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Abstract A quadrature formula of Clenshaw–Curtis type for functions of the form

(1−x2)λ− 1
2 f (x) over the interval [−1,1] exhibits a curious phenomenon when applied

to certain analytic functions. As the number of points in the quadrature rule increases
the error may sometimes decay to zero in two distinct stages rather than in one depend-
ing on the value of λ. In this paper we shall derive explicit and asymptotic error
formulae which describe this phenomenon.
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1 Introduction

In [15] (see also [3,14]) it was seen that Clenshaw–Curtis quadrature [2] exhibits a
rather curious phenomenon when used to approximate integrals of the form

∫ 1

−1
fz(x) dx, fz(x) = 1

z − x
, (1.1)
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where z is a complex number not in [−1,1], which is that the error does not decay to
zero evenly but does so in two distinct stages.

Recently [4] a quadrature rule based on the zeros of (1 − x2)T
′
n−1(x), which can

be regarded as a generalization of Clenshaw–Curtis quadrature, was derived for the

Gegenbauer weight function (1 − x2)λ− 1
2 , where λ > − 1

2 . In particular it was shown
that if I (λ)( f ) denotes the integral

I (λ)( f ) =
∫ 1

−1
(1 − x2)λ− 1

2 f (x) dx, λ > −1

2
, (1.2)

then

I (λ)( f ) = ψ(λ)
n ( f ) + E (λ)

n ( f ), (1.3)

where f (x) is a function analytic over some region of the complex plane containing the
interval [−1,1], ψ

(λ)
n ( f ) denotes the approximation to I (λ)( f ) and E (λ)

n ( f ) denotes
the error in that approximation.

A method for the evaluation of ψ
(λ)
n ( f ) was described in [4] and for the evaluation

of E (λ)
n ( f ) in [12], this latter method being similar to those methods used for the

evaluation of the error terms that arise in Gauss-Gegenbauer quadrature [8] or Gauss-
Jacobi quadrature [9], see also [7,10,11].

The question we shall address in this paper is: Does a similar phenomenon exist
for the quadrature rule in [4] as exists for Clenshaw–Curtis quadrature? In fact it will
be seen that when the function f (x) = fz(x) in (1.2) such a property does indeed
exist for λ = λp = (2p + 1)/2, p = 0, 1, . . .. Unfortunately however, expression
(1.3) with f (x) = fz(x) does not lend itself to our needs and so in order to proceed
we shall begin by deriving a different expression for the error term using the Hermite
contour integral representation of the error in polynomial interpolation [6, p. 251].

2 Error formula

Theorem 2.1 Let fz(x) be defined by (1.1), then

E (λ)
n ( fz) = Q(λ)

n (z) − Q(λ)
n−2(z)

Tn(z) − Tn−2(z)
n ≥ 2, (2.1)

where

Q(λ)
n (z) =

∫ 1

−1

(1 − x2)λ− 1
2 Tn(x)

z − x
dx, (z /∈ [−1, 1]). (2.2)
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Convergence properties of a quadrature formula 825

Proof Following [15, Theorem 1] and [6, p. 251] the pointwise error in the polynomial
interpolant pn−1(x) of fz(x) at the nodes {x j }nj=1 is given by

fz(x)− pn−1(x)= (x − x1) . . . (x − xn)

2π i

∫
C

1

(ζ − x1) . . . (ζ −xn)(ζ − x)(z − ζ )
dζ,

(2.3)

where C is a simple, closed, rectifiable curve enclosing the interval [−1,1] but exclud-
ing the pole ζ = z.

By deforming the contour C into a circle |ζ | = R and applying the residue theorem
to the integral in (2.3) then, as R → ∞,

fz(x) − pn−1(x) = (x − x1) . . . (x − xn)

(z − x1) . . . (z − xn)(z − x)
. (2.4)

Since [1]

(1 − x2)T
′
n−1(x) = (n − 1)

2
(Tn−2(x) − Tn(x)) n ≥ 2,

we shall define
wn(x) = Tn(x) − Tn−2(x) n ≥ 2. (2.5)

Thus, expression (2.4) leads to

∫ 1

−1
(1 − x2)λ− 1

2 fz(x) dx − I (λ)
n ( fz) = 1

wn(z)

∫ 1

−1

(1 − x2)λ− 1
2 wn(x)

z − x
dx, (2.6)

where I (λ)
n ( fz) denotes the approximation to I (λ)( fz). The theorem now follows from

expressions (2.2), (2.5) and (2.6).
Unfortunately it remains an open question both in the present paper and in [15] as

to whether the above can be extended in some form to more general functions. It is
not difficult however to generalise this theorem to any rational function of the form

r(x) =
m∑
i=0

ai x
i +

k∑
j=1

b j

x − z j
,

where all the poles z j are assumed to be distinct. Indeed, by (1.3) and (2.1) for any
n-point interpolatory rule with n > m

I (λ)(r) − ψ(λ)
n (r) =

k∑
j=1

b j

(
Q(λ)

n (z j ) − Q(λ)
n−2(z j )

Tn(z j ) − Tn−2(z j )

)
.
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Fig. 1 Absolute errors when approximating the integral in Sect. 5 by generalised Clenshaw–Curtis quadra-
ture using various values of n, n even with λ = 5/2. Note the logarithmic scale on the vertical axis. At a
certain value of n, indicated by the vertical, dashed line, the convergence rate decreases. The value of n
follows from Eq. (4.3) by using the method described in Sect. 5

In particular, since

a2

a2 + x2 = ai

2

(
1

ai + x
+ 1

ai − x

)
,

the error curve shown in Fig. 1 can be derived.
Finally, in order to continue we shall require the conformal mapping

z = 1

2
(ζ + ζ−1) ζ = ρeiθ 0 ≤ θ < 2π, (2.7)

which transforms the circle | ζ |= ρ > 1 onto an ellipse ερ with foci at z = ±1 and
semi-axes (ρ ± ρ−1)/2. �	

3 A generalization of Weideman et al.’s formula

Weideman et al. have derived a formula for Q(λ0)
n (z) which we shall generalise to one

for Q
(λp)
n (z) p = 0, 1, 2, . . ., see Theorem 3.2 below. In particular, when p = 0 the

following result is known [15].

Theorem 3.1 Assume z ∈ ερ; then

Q(λ0)
n (z) = μζ−nπ i +

{
Wn(ζ ) n even,
(Wn+1(ζ ) + Wn−1(ζ ))/2z n odd,
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Convergence properties of a quadrature formula 827

where μ is defined by

μ =
⎧⎨
⎩

−1 Im(z) > 0,

0 Im(z) = 0,

+1 Im(z) < 0,

(3.1)

Wn(ζ ) = 2
(
ζ−n Hn(ζ ) + ζ n Hn(1/ζ )

)
, (3.2)

and

Hn(t) =
∫ t

0

wn

1 − w2 dw, n = 0, 1, 2, . . . .

When z is real (i.e. ζ > 1 or ζ < −1) the first integral in (3.2) should be interpreted
as a Cauchy Principal Value integral.

In order to simplify the presentation of our proof of Theorem 3.2 it will be helpful
to move some of the more technical manipulations that arise therein, along with brief
summaries of their proofs if required, to Appendices A1–A7. This has the advantage
of allowing one to focus solely upon the theorem itself. We should also point out that
the proof of Theorem 3.2 that we shall give will not be the somewhat shorter proof
using Mathematical Induction but instead we follow a more general approach which
has the advantage of allowing us to choose other values of λ. Finally, throughout this
paper we define

B = Γ (λ + 1
2 )

√
π

Γ (λ + 1)
, L = (−1)p

22p−1 ,

and [4]

Zr (λ) =

⎧⎪⎪⎨
⎪⎪⎩

∏r−1
j=1(

j−λ
j+λ

) if r ≥ 2,

1 if r = 1,

−1 if r = 0,

−Z1−r (λ) if r < 0.

(3.3)

Lemma 3.1 For n odd, Q(λ)
n (z) = 1

2z

(
Q(λ)

n+1(z) + Q(λ)
n−1(z)

)
.

Proof It is well-known that [1]

2xTn(x) = Tn+1(x) + Tn−1(x). (3.4)

If we now substitute (3.4) into (2.2), partialise the integrand and recall that n is
assumed to be odd the result follows. �	
Theorem 3.2 Assume z ∈ ερ and λ = λp, p = 0, 1, 2, . . . and also let μ and
Wn(ζ ) be defined as in Theorem 3.1 then

Q
(λp)
n (z) = (−1)p

22p [ A(ζ ) + B(ζ ) ] , (3.5)
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828 H. V. Smith

where for

(i) n even

A(ζ ) =
(

ζ − 1

ζ

)2p [
μπ i

ζ n
+ Wn(ζ )

]
,

B(ζ ) = 4
p−1∑
j=0

⎡
⎣
⎛
⎝

j∑
k=0

(−1)k C2p
k δ2 j+1−2k

⎞
⎠
(

2p − 2 j − 1

n2 − (2p − 2 j − 1)2

)⎤
⎦ ,

with

δ2 j+1−2k = ζ 2 j+1−2k + 1

ζ 2 j+1−2k ,

and
(ii) n odd

A(ζ ) =
(

ζ − 1

ζ

)2p [
μπ i

ζ n
+ 1

2z
(Wn+1(ζ ) + Wn−1(ζ ))

]
,

and

B(ζ ) = 4
p−1∑
j=0

⎡
⎣
⎛
⎝

j∑
k=0

′ (−1)k C2p
k

(
ζ 2 j−2k + 1

ζ 2 j−2k

)⎞
⎠
(

2p − 2 j

n2 − (2p − 2 j)2

)⎤
⎦ ,

where the single prime indicates that the last term k= j is to be halved.
In the case p = 0 the term B(ζ ) should be omitted from (3.5), the theorem then
reducing to that of Theorem 3.1.

Proof We begin by recalling the following expansion for Q(λ)
n (z) which depends on

the parity of n. By setting
n = 2s + σ, (3.6)

where s is an integer and σ = 0 or 1 according to whether n is even or odd then [4]

Q(λ)
n (z) = B

∞∑
k=1

ζ 1−σ−2k [ Zk+s+σ (λ) + Zk−s(λ)
]
, (3.7)

where z ∈ ερ , z /∈ [−1, 1] and |ζ | > 1. In particular, for n even and λ = λp,

Q
(λp)
n (z)= B

⎛
⎝ ∞∑

k=1

ζ 1−2k Zk+ n
2
(λp) +

n
2∑

k=1

ζ 1−2k Zk− n
2
(λp) +

∞∑
k= n

2 +1

ζ 1−2k Zk− n
2
(λp)

⎞
⎠

= series 1 + series 2 + series 3. (3.8)

Let us now consider each series separately beginning with series 1, followed by series
3 and then finally series 2.
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(a) Series 1 From (3.8), A2 and (3.3) it follows that [5]

series 1 = L
2p∑
j=0

(
(−1) j C2p

j

∞∑
k=1

ζ 1−2k

n + 2k − 2p + 2 j − 1

)
. (3.9)

At this point it will be helpful to express the inner summation in (3.9) as follows.

(i) 0 ≤ j ≤ p − 1,

∞∑
k=1

ζ 1−2k

n + 2k − 2p + 2 j − 1
=

p− j∑
k=1

ζ−(2k−1)

n − (2p − 2 j − 2k + 1)

+ ζ n−2p+2 j Hn(1/ζ ), (3.10)

where the second term on the right-hand side of (3.10) follows by manipulating
a geometric series and expressing it in terms of an integral. Similarly for

(ii) j = p,

∞∑
k=1

ζ 1−2k

n + 2k − 1
= ζ n Hn(1/ζ ),

and for
(iii) p + 1 ≤ j ≤ 2p,

∞∑
k=1

ζ 1−2k

n + 2k − 2p + 2 j − 1
= −

j−p∑
k=1

ζ 2k−1

n + 2 j − 2p − 2k + 1

+ ζ n−2p+2 j Hn(1/ζ ).

By substituting (i), (ii) and (iii) into (3.9) and rearranging terms it follows that

1

L
series 1 =

p−1∑
j=0

⎛
⎝(−1) j C2p

j

p− j∑
k=1

ζ−(2k−1)

n − (2p − 2 j − 2k + 1)

⎞
⎠

−
2p∑

j=p+1

⎛
⎝(−1) j C2p

j

j−p∑
k=1

ζ 2k−1

n + (2 j − 2p − 2k + 1)

⎞
⎠

+
(

ζ − 1

ζ

)2p

ζ nHn(1/ζ ). (3.11)
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(b) Series 3 By repeating part (a) but this time using Zk− n
2
(p+1/2) it follows that

series 3 = − L
2p∑
j=0

⎛
⎝ (−1) j C2p

j

∞∑
k= n

2 +1

ζ 1−2k

n − (2k − 2p + 2 j − 1)

⎞
⎠ ,

which leads to

series 3

L
= −ζ−n

p−1∑
j=0

⎛
⎝(−1) j C2p

j ζ 2 j−2p
p− j∑
k=1

ζ 2k−1

2k − 1

⎞
⎠

−ζ−n
2p∑

j=p+1

⎛
⎝(−1) jC2p

j ζ 2 j−2p
j−p∑
k=1

ζ−(2k−1)

2k − 1

⎞
⎠+
(

ζ − 1

ζ

)2p 1

ζ n
H0(

1

ζ
).

(3.12)

(c) Series 2 To obtain a similar expression for Series 2 we first note that from (3.3)
and (3.8) Series 2 may be expressed as

Series 2 = − L
2p∑
j=0

⎛
⎝ (−1) j C2p

j

n
2∑

k=1

ζ−(2k−1)

n − (2k + 2p − 2 j − 1)

⎞
⎠ . (3.13)

In particular, for

(iv) 0 ≤ j ≤ p − 1,

n
2∑

k=1

ζ−(2k−1)

n − (2k + 2p − 2 j − 1)

= ζ 2p−2 j−n

⎡
⎣−

p− j∑
k=1

ζ−(2k−1)

2k − 1
−

p− j∑
k=1

ζ n−(2k−1)

n − (2k − 1)
+ H0(ζ ) − Hn(ζ )

⎤
⎦ ,

(3.14)

(v) j = p,
n
2∑

k=1

ζ−(2k−1)

n − (2k − 1)
= ζ−n (H0(ζ ) − Hn(ζ )), (3.15)

and

(vi) p + 1 ≤ j ≤ 2p,

n
2∑

k=1

ζ−(2k−1)

n − (2k + 2p − 2 j − 1)
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= ζ 2p−2 j−n

⎡
⎣−

j−p∑
k=1

ζ 2k−1

2k − 1
+

j−p∑
k=1

ζ n+(2k−1)

n + (2k − 1)
+ H0(ζ ) − Hn(ζ )

⎤
⎦ .

(3.16)

Substituting (3.14), (3.15) and (3.16) into (3.13) now leads to

Series 2

L
= − (−1)p C2p

p ζ−n [H0(ζ ) − Hn(ζ )]

−
p−1∑
j=0

(−1) j C2p
j

ζ n+2 j−2p

⎡
⎣−

p− j∑
k=1

ζ−(2k−1)

2k − 1
−
p− j∑
k=1

ζ n−(2k−1)

n − (2k − 1)
+ H0(ζ ) − Hn(ζ )

⎤
⎦

−
2p∑

j=p+1

(−1) j C2p
j

ζ n+2 j−2p

⎡
⎣−

j−p∑
k=1

ζ 2k−1

2k − 1
+

j−p∑
k=1

ζ n+(2k−1)

n + (2k − 1)
+ H0(ζ ) − Hn(ζ )

⎤
⎦ .

(3.17)

As we shall see the desired result, expression (3.5), will now follow by adding
together Series 1, 2 and 3 and simplifying. For clarity of presentation however
we shall begin by simplifying the sum of those terms in (3.11), (3.12) and (3.17)
that contain an integral followed by simplifying the sum of the remaining terms.

(d) Terms that contain an integral.

(
ζ − 1

ζ

)2p [
ζ n Hn

(
1

ζ

)
+ 1

ζ n
Hn(ζ ) + 1

ζ n

(
H0

(
1

ζ

)
− H0(ζ )

)]

= 1

2
Wn(ζ )

(
ζ − 1

ζ

)2p

+ 1

2ζ n

(
ζ − 1

ζ

)2p [
ln

(
ζ + 1

ζ − 1

)
− ln

(
1 + ζ

1 − ζ

)]
,

(3.18)

where the terms in square brackets reduce to π i when Im(ζ ) > 0 and to −π i
when Im(ζ ) < 0. Thus, the right-hand side of expression (3.18) becomes

1

2

(
ζ − 1

ζ

)2p

Wn(ζ ) + 1

2

μπ i

ζ n

(
ζ − 1

ζ

)2p

, (3.19)

where μ is defined as in (3.1).

(e) The remaining terms. Some of the expressions we shall meet in this section and
elsewhere are somewhat cumbersome and so, where necessary, we shall let

K = 2k − 1,

αp, j = p − j ( j = 0, 1, . . . , p − 1) and

βp, j = j − p, ( j = p + 1, . . . , 2p).
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832 H. V. Smith

Thus, by A2b the sum of the remaining terms S is given by

S =
p−1∑
j=0

(
(−1) j C2p

j ζ 2αp, j

αp, j∑
k=1

ζ−K

n − K

)
−

2p∑
j=p+1

⎛
⎝(−1) j C2p

j ζ−2βp, j

βp, j∑
k=1

ζ K

n + K

⎞
⎠

+
p−1∑
j=0

(
(−1) j C2p

j

αp, j∑
k=1

ζ−K

n − (2αp, j − K )

)
−

2p∑
j=p+1

⎛
⎝(−1) j C2p

j

βp, j∑
k=1

ζ K

n + (2βp, j − K )

⎞
⎠ .

Bearing in mind A2, A3 with ζ replaced by 1/ζ and A4 the previous line becomes

S = 2
p−1∑
j=0

(
(−1) j C2p

j ζ 2αp, j

αp, j∑
k=1

K ζ−K

n2 − K 2

)
+

p−1∑
j=0

(
(−1) j C2p

j

αp, j∑
k=1

ζ K−2αp, j

n − K

)

−
p−1∑
j=0

(
(−1) j C2p

j ζ−2αp, j

αp, j∑
k=1

ζ K

n + K

)

= 2
p−1∑
j=0

⎡
⎣
⎛
⎝

j∑
k=0

(−1)k C2p
k δ2 j+1−2k

⎞
⎠
(

2p − 2 j − 1

n2 − (2p − 2 j − 1)2

)⎤
⎦ . (3.20)

Expression (3.5) now follows by adding (3.19) to (3.20) and multiplying the
result by (−1)p/22p−1. �	

Proof of Theorem 3.2(ii). Since n is assumed to be odd that is, n ± 1 are both even, it
follows from Lemma 3.1, expression (3.5) and part i) of this theorem that

(−1)p22p Q
(p+ 1

2 )
n (z) =

(
ζ − 1

ζ

)2p [
μπ i

ζ n
+ 1

2z
(Wn+1(ζ ) + Wn−1(ζ ))

]
+

2

z

p−1∑
j=0

⎡
⎣
⎛
⎝

j∑
k=0

(−1)k C2p
k δ2 j+1−2k

⎞
⎠
(

2αp, j

n2 − (2αp, j )2 + 2αp, j − 2

n2 − (2αp, j − 2)2

)⎤
⎦ .

(3.21)

Letting

A j =
j∑

k=0

(−1)k C2p
k δ2 j+1−2k, (3.22)

the summation part of (3.21) may now be expressed as

A02p

n2 − (2p)2 +
p−1∑
j=1

(A j−1 + A j )
(2αp, j )

n2 − (2αp, j )2 ,
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that is,

(−1)p22p Q
(p+ 1

2 )
n (z) =

(
ζ − 1

ζ

)2p [
μπ i

ζ n
+ 1

2z
(Wn+1(ζ ) + Wn−1(ζ ))

]

+2

z

⎛
⎝ A02p

n2 − (2p)2 +
p−1∑
j=1

(A j−1 + A j )
(2αp, j )

n2 − (2αp, j )2

⎞
⎠ .

(3.23)

By comparing (3.23) with (3.5) when n is odd the desired result will follow if

1

2z
A0 = 1, (3.24)

and

1

2z
(A j−1 + A j ) =

j∑
k=0

′ (−1)k C2p
k

(
ζ 2 j−2k + 1

ζ 2 j−2k

)
j = 1, . . . , p − 1.

(3.25)
Clearly, by (2.7) and (3.22) expression (3.24) follows. Also, from A5 and (3.22)

for j = 1, . . . , p − 1 it follows that

1

2z
(A j−1 + A j ) = (−1)0 C2p

0

(
ζ 2 j + 1

ζ 2 j

)

+
j−1∑
r=1

(
(−1)r C2p

0 +
r−1∑
k=0

(−1)r−1
(
C2p
k − C2p

k+1

))(
ζ 2 j−2r + 1

ζ 2 j−2r

)

+
⎛
⎝(−1) j C2p

0 +
j−1∑
k=0

(−1) j−1
(
C2p
k − C2p

k+1

)⎞⎠ ,

which, after cancellation of some terms reduces to expression (3.25).
Expression (3.5) now follows by substituting (3.24) and (3.25) into (3.23).

4 Error analysis, n large

Since it is well-known [13] that for z ∈ ερ with n → ∞

Tn(z) = 1

2
(ζ n + ζ−n) ∼ ζ n

2
, (4.1)

it follows that the denominator in expression (2.1) is O(ρn) and so any change in the

rate of convergence of E
(p+ 1

2 )
n ( fz) must come from the numerator. For this reason we
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shall begin by considering the numerator of (2.1). We shall also require the following
lemma.

Lemma 4.1 For n even and ζ /∈ (−∞,−1] ∪ [1,∞)

Wn(ζ ) = −4ζ(ζ 2 + 1)

(ζ 2 − 1)2

1

n2 − 4ζ(ζ 2 + 1)

(ζ 2 − 1)4 (ζ 4 +22ζ 2 +1)
1

n4 + O

(
1

n6

)
. (4.2)

Proof Repeated integration by parts of the integrals in (3.2).
We are now in a position to derive the rate of convergence of the error term

E
(p+ 1

2 )
n ( fz) for large n. To this end we shall deduce the following theorem. �	

Theorem 4.1 Assume z ∈ ερ and ζ /∈ (−∞,−1] ∪ [1,∞) then, as n → ∞, for

(a) n even

Q
(p+ 1

2 )
n (z) − Q

(p+ 1
2 )

n−2 (z) = (−1)p+1μπ i

22pζ n−1

(
ζ − 1

ζ

)2p+1

+ (−1)p+13

22p−4

(
ζ − 1

ζ

)2p−2 (
ζ + 1

ζ

)
1

n4 + O

(
1

n5

)
, (4.3)

(b) n odd the second and third terms on the right-hand side of (4.3) are to be replaced
by

(−1)p+1

22p−8 (�1 − �2)
1

n5
+ O

(
1

n6

)
, (4.4)

where

�1 =
p−1∑
j=0

′
⎛
⎝

j∑
k=0

( j − k + 1)3 (−1)k C2p
k

⎞
⎠
(

ζ 2p−2−2 j + 1

ζ 2p−2−2 j

)
,

and

�2 = ζ 4 + 4ζ 2 + 1

(ζ 2 − 1)2

(
ζ − 1

ζ

)2p−2

.

Proof of Theorem 4.1a Since n is assumed to be even then by (3.5) and Lemma 4.1

(−1)p22p
(
Q

(p+ 1
2 )

n (z) − Q
(p+ 1

2 )

n−2 (z)

)
= − μπ i

ζ n−1

(
ζ − 1

ζ

)2p+1

+ 4
p−1∑
j=0

⎡
⎣
⎛
⎝

j∑
k=0

(−1)k C2p
k

δ−1
2 j+1−2k

⎞
⎠
(

2αp, j − 1

n2 − (2αp, j − 1)2 − 2αp, j − 1

(n − 2)2 − (2αp, j − 1)2

)⎤
⎦

+
(

ζ − 1

ζ

)2p

( Wn(ζ ) − Wn−2(ζ )) .
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∼ μπ i

ζ n−1

(
ζ − 1

ζ

)2p+1

+
⎡
⎣

p−1∑
j=0

(
2αp, j − 1

)
⎛
⎝

j∑
k=0

(−1)k C2p
k δ2 j+1−2k

⎞
⎠ −
(

ζ − 1

ζ

)2p−2 (
ζ + 1

ζ

)⎤
⎦ 16

n3

+
⎡
⎣

p−1∑
j=0

(
2αp, j − 1

)
⎛
⎝

j∑
k=0

(−1)k C2p
k δ2 j+1−2k

⎞
⎠
⎤
⎦ 48

n4 + O

(
1

n5

)
. (4.5)

The result now follows since by A7 the second term on the right-hand side of (4.5)
is zero and the double summation in the third term may be replaced by the right-hand
side of A7.

We shall now derive the following lemmas and then deduce Theorem 4.1b.

Lemma 4.2 Assuming n to be odd and ζ /∈ (−∞,−1] ∪ [1,∞) then, as n → ∞,

1

2z

(
ζ − 1

ζ

)2

(Wn+1(ζ ) − Wn−3(ζ )) = 32

n3 + 96

n4 + (ζ 6 − 1)

(ζ 2 − 1)3

512

n5
+ O

(
1

n6

)
.

Proof Since n is assumed to be odd, that is n + 1 and n − 3 are both even, and

1

2z

(
ζ − 1

ζ

)2

= (ζ 2 − 1)2

ζ(ζ 2 + 1)
,

it follows from Lemma 4.1 that

1

2z

(
ζ − 1

ζ

)2

(Wn+1(ζ ) − Wn−3(ζ )) = 4

(
1

(n − 3)2 − 1

(n + 1)2

)

+4(ζ 4 + 22ζ 2 + 1)

(ζ 2 − 1)2

(
1

(n − 3)4 − 1

(n + 1)4

)
+ O

(
1

n6

)

= 32

n3 + 96

n4 + (ζ 6 − 1)

(ζ 2 − 1)3

512

n5
+ O

(
1

n6

)
,

as required. �	
Lemma 4.3

p−1∑
j=0

⎛
⎝(p − j)

j∑
k=0

′ (−1)k C2p
k

(
ζ 2 j−2k + 1

ζ 2 j−2k

)⎞
⎠ =

(
ζ − 1

ζ

)2p−2

p ≥ 1.

(4.6)
�	

Proof (i) By mathematical induction it is easy to deduce that

r−1∑
k=0

(−1)k(r − k) C2p
k = (−1)r−1 C2p−2

r−1 2p ≥ r + 1.
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(ii) If the terms on the left-hand side of (4.6) are now rearranged it follows that

p−1∑
j=0

⎛
⎝(p − j)

j∑
k=0

′ (−1)k C2p
k

(
ζ 2 j−2k + 1

ζ 2 j−2k

)⎞
⎠

=
p∑

i=1

′
(

i−1∑
k=0

(−1)k(i − k) C2p
k

) (
ζ 2p−2i + 1

ζ 2p−2i

)

=
(

ζ − 1

ζ

)2p−2

(by part(i)).

�	
Remark 4.1 By rearranging terms

p−1∑
j=0

⎛
⎝(p − j)3

j∑
k=0

′ (−1)k C2p
k

(
ζ 2 j−2k + 1

ζ 2 j−2k

)⎞
⎠

=
p−1∑
j=0

′
⎛
⎝

j∑
k=0

(−1)k( j − k + 1)3 C2p
k

⎞
⎠
(

ζ 2p−2−2 j + 1

ζ 2p−2−2 j

)
.

Remark 4.2 As n → ∞
1

n2 − 4(p − j)2 − 1

(n − 2)2 − 4(p − j)2 = − 4

n3 − 12

n4 − 32[(p − j)2 + 1]
n5

+O

(
1

n6

)
.

Proof of Theorem 4.1b. Since n is now assumed to be odd it follows from Theorem
3.2(ii) that

(−1)p22p
(
Q

(p+ 1
2 )

n (z) − Q
(p+ 1

2 )

n−2 (z)

)
= − μπ i

ζ n−1

(
ζ − 1

ζ

)2p+1

+ 4
p−1∑
j=0

⎡
⎣

j∑
k=0

′(−1)k C2p
k

(
ζ 2 j−2k + 1

ζ 2 j−2k

)(
2αp, j

n2 − (2αp, j )2 − 2αp, j

(n − 2)2 − (2αp, j )2

)⎤
⎦

+ 1

2z

(
ζ − 1

ζ

)2p

( Wn+1(ζ ) − Wn−3(ζ )) .

After rearranging terms it follows from Remarks 4.1, 4.2 and Lemma 4.2 that

(−1)p22p
(
Q

(p+ 1
2 )

n (z) − Q
(p+ 1

2 )

n−2 (z)

)
= − μπ i

ζ n−1

(
ζ − 1

ζ

)2p+1

−
⎡
⎣

p−1∑
j=0

⎛
⎝(p − j)

j∑
k=0

′ (−1)k C2p
k

(
ζ 2 j−2k + 1

ζ 2 j−2k

)⎞
⎠−
(

ζ − 1

ζ

)2p−2
⎤
⎦
(

32

n3 + 96

n4

)
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−
⎡
⎣256

p−1∑
j=0

⎛
⎝(p − j)

(
(p − j)2 + 1

) j∑
k=0

′ (−1)k C2p
k

(
ζ 2 j−2k + 1

ζ 2 j−2k

)⎞
⎠
⎤
⎦ 1

n5

+512(ζ 6 − 1)

(ζ 2 − 1)3

(
ζ − 1

ζ

)2p−2 1

n5
+ O

(
1

n6

)
.

By Lemma 4.3 the second term on the right-hand side is zero and, by Lemma 4.3 and
Remark 1 the third term may be rewritten to give

(−1)p22p
(
Q

(p+ 1
2 )

n (z) − Q
(p+ 1

2 )

n−2 (z)

)
= − μπ i

ζ n−1

(
ζ − 1

ζ

)2p+1

− 256

[
�1 + ((ζ 2 − 1)3 − 2(ζ 6 − 1))

(ζ 2 − 1)3

(
ζ − 1

ζ

)2p−2
]

1

n5
+ O

(
1

n6

)

= − μπ i

ζ n−1

(
ζ − 1

ζ

)2p+1

− 256 (�1 − �2)
1

n5
+ +O

(
1

n6

)
,

as required.
As described in [15], for |ζ | near 1 with n even and initially less than some critical

value the first term on the right-hand side of (4.3) may dominate whereas for n greater
than this critical value the second term dominates. A similar comment refers to when
n is odd by taking account of (4.4).

Finally, Theorems 2.1 and 4.1 together with expression (4.1) lead to the following
result whereC (λ)

n ( fz) denotes the n-point generalised Clenshaw–Curtis approximation
to I (λ)( fz).

Theorem 4.2 For ζ /∈ (−∞,−1] ∪ [1,∞) and assuming

(a) n to be even then the n → ∞ behaviour of the generalised Clenshaw–Curtis
quadrature error is given by

I (p+ 1
2 )( fz) − C

(p+ 1
2 )

n ( fz) ∼ (−1)p+13(ζ − 1
ζ
)2p−3(ζ + 1

ζ
)

22p−5 ζ n−1n4
,

whereas for n less than the critical value

I (p+ 1
2 )( fz) − C

(p+ 1
2 )

n ( fz) ∼ (−1)p+1μπ i

22p−1ζ 2n−2

(
ζ − 1

ζ

)2p

.

(b) n to be odd then the n → ∞ behaviour of the generalised Clenshaw–Curtis
quadrature error is given by

I (p+ 1
2 )( fz) − C

(p+ 1
2 )

n ( fz) ∼ (−1)p+1

22p−9ζ n−1
(
ζ − 1

ζ

) [�1 − �2]
1

n5
,
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whereas for n less than the critical value

I (p+ 1
2 )( fz) − C

(p+ 1
2 )

n ( fz) ∼ (−1)p+1μπ i

22p−1ζ 2n−2

(
ζ − 1

ζ

)2p

.

5 The approximate location of the critical value

In any numerical example the approximate value of n at which the location of the
critical value occurs is characterised by the fact that for n even the modulus of the first
term on the right-hand side of (4.3) is equal to the modulus of the second term. (For
n odd the equivalent terms from Theorem 4.1b should be chosen).

To illustrate this point let us consider the following integral

∫ 1

−1

(1 − x2)λ− 1
2

1 + 16x2 dx .

In the case of Clenshaw–Curtis quadrature, that is for λ = 1
2 , it was shown in [15]

that for n even and

ζ = 1 + √
17

4
i,

the critical value is located at approximately n = 54.
If we now assume p = 2 for example, that is λ = 5

2 , and again using the same
value for ζ then by equating the modulus of the first term on the right-hand side of
(4.3) to the modulus of the second term we see that the critical value now occurs at
approximately n = 70, see Fig. 1.

6 Integer values of λ

Little is known concerning the behaviour of the error term for integer values of λ. Only
in the case of Lobatto-Chebyshev quadrature , for which λ = 0, can it be inferred
that the error term does not decay to zero in two distinct stages since the rule is then
known to be of Gaussian type. Indeed, when λ = 0, it follows from (3.3) that

Zr (0) =
{

1 if r ≥ 1,

−1 if r ≤ 0.
(6.1)

By taking account of (3.6) and (6.1) expression (3.7) leads to

Q(0)
n (z) = π ζ−n( ζ − ζ−1)−1,

from which it follows
Q(0)

n (z) − Q(0)
n−2(z) = − π

ζ n−1 . (6.2)
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If we now recall the comments made in Sect. 5 concerning Theorem 4.1 then by (6.2)
the error in Lobatto-Chebyshev quadrature does not decay to zero in two distinct stages
but does so as follows.

Theorem 6.1 The n → ∞ behaviour of the Lobatto-Chebyshev quadrature error
is given by

I (0)( fz) − C (0)
n ( fz) ∼ −2π

ζ 2n−1(1 − ζ−2)
.

Proof The result follows from expressions (4.1), (6.2) and (2.1) with λ = 0.

Finally we prove the following theorem. �	
Theorem 6.2 If λ0 is a fixed, positive integer and

n + σ > 2λ0 + 1,

then the n → ∞ behaviour of the quadrature error is given by

I (λ0)( fz) − C (λ0)
n ( fz) ∼ (−1)λ0+1π (ζ − ζ−1)2λ0−1

22λ0−1ζ 2n−2 .

Proof In [4, Theorem3.2] it was shown that

Q(λ0)
n − Q(λ0)

n−2 = (−1)λ0+1π (ζ − ζ−1)2λ0

22λ0ζ n−1 ,

from which the result follows. �	
Acknowledgments The author is indebted to both referees for their very helpful comments which have
led to a considerable improvement of the paper and my grateful thanks go to Nairn Kennedy whose technical
expertise proved invaluable.

Appendices

(A1) For any integer p = 0, 1, 2, . . .

(a) By inspection

B
∏2p

i=0(1 − 2p + 2i)

22p(2p)! = L .

(b) From (3.3) for r ≥ 2

Zr

(
2p + 1

2

)
=

2p∏
i=0

(1 − 2p + 2i)
2p∏
j=0

1

2r − 2p + 2 j − 1
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= 1

22p (2p)!
2p∏
i=0

(1 − 2p + 2i)
2p∑
j=0

(−1) j C2p
j

2r − 2p + 2 j − 1
. (7.1)

Bearing in mind part (a) we see that from (7.1)

BZr

(
2p + 1

2

)
= L

2p∑
j=0

(−1) j C2p
j

2r − 2p + 2 j − 1
.

(A2)

(a) If we reverse the order of the inner summation followed by the order of the outer
summation in the following we see that

2p∑
j=p+1

⎛
⎝(−1) j C2p

j

j−p∑
k=1

ζ 2k−1

n + (2 j − 2p − 2k + 1)

⎞
⎠

=
p∑

j=1

⎛
⎝(−1)p− j C2p

p− j

j∑
k=1

ζ 2 j+1−2k

n + (2k − 1)

⎞
⎠

=
p−1∑
j=0

⎛
⎝(−1) jC2p

j

p− j∑
k=1

ζ 2p−2 j−2k+1

n + (2k − 1)

⎞
⎠ . (7.2)

(b) By substituting n = 0 into (7.2), rearranging the terms on the left-hand side and
finally substituting 1/ζ for ζ into the resulting expression it follows that

2p∑
j=p+1

⎛
⎝(−1) j C2p

j ζ−2( j−p)
j−p∑
k=1

ζ 2k−1

2k − 1

⎞
⎠

=
p−1∑
j=0

⎛
⎝(−1) j C2p

j ζ−2(p− j)
p− j∑
k=1

ζ 2k−1

2k − 1

⎞
⎠ .

(A3)

p−1∑
j=0

⎛
⎝(−1) j C2p

j ζ 2p−2 j

⎛
⎝

p− j∑
k=1

(2k − 1)ζ−(2k−1)

n2 − (2k − 1)2

⎞
⎠
⎞
⎠

=
p−1∑
j=0

⎛
⎝
⎛
⎝

j∑
k=0

(−1)k C2p
k ζ 2 j−(2k−1)

⎞
⎠ 2p − 2 j − 1

n2 − (2p − 2 j − 1)2

⎞
⎠ . (7.3)

Proof The right-hand side of (7.3) follows by rewriting the left-hand side, which is a
summation in terms of C2p

r ζ 2p−2r , as a summation in terms of (2p − 2r − 1)/(n2 −
(2p − 2r − 1)2).
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(A4)

p−1∑
j=0

⎛
⎝(−1) j C2p

j

p− j∑
k=1

ζ−(2k−1)

n − (2p − 2 j − 2k + 1)

⎞
⎠

=
p−1∑
j=0

⎛
⎝(−1) j C2p

j

p− j∑
k=1

ζ 2 j−2p+2k−1

n − (2k − 1)

⎞
⎠

�	
Proof The inner summation on the left-hand side is of the form

Mj∑
k=1

ζ−(2k−1)

n − (2Mj − (2k − 1))
, (7.4)

and on the right-hand side of the form

Mj∑
k=1

ζ−(2Mj−(2k−1))

n − (2k − 1)
, (7.5)

where Mj = p− j . For j fixed (7.4) and (7.5) are equivalent, hence the result follows.
�	

(A5) Assume z ∈ ερ then

2z

(
r−1∑
s=0

(−1)s
(

ζ 2(r−s) + 1

ζ 2(r−s)

)
+ (−1)r

)
= ζ 2r+1 + 1

ζ 2r+1 . (7.6)

Proof Since 2z = ζ + 1/ζ (7.6) follows immediately.

(A6)

j∑
k=0

(2 j − 2k + 1)(−1)kC2p
k = (−1) j

(
C2p−2

j − C2p−2
j−1

)
2p − 2 ≥ j.

Proof Using mathematical induction it is easy to deduce that

r∑
k=0

(−1)k C2p
k = (−1)r C2p−1

r 2p ≥ r + 1, (7.7)

and by the factorial definition of Cn
r , that

C2p−2
r−1 + C2p

r+1 − 2 C2p−1
r = C2p−2

r+1 2p ≥ r + 3. (7.8)

If we now bear in mind (7.7) and (7.8) then, once again, by using mathematical
induction the result follows. �	
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(A7)

p−1∑
j=0

(2p − 1 − 2 j)

⎛
⎝

j∑
k=0

(−1)k C2p
k δ2 j+1−2k

⎞
⎠

=
(

ζ − 1

ζ

)2p−2 (
ζ + 1

ζ

)
p = 1, 2, . . .

Proof By rearranging the terms on the left-hand side and bearing in mind A6 the
right-hand side follows. �	
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