theoretical developments presented here.

What remains of the paper is organized as follows. In Sect. 2, we present the LDG
schemes for the FODEs, discuss the numerical stability of the scheme for the linear
case of (1.6) with α ∈ [0, 1], and uncover the mechanism of superconvergence. The
analysis is supported by a number of computational experiments and we also illustrate
how the proposed scheme can be applied to compute the generalized Mittag-Leffler
functions. In Sect. 3 we discuss a number of generalizations of the scheme, illustrated
by a selection of numerical examples and Sect. 4 a few concluding remarks.

2 LDG schemes for the FODEs

The basic idea in the design theLDGschemes is to rewrite the FODEs as a systemof the
first order classical ODEs and a fractional integral. Since the integral operator naturally
connects the discontinuous function, we need not add a penalty term or introduce a
numerical flux for the integral equation. However, for the first order ODEs, upwind
fluxes are used. In this section, we present the LDG schemes, prove numerical stability
and discuss the underlying mechanism of superconvergence.
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Local dG methods for fractional ordinary differential equations 971

2.1 LDG schemes

We consider (1.6) and rewrite it as

{
x1(t) − dx0(t)

dt
= 0, 0D

−(1−α)
t x1(t) = f (x, t), α ∈ (0, 1],

x0(0) = x0.
(2.1)

We consider a scheme for solving (2.1) in the interval � = [0, T ]. Given the nodes
0 = t0 < t1 < · · · < tn−1 < tn = T , we define the mesh T = {I j = (t j−1, t j ), j =
1, 2, . . . , n} and set h j := |I j | = t j − t j−1 and h := maxnj=1 h j . Associated with the
mesh T , we define the broken Sobolev spaces

L2(�,T ) := {v : � → R
∣∣ v|I j ∈ L2(I j ), j = 1, 2, . . . , n};

and

H1(�,T ) := {v : � → R
∣∣ v|I j ∈ H1(I j ), j = 1, 2, . . . , n}.

For a function v ∈ H1(�,T ), we denote the one-sided limits at the nodes t j by

v±(t j ) = v(t±j ) := lim
t→t±j

v(t).

Assume that the solutions belong to the corresponding spaces:

(x0(t), x1(t)) ∈ H1(�,T ) × L2(�,T ).

We further define Xi as the approximation functions of xi respectively, in the finite
dimensional subspaceV ⊂ H1(�,T ); and chooseV to be the space of discontinuous,
piecewise polynomial functions

V = {v : � → R
∣∣ v|I j ∈ Pk(I j ), j = 1, 2, . . . , n},

where Pk(I j ) denotes the set of all polynomials of degree less than or equal to k
on I j . Using the upwind fluxes for the first order classical ODEs and discretizing the
integral equation, we seek Xi ∈ V such that for all vi ∈ V , and j = 1, 2, . . . , n, the
following holds

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
X1, v0

)
I j

+
(
X0,

dv0
dt

)
I j

− (
X0(t

−
j )v0(t

−
j ) − X0(t

−
j−1)v0(t

+
j−1)

) = 0,

(
0D

−(1−α)
t X1, v1

)
I j

= (
f (X0, t), v1

)
I j

,

X0(t
−
0 ) = x0.

(2.2)
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Remark When taking α ∈ (0, 1] and m = 1 in (1.7), its scheme is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
X1, v0

)
I j

+
(
X0,

dv0

dt

)
I j

− (
X0(t

−
j )v0(t

−
j ) − X0(t

−
j−1)v0(t

+
j−1)

) = 0,

(
0D

−(1−α)
t X1 + X1, v1

)
I j

= (
f (X0, t), v0

)
I j

,

X0(t
−
0 ) = x0.

The scheme is clearly consistent, i.e., the exact solutions of the corresponding models
satisfy (2.2). Furthermore, since an upwind flux is used the solutions can be computed
interval by interval and if f (x, t) is a linear function in x , we just need to invert a
small matrix in each interval to recover the solution.

2.2 Numerical stability

We consider the question of stability for the linear case of (2.2):

{
C
0 D

α
t x(t) = Ax(t) + B(t), α ∈ (0, 1),

x(0) = x0,
(2.3)

where A is a negative constant and B(t) is sufficiently regular to ensure existence and
uniqueness. The numerical scheme of (2.3) is to find Xi ∈ V such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
X0(t

−
j )v0(t

−
j ) − X0(t

−
j−1)v0(t

+
j−1)

) − (
X1, v0

)
I j

−
(
X0,

dv0

dt

)
I j

= 0,

(
0D

−(1−α)
t X1, v1

)
I j

= (
AX0 + B, v1

)
I j

,

X0(t
−
0 ) = x0,

(2.4)

holds for all vi ∈ V . First we present a lemma here. Based on the semigroup property
of fractional integral operators, Property A.2 of [10], and Lemmas 2.6 of [8], we have

Lemma 2.1 For β > 0, α ∈ (0, 1),

(
0D

−β
t u, v

)
L2([0,t j ]) = (

u, t D
−β
t j v

)
L2([0,t j ]); (2.5)

(
0D

α−1
t v, v

)
L2([0,t j ]) = (

0D
α−1
2

t v, t D
α−1
2

t j v
)
L2([0,t j ])

= cos

(
(α−1)π

2

)
‖v‖2

H
α−1
2 ([0,t j ])

.
(2.6)

Let X̃i ∈ V be the approximate solution of Xi and denote eXi := X̃i − Xi as the
numerical errors. Stability of (2.4) is established in the following theorem.
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Local dG methods for fractional ordinary differential equations 973

Theorem 2.1 (L∞ stability) Scheme (2.4) is L∞ stable; and the numerical errors
satisfy

e2X0
(t−n ) = e2X0

(t−0 ) −
n∑

i=1

(
δeX0(ti−1)

)2 + 2

A
cos

(
(α − 1)π

2

)
‖eX1‖2

H
α−1
2 ([0,t j ])

,

(2.7)
where δeXi (ti−1) = eXi (t

+
i−1) − eXi (t

−
i−1).

Since A < 0, the scheme is dissipative.

Proof From (2.4), we recover the error equation

⎧⎪⎨
⎪⎩

(
eX0(t

−
i )v0(t

−
i ) − eX0(t

−
i−1)v0(t

+
i−1)

) − (
eX1 , v0

)
Ii

−
(
eX0 ,

dv0
dt

)
Ii

= 0,

− 1
A

(
0D

−(1−α)
t eX1 , v1

)
Ii

= −(
eX0 , v1

)
Ii
,

(2.8)

for all vi ∈ V . Taking v0 = eX0 , v1 = eX1 , and adding the two equations, we obtain

(
e2X0

(t−i ) − eX0(t
−
i−1)eX0(t

+
i−1)

)
− 1

2

(
e2X0

(t−i ) − e2X0
(t+i−1)

)

− 1

A

(
0D

−(1−α)
t eX1 , eX1

)
Ii

=0.

Summing the equations for i = 1, 2, . . . , n leads to

e2X0
(t−n ) − e2X0

(t−0 ) +
n∑

i=1

(
e2X0

(t−i−1) − 2eX0(t
−
i−1)eX0(t

+
i−1) + e2X0

(t+i−1)
)

− 2
A

(
0D

−(1−α)
t eX1 , eX1

)
[0,In ]

= 0,

and

e2X0
(t−n ) = e2X0

(t−0 ) −
n∑

i=1

(
eX0(t

+
i−1) − eX0(t

−
i−1)

)2 + 2

A

(
0D

−(1−α)
t eX1 , eX1

)
[0,In ]

.

Using (2.6) of Lemma 2.1 yields the desired result. ��

2.3 Mechanism of superconvergence

As we shall see shortly, the proposed LDG scheme is k+1 optimally convergent in the
L2-norm but superconvergent at downwind points. This is also known for the classic
case where the downwind convergence is 2k + 1 [1,6]. However, for the fractional
case, the order of the superconvergence depends on the order of the Caputo fractional
derivatives. To understand this, let us again focus on the linear case of (2.2).
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The error equation corresponding to (2.4) is

⎧⎪⎨
⎪⎩

(
EX0(t

−
i )v0(t

−
i ) − EX0(t

−
i−1)v0(t

+
i−1)

) − (
EX1 , v0

)
Ii

−
(
EX0 ,

dv0
dt

)
Ii

= 0,

− 1
A

(
0D

−(1−α)
t EX1 , v1

)
Ii

= −(
EX0 , v1

)
Ii
,

(2.9)

where EXi = xi − Xi . In (2.9), taking vi to be continuous on the interval [0, t j ] and
summing the equations for i = 1, 2, . . . , n lead to

EX0(t
−
n )v0(t

−
n ) − (

EX1 , v0
)
[0,tn ] −

(
EX0 ,

dv0

dt

)
[0,tn ]

− 1

A

(
0D

−(1−α)
t EX1 , v1

)
[0,tn ]

+ (
EX0 , v1

)
[0,tn ] = 0. (2.10)

Following (2.5), we rewrite this as

EX0(t
−
n )v0(t

−
n ) − (

EX1 , v0
)
[0,tn ] −

(
EX0 ,

dv0

dt

)
[0,tn ]

− 1

A

(
EX1 , t D

−(1−α)
tn v1

)
[0,tn ]

+ (
EX0 , v1

)
[0,tn ] = 0. (2.11)

Rearranging the terms of (2.11) results in

EX0(t
−
n )v0(t

−
n ) −

(
EX1 , v0 + 1

A
t D

−(1−α)
tn v1

)
[0,tn ]

−
(
EX0 ,

dv0

dt
− v1

)
[0,tn ]

= 0.

(2.12)
Solving ṽ0 + 1

A t D
−(1−α)
tn ṽ1 = 0 and d ṽ0

dt − ṽ1 = 0 for t ∈ [0, tn] with ṽ0(tn) =
EX0(t

−
n ), we get

ṽ0(t) = (EX0(t
−
n )/Eα,1(−Atαn ))Eα,1(−Atα), (2.13)

where Eα,1 is the Mittag-Leffler function. Taking vi as the L2 projection of ṽi onto
Pk , we recover that if α is an integer, there exists

∥∥∥∥v0 + 1

A
t D

−(1−α)
tn v1 + dv0

dt
− v1

∥∥∥∥
L2([0,tn ])

= O(hk); (2.14)

due to the regularity of the Mittag-Leffler function [14]. For the fractional case, the
approximation [11] yields

∥∥∥∥v0 + 1

A
t D

−(1−α)
tn v1 + dv0

dt
− v1

∥∥∥∥
L2([0,tn ])

= O(hmin{k,α}). (2.15)

Combining with classic polynomial approximation results for EXi [6] yields an order
of convergence at the downwind point of k + 1 + min{k, α}.

123



Local dG methods for fractional ordinary differential equations 975

Remark 2.1 The superconvergence orders of the scheme (2.9) strongly depend on the
regularity of the solution of ṽ0 + 1

A t D
−(1−α)
tn ṽ1 = 0 and d ṽ0

dt − ṽ1 = 0 for t ∈ [0, tn]
with ṽ0(tn) = EX0(t

−
n ). We can arrive at similar conclusions for the other schemes

discussed in this paper.

2.4 Numerical experiments

Let us consider a few numerical examples to qualify the above analysis.
All results assume that the corresponding analytical solutions are sufficiently reg-

ular. For showing the effectiveness of the LDG schemes and further confirming the
predicted convergence orders, both linear and nonlinear cases are considered. Finally,
we shall also consider the computation of the generalized Mittag-Leffler functions
using the LDG scheme.

We use Newton’s method to solve the nonlinear systems. The initial guess in the
interval I j ( j ≥ 2) is given as Xi (t

−
j−1) or by extrapolating forward to the interval I j .

For the interval I1, we use X0(t
−
0 ) (= x0) as initial guess.

2.4.1 Numerical results for (1.6) with α ∈ (0, 1]

We first consider examples to confirm that the convergence order of (2.2) is k + 1+α

at downwind points and k+1 in the L2 sense, respectively, where k is the degree of the
polynomial used in an element and α ∈ [0, 1). However, when α = 1 the convergence
order is 2k+1 at downwind point and still k+1 in L2 sense in agreement with classic
theory [6].

Example L1. On the computational domain t ∈ � = (0, 1), we consider

C
0 D

α
t x(t) = −2x(t) + �(6)

�(6 − α)
t5−α + 2t5 + 2, α ∈ [0, 1], (2.16)

with the initial condition x(0) = 1 and the exact solution x(t) = t5 + 1. Note that
when α = 0 this condition is still required for the form of (2.1).

Figure 1 displays convergence the downwind point as well as in L2 for k = 1− 3,
confirming optimal L2 convergence and an order of convergence of k + 1 + α at the
downwind point as predicted.

Example N1. We consider the nonlinear FODE on the domain t ∈ � = (0, 0.5),

C
0 D

α
t x(t) = −2x2(t) + �(6)

�(6 − α)
t5−α + 2t10 + 4t5 + 2, α ∈ [0, 1], (2.17)

with the initial condition x(0) = 1, and the exact solution x(t) = t5 + 1.
The results in Fig. 2 confirm that the optimal L2 convergence and an order of

convergence of k + 1 + α at the downwind point carries over to the nonlinear case.

123



976 W. Deng, J. S. Hesthaven

32 64 128 256
10−8

10−7

10−6

10−5

10−4

10−3

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

2.6×n−(1+1+0.0)

2.0×n−(1+1+1.0)

32 64 128 256

10−7

10−6

10−5

10−4

10−3

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

0.2×n−(1+1)

4 8 16 32

10−8

10−6

10−4

10−2

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

0.025×n−(2+1+0.8)

0.4×n−(2×2+1)

2.4×n−(2+1+0.0)

4 8 16 32

10−8

10−6

10−4

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

0.1×n−(2+1)

2 4 5

10−8

10−7

10−6

10−5

10−4

10−3

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

0.025×n−(3+1+0.8)

0.1×n−(3+1+0.0)

2.1×10−4×n−(2×3+1)

2 4 5

10−8

10−7

10−6

10−5

10−4

10−3

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

0.01×n−(3+1)

Fig. 1 The convergence of (2.2) for k = 1 (top row), k = 2 (middle row) and k = 3 (bottom row) in
(2.16). In the left column we show the convergence at the downwind points while the right column displays
L2-convergence. The real line (blue online) without marker is the curve ∼ Cn−γ , where n is the number
of elements and γ is an appropriate constant (color figure online)

2.4.2 Calculating the generalized Mittag-Leffler function

As a more general example, let us use the efficient and accurate solver for calculating
the generalized Mittag-Leffler functions defined as

Eα,β(Atα) =
∞∑
k=0

(Atα)k

�(αk + β)
, �(α) > 0. (2.18)
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Fig. 2 The convergence of (2.2) for k = 1 (top row), k = 2 (middle row) and k = 3 (bottom row) in
(2.17). In the left column we show the convergence at the downwind points while the right column displays
L2-convergence. The real line (blue online) without marker is the curve ∼ Cn−γ , where n is the number
of elements and γ is an appropriate constant (color figure online)

To build the relation between the Mittag-Leffler function and the FODE consider

C
0 D

α
t x(t) = Ax(t), x(0) = 1, x ′(0) = 0, . . . , x�α�(0) = 0. (2.19)

Taking the Laplace transform on both sides of the above equation, we recover

sαX (s) − sα−1x(0) = AX (s), (2.20)
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Fig. 3 The Mittag-Leffler function Eα,β (−tα) (color figure online)

where X (s) is the Laplace transform of x(t). From (2.20), we obtain

X (s) = sα−1

sα − A
. (2.21)

Using the inverse Laplace inverse transform in (2.21) results in

x(t) = Eα,1(At
α) =

∞∑
k=0

(Atα)k

�(αk + 1)
. (2.22)
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Since

0D
1−β
t

(
(Atα)k

�(αk + 1)

)
= (Atα)k tβ−1

�(αk + β)
,

we recover

Eα,β(Atα) = t1−β
0D

1−β
t x(t) = t1−β

0D
1−β
t

(
Eα,1(At

α)
)
. (2.23)

By solving (2.19) and (2.23) or just (2.19) when β = 1, we can efficiently calculate
the generalized Mittag-Leffler function Eα,β(Atα) as illustrated in Fig. 3.

3 Generalizations

Let us now consider the generalized case, given as

C
aD

α
t x(t) + d(t)

dmx(t)

dtm
= f (x, t), (3.1)

where α in general is real, and m is a positive integer. We shall follow the same
approach as previously, and consider the system of equations

{
xi+1(t) − dxi (t)

dt = 0, i = 0, . . . ,max(m, p) − 1, x0(t) = x(t),

0D
−(p−α)
t x p(t) + d(t)xm(t) = f (x0, t), α ∈ (0, 1], (3.2)

with appropriate initial conditions on xi (0) given. Here p = �α�. For simplicity we
assume xi (t) ∈ H1(�,T ) except xm(t) ∈ L2(�,T ). We will continue to use the
upwind fluxes to seek Xi , such that for all vi ∈ V , the following holds

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Xi+1, vi

)
I j

+
(
Xi ,

dvi
dt

)
I j

− (
Xi (t

−
j )vi (t

−
j ) − Xi (t

−
j−1)vi (t

+
j−1)

) = 0,

i = 0, . . . ,max(m, p) − 1, X0(t) = x(t);(
0D

−(p−α)
t X p, vm

)
I j

+ (
Xm, vm

)
I j

= (
f (X0, t), vm

)
I j

,

(3.3)

subject to the appropriate initial conditions.
The analysis of this scheme is generally similar to that of the previous one and will

not be discussed further, although, as we shall illustrate shortly, there are details that
remain open. Amain difference is that the order of super convergence at the downwind
point changes to k + 1+min{k,max{α,m}} and the impact of the fractional operator
is thus eliminated by the linear classic operator as long as m ≥ α. However, for the
case where �α� ≥ k,m, the situation is less clear.

Let us first consider a linear example to illustrate that the order of super convergence
2k+1 at downwind points can also be obtained when α equals to �α� or �α�, provided
the initial condition is not overspecified. On the computational domain t ∈ � = (0, 1),
we consider
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C
0D

α
t x(t) + dx(t)

dt
= −2x(t) + �(6)

�(6 − α)
t5−α + 2t5 + 5t4 + 2, α ∈ [0, 1], (3.4)

with the initial condition x(0) = 1 and the exact solution x(t) = t5 + 1.
As expected, Fig. 4 confirms super convergence of k + 1 + min{k,max{α,m}} at

the downstream point.

32 64 128 256

10−8

10−7

10−6

10−5

10−4

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

3.5×n−(1+1+1)

0.035×n−(1+1+1)

32 64 128 256

10−7

10−6

10−5

10−4

10−3

Number of elements

N
um

er
ic

al
 e

rr
or

s
α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

0.2×n−(1+1)

4 8 16 32

10−10

10−9

10−8

10−7

10−6

10−5

10−4

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

0.02×n−(2+1+1)

0.016×n−(2×2+1)

4 8 16 32

10−8

10−6

10−4

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

0.1×n−(2+1)

2 4 5

10−9

10−8

10−7

10−6

10−5

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

1.5×10−3×n−(3+1+1)

1.5×10−5×n−(2×3+1)

2 4 5

10−8

10−7

10−6

10−5

10−4

10−3

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=1.0
α=0.99
α=0.8
α=0.5
α=0.2
α=0.0

0.01×n−(3+1)

Fig. 4 The convergence of (3.4) for k = 1 (top row), k = 2 (middle row) and k = 3 (bottom row). In the left
columnwe show the convergence at the downwind points while the right column displays L2-convergence.
The real line (blue online) without marker is the curve ∼ Cn−γ , where n is the number of elements and γ

is an appropriate constant (color figure online)

123



Local dG methods for fractional ordinary differential equations 981

16 32 64 128

10−6

10−5

10−4

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=2.0
α=1.8
α=1.5
α=1.2
α=1.0

5.25×n−(2×1+1)

2 4 8 16
10−9

10−8

10−7

10−6

10−5

10−4

10−3

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=2.0
α=1.8
α=1.5
α=1.2
α=1.0

1.0×n−(1+1)

2 4 8 16
10−9

10−8

10−7

10−6

10−5

10−4

10−3

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=2.0
α=1.8
α=1.5
α=1.2
α=1.0

16×n−(2×2+1)

2 4 8 16

10−8

10−6

10−4

10−2

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=2.0
α=1.8
α=1.5
α=1.2
α=1.0

0.2×n−(2+1)

2 3 4
10−9

10−8

10−7

10−6

10−5

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=2.0
α=1.8
α=1.5
α=1.2
α=1.0

1.5×10−4×n−(2*3+1)

2 3 4
10−9

10−8

10−7

10−6

10−5

10−4

10−3

Number of elements

N
um

er
ic

al
 e

rr
or

s

α=2.0
α=1.8
α=1.5
α=1.2
α=1.0

0.01× n−(3+1)

Fig. 5 The convergence of (3.3) for k = 1 (top row), k = 2 (middle row) and k = 3 (bottom row) in
(3.5). In the left column we show the convergence at the downwind points while the right column displays
L2-convergence. The real line (blue online) without marker is the curve ∼ Cn−γ , where n is the number
of elements and γ is an appropriate constant (color figure online)

Let us consider a nonlinear problem, given for t ∈ � = (0, 1), as

C
0 D

α
t x(t) + d3x(t)

dt3
= −2x2(t) + �(6)

�(6 − α)
t5−α + �(1)

�(3 − α)
t2−α + 2t10 + 2t7

+ 4t6 + 4t5 + 0.5t4 + 2t3 + 64t2 + 4t + 2, α ∈ [1, 2],
(3.5)
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Fig. 6 The convergence of (3.3) for k = 1 (top row), k = 2 (middle row) and k = 3 (bottom row) in
(3.6). In the left column we show the convergence at the downwind points while the right column displays
L2-convergence. The real line (blue online) without marker is the curve ∼ Cn−γ , where n is the number
of elements and γ is an appropriate constant (color figure online)

with the initial condition x(0) = 1, x ′(0) = 1, x ′′(0) = 1 and the exact solution
x(t) = t5 + 1

2 t
2 + t + 1. We note that in this case, α ∈ [1, 2] butm = 3 and, as shown

in Fig. 5 super convergence of order 2k + 1 is maintained in this case.
However, if the assumption that m ≥ �α� is violated, an α-dependent rate of

convergence re-emerges as illustrated in the following example. Consider a nonlinear
problem, given for t ∈ [0, 1] as
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Fig. 7 The convergence of (3.3) for k = 1 in (3.7). On the left we show the convergence at the downwind
points while the right figure displays L2-convergence. The real line (blue online) without marker is the
curve ∼ Cn−γ , where n is the number of elements and γ is an appropriate constant (color figure online)

C
0 D

α
t x(t)+

dx(t)

dt
=−2x2(t)+ �(6)

�(6−α)
t5−α+5t4+1 +2(t5 + t + 1)2, α ∈ [1, 2],

(3.6)

with the initial condition x(0) = 1, x ′(0) = 1 and the exact solution x(t) = t5+ t +1.
Figure 6 shows superconvergence of k + 1 + min{k, α} at the downstream point.

As a final example, let us consider

C
0 D

α
t x(t) = −2x(t) + �(6)

�(6 − α)
t5−α + 2t5 + 2t + 2, α ∈ [1, 2], (3.7)

on the computational domain t ∈ � = (0, 1), with the initial condition x(0) = 1,
x ′(0) = 1 and the exact solution x(t) = t5 + t + 1.

In Fig. 7 we show the results for k = 1. Following the previous analysis, we would
expect an order of convergence as k+1+min{k, α} which in this case would be third
order. However, the results in Fig. 7 highlights a reduction in the order of convergence
at the endpoint as α approaches the value one. The mechanism for this is not fully
understood but is likely associated with an over specification of the initial conditions
in this singular limit. Increasing k recovers the expected convergence rate for all values
of α.

Remark 3.1 From the simulation results, we can conclude that: (1) for all the schemes,
the optimal L2 convergence rates k + 1 with the global truncation errors C(α)hk+1

are obtained, and the value of C(α) is not very sensitive to the change of the value
of α; (2) in the case m = 3 and α ∈ [1, 2] (Fig. 5), at the downstream point the
superconvergence rate 2k + 1 with the global truncation errors C(α)h2k+1 is got and
C(α) is also not sensitive to the change of the value of α.
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4 Concluding remarks

We introduce an LDG schemes with upwind fluxes for general FODEs. The schemes
enable an element by element solution, hence avoiding the need for a full global solve.
Through analysis, we highlight that the scheme converges with the optimal order of
convergence order k + 1 in L2 norm and shows superconvergence at the downwind
point of each interval with an order of convergence order of k + 1+min{k, α}, where
α refers to the order of the fractional derivatives and k the degree of the approximating
polynomial. We discuss the mechanism for this superconvergence and extend the
discussion to cases where classic ODE terms of order m are included in the equation.
In this case, the order of the super convergence becomes k + 1+min{k,max{α,m}},
i.e., the behavior of the classic derivative dominates that of the fractional operator
providedm ≥ �α�. This is confirmed through examples. A final case in which k ≤ �α�
shows that in this case, the expected convergence of k + 1 + min{k, α} is violated as
α approaches one. The mechanism for this remains unknown and we hope to report
on that in future work.
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