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Abstract We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algo-
rithm for weak approximation of stochastic models. The CMLMC algorithm solves the
given approximation problem for a sequence of decreasing tolerances, ending when
the required error tolerance is satisfied. CMLMC assumes discretization hierarchies
that are defined a priori for each level and are geometrically refined across levels. The
actual choice of computational work across levels is based on parametric models for
the average cost per sample and the corresponding variance and weak error. These
parameters are calibrated using Bayesian estimation, taking particular notice of the
deepest levels of the discretization hierarchy, where only few realizations are available
to produce the estimates. The resulting CMLMC estimator exhibits a non-trivial split-
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ting between bias and statistical contributions. We also show the asymptotic normality
of the statistical error in the MLMC estimator and justify in this way our error esti-
mate that allows prescribing both required accuracy and confidence in the final result.
Numerical results substantiate the above results and illustrate the corresponding com-
putational savings in examples that are described in terms of differential equations
either driven by random measures or with random coefficients.

Keywords Multilevel Monte Carlo · Monte Carlo · Partial differential equations
with random data · Stochastic differential equations · Bayesian inference

Mathematics Subject Classification 65C05 · 65N22

1 Introduction

Multilevel Monte Carlo Sampling was first introduced for applications in the context
of parametric integration by Heinrich [18,19]. Later, to consider weak approxima-
tion of stochastic differential equations (SDEs) in mathematical finance, Kebaier [24]
introduced a two-level Monte Carlo technique in which a coarse grid numerical approx-
imation of an SDE was used as a control variate to a fine grid numerical approxima-
tion, thus reducing the number of samples needed on the fine grid and decreasing
the total computational burden. This idea was extended to a multilevel Monte Carlo
(MLMC) method by Giles in [12], who introduced a full hierarchy of discretiza-
tions with geometrically decreasing grid sizes. By optimally choosing the number of
samples on each level this MLMC method decreases the computational burden, not
only by a constant factor as standard control variate techniques do, but even reducing
the rate in the computational complexity to compute a solution with error tolerance
TOL > 0 from O(TOL−3) of the standard Euler-Maruyama Monte Carlo method
to O(log (TOL)2TOL−2), assuming that the work to generate a single realization is
O(TOL−1). For one-dimensional SDEs, the computational complexity of MLMC was
further reduced to O(TOL−2) by using the Milstein Scheme [11]. Moreover, the same
computational complexity can be achieved by using antithetic control variates with
MLMC in multi-dimensional SDEs with smooth and piecewise smooth payoffs [16].

This standard MLMC method has since then been extended and applied in a wide
variety of contexts, including jump diffusions [31] and Partial Differential Equations
(PDEs) with random coefficients [5–7,13,30]. It is shown in [30, Theorem 2.3] that
there is an optimal convergence rate that is similar to the previously mentioned com-
plexity rates, but that depends on the relation between the rate of variance convergence
of the discretization method of the underlying equation and the work complexity asso-
ciated with generating a single sample of the quantity of interest. In fact, in certain
cases, the computational complexity can be of the optimal rate, namely O(TOL−2).

To achieve the optimal MLMC complexity rate and to obtain an estimate of the
statistical error, sufficiently accurate estimates of the variance on each level must
be obtained. Moreover, finding the optimal number of levels requires a sufficiently
accurate estimate of the bias. As such, an algorithm is needed to find these estimates
without incurring a significant overhead to the estimation of the wanted quantity of
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interest. In [12], Giles proposed an algorithm, henceforth referred to as Standard
MLMC or SMLMC, that works by iteratively increasing the number of levels and
using sample variance estimates across levels. Moreover, SMLMC uses an arbitrary
fixed accuracy splitting between the bias and the statistical error contributions. Other
works [7,14,15,29] listed similar versions of this algorithm. We outline this algorithm
in Sect. 3.

In Sect. 4, we propose a novel continuation type of MLMC algorithm that uses
models for variance and weak convergence and for average computational work per
sample. We refer to this algorithm as Continuation MLMC or CMLMC. The CMLMC
algorithm solves the given problem for a sequence of decreasing tolerances, which
plays the role of a continuation parameter, the algorithm ends when the required
error tolerance is satisfied. Solving this sequence of problems allows CMLMC to find
increasingly accurate estimates of the bias and variances on each level, in addition to the
quantity of interest, which is the goal of the computation. In each case, given the current
estimate of problem parameters, the optimal number of levels of the MLMC hierarchy
is found. Moreover, we use a Bayesian inference approach to robustly estimate the
various problem parameters. The CMLMC algorithm is able to relax the statistical
error bound given the bias estimate, to achieve the optimal splitting between the two.
These techniques improve the computational complexity of the CMLMC algorithm
and decreases the variability of the running time of the algorithm.

The outline of this work is as follows: We start in Sect. 2 by recalling the MLMC
method and the assumed models on work, and on weak and variance convergence. After
introducing the algorithms in Sects. 3 and 4, Sect. 5 presents numerical examples,
which include three-dimensional PDEs with random inputs and an Itô SDE. Finally,
we finish by offering conclusions and suggesting directions for future work in Sect. 6.

2 Multilevel Monte Carlo

2.1 Problem setting

Let g(u) denote a real valued functional of the solution, u, of an underlying stochastic
model. We assume that g is either a bounded linear functional or Lipschitz with
respect to u. Our goal is to approximate the expected value, E [g(u)], to a given
accuracy TOL and a given confidence level. We assume that individual outcomes of
the underlying solution u and the evaluation of the functional g(u) are approximated
by a discretization-based numerical scheme characterized by a mesh size, h. The
value of h will govern the weak and strong errors in the approximation of g(u) as we
will see below. To motivate this setting, we now give two examples and identify the
numerical discretizations, the discretization parameter, h, and the corresponding rates
of approximation. The first example is common in engineering applications like heat
conduction and groundwater flow. The second example is a simple one-dimensional
geometric Brownian motion with European call option.

Example 2.1 Let (Ω,F ,P) be a complete probability space and D be a bounded
convex polygonal domain in R

d . Find u : D×Ω → R that solves almost surely (a.s.)
the following equation:

123



402 N. Collier et al.

−∇ · (a(x;ω)∇u(x;ω)) = f (x;ω) for x ∈ D,

u(x;ω) = 0 for x ∈ ∂D,

where ω ∈ Ω and the value of the diffusion coefficient and the forcing are represented
by random fields, yielding a random solution. We wish to compute E [g(u)] for some
deterministic functional g which is globally Lipschitz satisfying |g(u) − g(v)| ≤
G‖u − v‖H1(D) for some constant G > 0 and all u, v ∈ H1(D). Following [30], we
also make the following assumptions

– amin(ω) = minx∈D a(x;ω) > 0 a.s. and 1/amin ∈ L p
P
(Ω), for all p ∈ (0,∞).

– a ∈ L p
P
(Ω,C1(D)), for all p ∈ (0,∞).

– f ∈ L p∗
P

(Ω, L2(D)) for some p∗ > 2.

Here, L p
P
(Ω,B) is the space of B-valued random fields with a finite p’th moment

of their B-norm, where the p’th moment is with respect to measure P. On the other
hand, C1(D) is the space of continuously differentiable functions with the usual norm
[6]. Note that with these assumptions and since D is bounded, one can show that
maxx∈D a(x;ω) < ∞ a.s. A standard approach to approximate the solution of the
previous problem is to use Finite Elements on regular triangulation. In such a set-
ting, the parameter h > 0 refers to either the maximum element diameter or another
characteristic length and the corresponding approximate solution is denoted by uh(ω).
For piecewise linear or piecewise d-multilinear continuous finite element approxima-
tions, and with the previous assumptions, it can be shown [30, Corollary 3.1] that
asymptotically as h → 0:

– |E [g(u) − g(uh)]| � QW h2 for a constant QW > 0.
– Var [g(u) − g(uh)] � QS h4 for a constant QS > 0.

Example 2.2 Here we study the weak approximation of Itô stochastic differential
equations (SDEs),

du(t) = a(t, u(t))dt + b(t, u(t))dW (t), 0 < t < T, (2.1)

where u(t;ω) is a stochastic process in R
d , with randomness generated by a k-

dimensional Wiener process with independent components, W (t;ω), cf. [23,26],
and a(t, u) ∈ R

d and b(t, u) ∈ R
d×k are the drift and diffusion fluxes, respec-

tively. For any given sufficiently well behaved function, g : R
d → R, our goal

is to approximate the expected value, E [g(u(T ))]. A typical application is to com-
pute option prices in mathematical finance, cf. [17,22], and other related models
based on stochastic dynamics. When one uses a standard Euler Maruyama (Forward
Euler) method based on uniform time steps of size h to approximate (2.1), the fol-
lowing rates of approximation hold: |E [g(u(T )) − g(uh(T ))]| = QW h + o(h) and
E
[
(g(u(T )) − g(uh(T )))2

] = QS h + o(h), for some constants, 0 < QW , QS < ∞,
different from the constants of the previous example. For suitable assumptions on the
functions a, b and g, we refer to [25,28].

To avoid cluttering the notation, we omit the reference to the underlying solution
from now on, simply denoting the quantity of interest by g. Following the standard
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MLMC approach, we assume, for any given non-negative integer L ∈ N, that we have
a hierarchy of L + 1 meshes defined by a decreasing sequence of mesh sizes {h�}L�=0
where h� = h0β

−� for some h0 > 0 and a constant integer β > 1. We denote the
resulting approximation of g using mesh size h� by g�, or by g�(ω) when we want
to stress the dependence on an outcome of the underlying random model. Using the
following notation:

G�(ω) =
{
g0(ω) if � = 0,

g�(ω) − g�−1(ω) if � > 0,

the expected value of the finest approximation, gL , can be expressed as

E [gL ] =
L∑

�=0

E [G�],

where the MLMC estimator is obtained by replacing the expected values in the tele-
scoping sum by sample averages. We denote the sample averages by

∼
G� as

∼
G� = M−1

�

M�∑

m=1

G�(ω�,m).

Each sample average,
∼
G�, is computed using M� ∈ Z+ independent identically dis-

tributed (i.i.d.) outcomes, {ω�,m}M�

m=1, of the underlying, mesh-independent, stochastic
model; i.e. ω�,m ∈ Ω for all � and m. The MLMC estimator can then be written as

A =
L∑

�=0

∼
G�. (2.2)

Note that the outcomes are also assumed to be independent among the different sample
averages, {∼G�}L�=0.

We use the following model for the expected value of the cost associated with
generating one sample ofG�, including generating all the underlying random variables:

W� ∝ h−γ

� = h−γ
0 β�γ

for a given γ . Note the cost of generating a sample of G� might differ for different
realizations, for example due to different number of iterations in an iterative method
or due to adaptivity of the used numerical method. The parameter γ depends on the
number of dimensions of the underlying problem and the used numerical method.
For example, γ = 1 for the one-dimensional SDE in Example 2.2. For the PDE in
Example 2.1, if the number of dimensions is d = 3 then γ = 3γ̃ , where γ̃ depends on
the solver used to solve the resulting linear system. In that example, iterative methods
may have a smaller value of γ̃ than direct methods. The theoretical best-case scenario
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for iterative methods would be γ̃ = 1 for multigrid methods. On the other hand, we
would have γ̃ = 3 if one used a direct method using a naive Gaussian elimination on
dense matrices. The total work of the estimator (2.2) is

W =
L∑

�=0

M�W�.

We want our estimator to satisfy a tolerance with prescribed failure probability
0 < α < 1, i.e.,

P [|E [g] − A| > TOL] ≤ α, (2.3)

while minimizing the work, W . Here, we split the total error into bias and statistical
error,

|E [g] − A| ≤ |E [g − A]|
︸ ︷︷ ︸

Bias

+ |E [A] − A|︸ ︷︷ ︸
Statistical error

,

and use a splitting parameter, θ ∈ (0, 1), such that

TOL = (1 − θ)TOL︸ ︷︷ ︸
Bias tolerance

+ θTOL︸ ︷︷ ︸
Statistical error tolerance

.

The MLMC algorithm should bound the bias, B = |E [g − A]|, and the statistical
error as follows:

B = |E [g − A]| ≤ (1 − θ)TOL, (2.4a)

|E [A] − A| ≤ θTOL, (2.4b)

where the latter bound should hold with probability 1−α. Note that θ does not have to
be a constant, indeed it can depend on TOL as we shall see in Sect. 4. In the literature,
some authors (e.g. [12]) have controlled the mean square error (MSE),

MSE = |E [g − A]|2 + E
[
|E [A] − A|2

]
,

rather than working with (2.3). We prefer to work with (2.3) since it allows us to
prescribe both the accuracy TOL and the confidence level, 1 − α, in our results. The
bound (2.4b) leads us to require

Var [A] ≤
(

θTOL

Cα

)2

, (2.5)

for some given confidence parameter, Cα , such that Φ(Cα) = 1 − α
2 ; here, Φ is the

cumulative distribution function of a standard normal random variable. The bound
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(2.5) is motivated by the Lindeberg Central Limit Theorem in the limit TOL → 0, cf.
Lemma 7 in the Appendix.

By construction of the MLMC estimator, E [A] = E [gL ], and denoting V� =
Var [G�], then by independence, we have Var [A] = ∑L

�=0 V�M
−1
� , and the total

error estimate can be written as

Total error estimate = B + Cα

√
Var [A]. (2.6)

Given L and 0 < θ < 1 and minimizing W subject to the statistical constraint (2.5)
for {M�}L�=0 ∈ R

L+1 gives the following optimal number of samples per level �:

M� =
(

Cα

θTOL

)2
√

V�

W�

(
L∑

�=0

√
V�W�

)

. (2.7)

When substituting the optimal number of samples in all levels the optimal work can
be written in terms of L as follows

W (TOL, L) =
(

Cα

θTOL

)2
(

L∑

�=0

√
V�W�

)2

. (2.8)

Of course, the number of samples on each level is a positive integer. To obtain an
approximate value of the optimal integer number of samples, we take the ceiling of
the real-valued optimal values in (2.7).

In this work, we assume the following models on the weak error and variance:

E [g − g�] ≈ QWhq1
� , (2.9a)

Var
[
g� − g�−1

] ≈ QSh
q2
�−1, (2.9b)

for some constants QW �= 0, QS > 0, q1 > 0 and 0 < q2 ≤ 2q1. Note that the
condition that is usually assumed for MLMC is min(q2, dγ ) ≤ 2q1, cf. [30, Theorem
2.3], to ensure that the cost of MLMC is not dominated by the cost of a single sample
on each level. We assume instead the slightly more restrictive condition q2 ≤ 2q1.
As an example, recall that the PDE in Example 2.1 has q2 = 2q1 and in Sect. 5, the
PDE is solved using a finite element method with standard trilinear basis and it has
q1 = 2. On the other hand, for the SDE in Example 2.2 with Euler discretization,
q1 = q2 = 1. Collectively, we refer to the parameters q1, q2, QS, QW and {V�}L�=0 as
problem parameters. Based on these models, we can write for � > 0

E [G�] ≈ QWhq1
0 β−�q1

(
βq1 − 1

)
, (2.10a)

Var [G�] = V� ≈ QSh
q2
0 β−(�−1)q2 . (2.10b)

Specifically, as a consequence of (2.9a), the bias model is

B ≈ |QW |hq1
0 β−Lq1 . (2.11)
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Finally, we note that the algorithms presented in this work are iterative. We there-
fore denote by M�,G� and V � the total number of samples of G� generated in all
iterations and their sample average and sample variance, respectively. Explicitly, we
write1

G� = 1

M�

M�∑

m=1

G�(ω�,m), (2.12a)

V � = 1

M�

M�∑

m=1

(
G�(ω�,m) − G�

)2
. (2.12b)

3 Standard MLMC

3.1 Overview

While minor variations exist among MLMC algorithms listed in [12,15,16], we believe
that there is sufficient commonality in them for us to outline here the overarching idea
and refer to this collection of methods as the Standard MLMC algorithm or simply
SMLMC. SMLMC solves the problem by iteratively increasing the number of levels
of the MLMC hierarchy. In order to find the optimal number of samples of each level �,
an estimate of the variance V� is needed. If there were previously generated samples in
previous iterations for a level �, the sample variance V � is used. Otherwise, an initial
fixed number of samples, M̃ , is generated. Moreover, in most works, the splitting
between bias and statistical error, θ , is chosen to be 0.5.

After running the hierarchy, an estimate of the total error is computed. To this end,
the work [12] approximates the absolute value of the constant, QW , using a similar
expression to the following:

|QW | ≈ max
(|GL |, |GL−1|β−q1

)

hq1
0 β−Lq1(βq1 − 1)

:= ∼
QW .

In other words, the absolute value of the constant QW is estimated using the samples
generated on the last two levels. Thus, this estimate is only defined for L ≥ 2. Next,
the variance of the estimator, Var [A], is approximated by

Var [A] ≈
L∑

�=0

V �

M�

:= ∼
V .

1 For the variance estimator, one can also use the unbiased estimator; by dividing by M� − 1 instead of
M�. All discussions in this work still apply.
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Finally, a total error estimate can be computed as outlined by (2.6)

Total error estimate = ∼
QWhq1

0 β−Lq1 + Cα

√∼
V . (3.1)

The complete algorithm is outlined in Algorithm 1.

Algorithm 1

1: function StandardMLMC(TOL,
∼
M, θ )

2: Start with L = 0.
3: loop
4: Add new levels to {h�}L�=0.

5: Generate
∼
M samples for level L and estimate V L .

6: Using sample variance estimates, {V �}L�=0 from all iterations, and the constant θ ,

compute optimal number of samples, {M�}L�=0, according to (2.7).
7: Run the hierarchy using the optimal number of samples.
8: If L ≥ 2 and the total estimate error (3.1) is less than TOL, then END.
9: Otherwise, set L = L + 1.
10: end loop
11: end function

Usually all samples from previous iterations are used in the algorithm to run the
hierarchy in step 7 to calculate the required quantity of interest. However, the analysis
of the bias and the statistical error of the resulting estimator is difficult and has not
been done before, to the best of our knowledge.

3.2 Accuracy of the parameter estimates

In the standard algorithm, QW and the variances {V�}L�=0 are needed and esti-
mated. In this section, we look at the accuracy of the estimators for these problem
parameters.

We examine the accuracy of the sample variance by computing its squared relative
error for � > 1:

Var
[
V �

]

V 2
�

=
(
M� − 1

)2

M
3
�V

2
�

(

E
[
(G� − E [G�])4

]
− V 2

� (M� − 3)

M� − 1

)

=
(
M� − 1

)2

M
3
�

(

E
[
(G� − E [G�])4

]
V−2

� − M� − 3

M� − 1

)

≈
(
M� − 1

)2

M
3
�

(

E
[
(G� − E [G�])4

]
Q−2

S h−2q2
� − M� − 3

M� − 1

)

.

Unless E
[
(G� − E [G�])4

] ≤ Ch2q2
� , for some constant C > 0, or M� increases

sufficiently fast, the relative error in the estimator V � can become unbounded as
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� → ∞. Similarly, the relative error of the sample variance at level � = 0 can be
shown to be bounded for instance by assuming that the second and fourth central
moments of G0 are bounded.

Next, for simplicity, we look at the squared relative error estimate of QW by assum-
ing that it is estimated using samples on a single level, L , only.

Var

[∣∣∣∣
GL

h
q1
0 β−Lq1 (βq1−1)

∣∣∣∣

]

Q2
W

= VL

Q2
WMLh

2q1
0 β−2Lq1(βq1 − 1)2

= QS

Q2
W

· hq2
0 β−q2L

Q2
WMLh

2q1
0 β−2Lq1(βq1 − 1)2

= QSh
q2−2q1
0

Q2
W (βq1 − 1)2

(
βL(2q1−q2)

ML

)

.

Observe now that if q2 < 2q1 (as in Example 2.2), then, for the previous relative error
estimate to be o(1), we must have ML ∝ βL(2q1−q2) → ∞ as L → ∞. This analysis
shows that in some cases, ML will have to grow to provide an accurate estimate to
QW , regardless of the optimal choice of the number of samples outlined in (2.7).

4 Continuation MLMC (CMLMC)

In this section we discuss the main contribution of this work, a continuation MLMC
(CMLMC) algorithm that approximates the value E [g(u)]. We begin in the next sub-
section by giving an overview of the general idea of algorithm. Subsequent subsections
discuss how to estimate all the required problem parameters that are necessary for run-
ning the algorithm. CMLMC is listed in Algorithm 2.

Algorithm 2
1: function CMLMC(Parameters summarized in Table 1)
2: Compute with an initial hierarchy.
3: Estimate problem parameters {V�}L�=0 , QS , QW , q1 and q2 according to Sect. 4.2.
4: Set i = 0.
5: repeat
6: Find L according to (4.1).
7: Add new levels to {h�}L�=0.
8: Using the variance estimates (4.5) and θ from (4.2), compute the optimal number of

samples according to (2.7).
9: Run the resulting hierarchy using the optimal number of samples.
10: Estimate problem parameters, {V�}L�=0 , QS , QW , q1 and q2, according to Sect. 4.2.
11: Estimate the total error according to (2.6).
12: Set i = i + 1
13: until i > iE and the total error estimate is less than TOL
14: end function
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4.1 Overview

The main idea of CMLMC is to solve for E [g(u)] with a sequence of decreasing tol-
erances. By doing this, CMLMC is able to increasingly improve estimates of several
problem dependent parameters while solving relatively inexpensive problems cor-
responding to large tolerances. These parameters estimates are crucial to optimally
distribute computational effort when solving for the last tolerance, which is the desired
tolerance, TOL, or smaller. Moreover, the sequence is built such that the total work of
the algorithm is close to the work of MLMC when solving for the desired tolerance,
TOL, assuming all the necessary parameters are known a priori. To this end, we make
the following choice for the sequence of decreasing tolerances TOLi for i = 0, 1, . . .

TOLi =
{
r iE−i

1 r−1
2 TOL i < iE ,

r iE−i
2 r−1

2 TOL i ≥ iE ,

where r1 ≥ r2 > 1. By imposing TOL0 = TOLmax for some maximum tolerance, we
have

iE =
⌊− log(TOL) + log(r2) + log(TOLmax)

log(r1)

⌋
.

Iterations for which i ≤ iE are meant to obtain increasingly more accurate estimates of
the problem parameters. The iteration iE solves the problem for the tolerance r−1

2 TOL.
Notice that the problem is solved for a slightly smaller tolerance than the required
tolerance TOL. This tolerance reduction is to prevent extra unnecessary iterations due
to slight variations in estimates of the problem parameters. This technique improves
the overall average running time of the algorithm. Similarly, iterations i > iE have
tolerances that are even smaller to account for cases in which estimates of the problem
parameters are unstable. The parameters r1 and r2 are chosen such that the total work
of the algorithm is not significantly more than the work of the final hierarchy that
solves the problem with the required tolerance, TOL. For example, if the work of
the MLMC estimator is O(TOL−2), we choose r1 = 2 to ensure that the work of
iteration i is roughly four times the work of iteration i − 1 for iterations for which
TOLi ≥ TOL. The choice of r2 = 1.1, on the other hand, ensures that for iterations
for which TOLi < TOL, the work of iterations of i is roughly 1.2 times the work of
iteration i − 1.

Consider now the i-th iteration of CMLMC and assume that estimates for
Q := {q1, q2, QW , QS} and {V�}L�=0 are available from previous iterations; we will
discuss how to obtain these estimate in Sect. 4.2. The i-th iteration begins by selecting
the optimal number of levels L[i] that solves the problem for the given tolerance,
TOLi , as follows

L[i] = argminLmin[i]≤L≤Lmax[i]W (TOLi , L), (4.1)
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where W (TOLi , L) is defined by (2.8) and depends on all the parameters Q and
{V�}L�=0 and θ = θ(L) given by

θ = 1 − |QW |hq1
L

TOLi
= 1 − |QW |hq1

0 β−Lq1

TOLi
, (4.2)

which comes from enforcing that the bias model (2.11) equals (1−θ)TOLi . Moreover,
Lmin should satisfy QWhq1

Lmin
= TOLi or, since we have h� = h0 β−�,

Lmin[i] = max

⎛

⎝L[i − 1],
q1 log(h0) − log

(
TOLi|QW |

)

q1 log β

⎞

⎠ ,

where L[i −1] is the number of levels from the previous iteration. This ensures that L
does not decrease from one iteration to the next, which agrees with our intuition that L

increases with log
(

TOL−1
i

)
. On the other hand, Lmax is given by other considerations.

For instance, it could be related to the minimum mesh size imposed by memory or
computational restrictions. More practically, to ensure robustness, Lmax can be chosen
to be Lmin + L inc, for a given fixed integer L inc, so that L has limited increments from
one iteration to the next. Since only few values of L are considered in the optimization
(4.1), it is easy to find the optimal L by exhaustive search. The choice (4.2) implies
that the statistical constraint (2.5) is relaxed (or tightened) depending on the estimated
bias of each hierarchy. The iteration then continues by running the resulting hierarchy
with the optimal number of samples {M�}L�=0 according to (2.7). Finally the iteration
ends by improving the estimates of the problem parameters Q and {V�}L�=0 as well as
the quantity of interest based on the newly available samples as described in Sect. 4.2.

To start CMLMC we compute with an initial, relatively inexpensive, hierarchy. The
purpose of using this initial hierarchy is to obtain rough estimates of the problem para-
meters. Such a hierarchy cannot depend on estimates of problem parameters and should
have at least three levels to allow estimating Q; these three levels are needed to be able to
extrapolate (or interpolate) the weak error and variance estimates on all MLMC levels.
The algorithm stops when the total error estimate is below the required tolerance TOL.

4.2 Parameters estimation

In this section, we discuss how to improve estimates of the parameters Q as well as
the variances V� based on the generated samples in all iterations and all levels. For
easier presentation, we will also use the following notation

w�(q1) = hq1
0 β−�q1(βq1 − 1),

s�(q2) = h−q2
0 β�q2 .
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Thus, using the notation above, (2.10) becomes

E [G�] ≈ QWw�(q1), (4.3a)

Var [G�] = V� ≈ QSs
−1
� (q2). (4.3b)

4.2.1 Estimating variances V�

We first assume that we have estimates of q1, q2, QW and QS and discuss estimating
the variances, {V�}L�=0, and the total statistical error after computing with a given
hierarchy. Estimating q1, q2, QW and QS is discussed in the next subsection.

Usually the variances {V�}L�=0 are estimated by using the sample variance estimator
(2.12b) to estimate the statistical error as well as the optimal number of samples
{M�}L�=0. However, sometimes there are too few samples in a given level to give a
corresponding accurate variance estimate. This is specially acute on the deepest levels,
and unlike the standard MLMC algorithm, we do not impose a minimum number of
samples across levels to obtain a stable estimate of the sample variance. Recalling
that we have the variance model (4.3b) at our disposal, we can use this model to
estimate the variance at all levels � > 0. However, the model (4.3b) is only accurate
asymptotically. We can use the generated samples on each level to locally improve the
accuracy of the V� estimates. To this end, we use a Bayesian setting [27].

We assume that G� follows a normal distribution with mean μ� and precision
λ� (precision is simply the inverse of the variance). To simplify the computation,
we choose a normal-gamma prior on (μ�, λ�) – the conjugate prior of the normal
likelihood. The resulting posterior probability density function (pdf) is also a normal-
gamma distribution function. We choose the parameters (μ̂�, κ0, 0.5 + λ̂�κ1, κ1) for
the normal-gamma prior, such that it is maximized at μ̂� and λ̂�. The parameter μ̂�

and λ̂� serve as initial guesses for μ� and λ�, respectively. Moreover, κ0 and κ1 are
positive constants that model our certainty in those respective guesses. We use the
assumed models of the weak error and variance (4.3) to give the initial guesses

μ̂� = QWw�(q1), (4.4a)

λ̂� = Q−1
S s�(q2). (4.4b)

As mentioned, the posterior pdf is also a normal-gamma with parameters (Υ1,�, Υ2,�,

Υ3,�, Υ4,�) and it is maximized at (Υ1,�,
Υ3,�−0.5

Υ4,�
). Specifically

Υ3,� = 0.5 + κ1̂λ� + M�

2
,

Υ4,� = κ1 + 1

2

⎛

⎝
M�∑

m=1

(
G�,m − G�

)2
⎞

⎠+ κ0M�(G� − μ̂�)
2

2(κ0 + M�)
.
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As such, we use the following estimate of the variance V� for � > 0

V� ≈ Υ4,�

Υ3,� − 0.5
. (4.5)

Estimating the variance at the coarsest mesh,V0, can be done using the sample variance.
The number of samples on the coarsest level, M0, is usually large enough to produce
a stable and accurate estimate. Using these estimates and the bias estimate (2.11), the
total error can be estimated as (2.6).

4.2.2 Estimating Q

To incorporate prior knowledge on q1 and q2 including initial guesses and the rela-
tion q2 ≤ 2q1, we again follow a Bayesian setting to estimate these parameters and
assume that G� follows a Gaussian distribution with mean QWw�(q1) and variance
QSs

−1
� (q2). In what follows, �0 is a non-negative integer. With these assumptions, the

corresponding likelihood is

L =
⎛

⎝
L∏

�=�0

(
2πQSs

−1
� (q2)

)−M�
2

⎞

⎠

× exp

⎛

⎝− 1

2QS

L∑

�=�0

s�(q2)

M�∑

m=1

(
G�,m − QWw�(q1)

)2
⎞

⎠ . (4.6)

Assuming a improper prior on QW and QS and maximizing the resulting posterior
pdf with respect to QW and QS gives the following weighted least-squares solution:

Q∗
W =

⎛

⎝
L∑

�=�0

M�w
2
�(q1)s�(q2)

⎞

⎠

−1
L∑

�=�0

w�(q1)s�(q2)M�G�, (4.7a)

Q∗
S =

⎛

⎝
L∑

�=�0

M�

⎞

⎠

−1
L∑

�=�0

s�(q2)

M�∑

m=1

(
G�,m − QWw�(q1)

)2
. (4.7b)

We can substitute the previous expressions for QW and QS in (4.6) to obtain a likeli-
hood in terms of q1 and q2. Denoting M =∑L

�=�0
M�, we write

L(q1, q2) = exp

(

−M

2

)⎛

⎜
⎝

L∑

�=�0

M�∑

m=0

s�(q2)G
2
�,m

−
(∑L

�=�0
s�(q2)w�(q1)M�G�

)2

∑L
�=�0

M�w�(q1)2s�(q2)

⎞

⎟
⎠

− M
2

.
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Table 1 Summary of
parameters in CMLMC

Parameter Purpose

x̂0, x̂1, σ0 and σ1 Parameters to model the initial guess of q1 and
q2 and the confidence in those estimates

κ0 and κ1 The confidence in the variance and weak
convergence models, respectively

TOLmax The maximum tolerance with which to start the
algorithm

r1 and r2 Controls the computational burden to calibrate
the problem parameters compared to the one
taken to solve the problem

Initial hierarchy The initial hierarchy to start the algorithm. Must
be relatively inexpensive and has at least three
levels

L inc Maximum number of values to consider when
optimizing for L

L Maximum number of levels used to compute
estimates of QW and QS

Cα Parameter related to the confidence in the
statistical constraint

We can then assume a prior on q1 and q2. However, remember that q2 ≤ 2q1, and
q1 > 0. As such, we introduce the unconstrained parameters x0(q1) = log(q1) ∈ R

and x1(q1, q2) = log(2q1 − q2) ∈ R and assume a Gaussian prior on them

ρprior(q1, q2) = 1

2π

√
σ 2

0 σ 2
1

exp

(

− (x0(q1) − x̂0)
2

2σ 2
0

− (x1(q1, q2) − x̂1)
2

2σ 2
1

)

.

Here, x̂0 and x̂1 represent our initial guesses of x0 and x1, respectively, which we
can obtain from a rough analysis of the problem. Moreover, σ1 and σ2 model our
confidence in those guesses. The more accurate our initial guesses are, the faster the
algorithm converges. Finally, we numerically maximize the log of the posterior pdf
with respect to (x0, x1) ∈ R

2 using a suitable numerical optimization algorithm. For
robustness, we choose �0 = 1 to estimate q1 and q2. In other words we include samples
from all levels � > 0 for this estimation.

Given estimates of q1 and q2, we can use the least-squares estimates Q∗
W and Q∗

S
in (4.7) as estimates of QW and QS , respectively. However, usually not all levels
follow the assumed asymptotic models (2.10) and as such special care must be taken
to choose �0 in these estimates. The parameter QW must be accurate on deeper levels
since it is used to compute the bias (2.11). Similarly, QS must be accurate on deeper
levels where not many samples are available and the variance estimate (4.5) is mainly
determined by the initial guess (4.4b). For these reasons, when computing Q∗

W and
Q∗

S , we choose �0 = max(1, L − L) in (4.7) for some positive integer L that denotes
the maximum number of levels use to compute the estimates. Finally, since QW has
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an improper prior, its posterior is also a Gaussian with mean Q∗
W and variance

VW :=
L∑

�=�0

QS

Mw2
�(q2)s�(q1)

.

Motivated by the accuracy analysis of the QW estimate in Sect. 3.2, we use a worst-
case estimate of QW instead of simply using the estimate Q∗

W in (4.7a), The worst-case
estimate is produced by adding the maximum sampling error with 1 − α confidence,
namely Cα

√
VW , multiplied by the sign of Q∗

W . In other words, our estimate of QW

is Q∗
W + sign(Q∗

W )Cα

√
VW .

4.3 Algorithm parameters

Table 1 summarizes the parameters that control the CMLMC algorithm. Some of these
parameters need to be suitably chosen for the specific problem. However, while there
might be optimal values for these parameters to minimize the average running time, it
is our experience that reasonable values of these parameters are enough to get average
running times that are near-optimal. In fact, similar results to those that we show Sect. 5
were obtained with variations of κ1 and κ2; namely κ1 = κ2 ∈ {0.05, 0.1, 0.2}.

5 Numerical tests

In this section, we first introduce the test problems. We then describe several imple-
mentation details and finish by presenting the actual numerical results.

5.1 Test problems

We look at three test problems: the first two are based on PDEs with random inputs
and the last one is based on an Itô SDE.

5.1.1 Ex.1

This problem is based on Example 2.1 in Sect. 2.1 with some particular choices that
satisfy the assumptions therein. First, we choose D = [0, 1]3 and assume that the
forcing is

f (x;ω) = f0 + f̂
K∑

i=0

K∑

j=0

K∑

k=0

Φi jk(x)Zi jk,

where

Φi jk(x) = √λiλ jλkφi (x1)φ j (x2)φk(x3),
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and

φi (x) =
⎧
⎨

⎩

cos
(

5�i
2 πx

)
i is even,

sin
(

5�(i+1)
2 πx

)
i is odd,

,

λi = (2π)
7
6 �

11
6

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 i = 0,

exp
(
−2
(

�i
4 π
)2)

i is even,

exp

(
−2
(

�(i+1)
4 π

)2
)

i is odd,

for given � > 0, and positive integer K and Z = {Zi jk} a set of (K + 1)3 i.i.d.
standard normal random variables. Moreover, we choose the diffusion coefficient to
be a function of two random variables as follows:

a(x;ω) = a0 + exp
(

4Y1Φ121(x) + 40Y2Φ877(x)
)
.

Here, Y = {Y1,Y2} is a set of i.i.d. normal Gaussian random variables, also inde-
pendent of Z. Finally we make the following choice for the quantity of interest, g:

g =
(

2πσ 2
)−3

2
∫

D
exp

(

−‖x − x0‖2
2

2σ 2

)

u(x)dx,

and select the parameters a0 = 0.01, f0 = 50, f̂ = 10,� = 0.2√
2
, K = 10, σ 2 =

0.02622863 and x0 = [0.5026695, 0.26042876, 0.62141498]. Since the diffusion
coefficient, a, is independent of the forcing, f , a reference solution can be calcu-
lated to sufficient accuracy by scaling and taking expectation of the weak form with
respect to Z to obtain a formula with constant forcing for the conditional expectation
with respect to Y. We then use stochastic collocation [3] with 11 Hermite quadrature
points for each variable in Y (thus totaling 121 points) and a Finite Difference method
with centered differences and 128 equally spaced points in each dimension to produce
the reference value E [g]. Using this method, the reference value 1.6026 was computed
with an error estimate of 10−4.

5.1.2 Ex.2

The second example is a slight variation of the first. First, we choose the following
diffusion coefficient instead:

a(x;ω) = a0 + exp
(
Y1φ121(x) + Y2φ877(x)

)
.

Moreover, in this example Y is a set of two i.i.d. uniform random variables in the range
[−1, 1], again independent of Z. We also make the following choice for the quantity
of interest g
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g = 100
(

2πσ 2
)−3

2
∫

D
exp

(

−‖x − x0‖2
2

2σ 2

)

u(x)dx,

and select the parameters a0 = 1, f0 = 1, f̂ = 1,� = 0.2, K = 10, σ 2 =
0.01194691 and x0 = [0.62482261, 0.45530923, 0.49862328]. We use the same
method as in Ex.1 to compute the reference solution, except that in this case, we
use Legendre quadrature in the stochastic collocation method, instead of Hermite
quadrature. The computed reference solution E [g] in this case is 2.3627 with an error
estimate of 10−4.

5.1.3 Ex.3

The third example is a one-dimensional geometric Brownian motion based on Exam-
ple 2.2. We make the following choices:

u(0) = 1, T = 1,

a(t, u) = 0.05u,

b(t, u) = 0.2u,

g(u) = 10 max(u(1) − 1, 0).

The exact solution can be computed using a standard change of variables and Itô’s
formula. For the selected parameters, the solution is E [g] = 1.04505835721856.

5.2 Implementation and Runs

All the algorithms mentioned in this work were implemented using the C programming
language, with the goal that the software be as optimal as possible, while maintaining
generality.

For implementing the solver for the PDE test problems (Ex.1 and Ex.2), we
use PetIGA [8,9]. While the primary intent of this framework is to provide high-
performance B-spline-based finite element discretizations, it is also useful for appli-
cations where the domain is topologically square and subject to uniform refinements.
As its name suggests, PetIGA is designed to tightly couple to PETSc [4]. The frame-
work can be thought of as an extension of the PETSc library, which provides methods
for assembling matrices and vectors related to the discretization of integral equations.

In our PDE numerical tests (Ex.1 and Ex.2), we use a standard trilinear basis
to discretize the weak form of the model problem, integrating with eight quadrature
points. We also generate results for two linear solvers that PETSc provides an interface
to. The first solver is an iterative GMRES solver that solves a linear system in almost
linear time with respect to the number of degrees of freedom for the mesh sizes of
interest; in other words γ̃ = 1 in this case. The second solver we tried is a direct one,
called MUMPS [1,2]. For the mesh sizes of interest, the running time of MUMPS
varies from quadratic to linear in the total number of degrees of freedom. The best fit
turns out to be γ̃ = 1.5 in the case.

123



A continuation multilevel Monte Carlo algorithm 417

Table 2 Summary of problem
parameters

γ q1 q2 s1 s2

Ex.1 and Ex.2
with GMRES
solver

3 2 4 2 0

Ex.1 and Ex.2
with MUMPS
solver

4.5 2 4 2.25 0

Ex.3 1 1 1 2 2

Table 3 Summary of
parameters values to used in
numerical tests

Parameter Value for PDE examples
(Ex.1 and Ex.2)

Value for SDE example
(Ex.3)

h0 1/4 for Ex.1, 1/8 for
Ex.2

1

β 2 2

κ0 and κ1 0.1 for both 0.1 for both

TOLmax 0.5 0.1

r1 and r2 2 and 1.1, respectively 2 and 1.1, respectively

Initial
hierarchy

L = 2 and
h� = {4, 6, 8} and
M� = 10 for all �

L = 2 and
h� = {1, 2, 4} and
M� = 10 for all �

L inc 2 2

L 3 5

Cα 2 2

From [30, Theorem 2.3], the complexity rate for all the examples is expected to be
O(TOL−s1 log(TOL)s2), where s1 and s2 depend on q1, q2 and γ = dγ̃ . These and
other problem parameters are summarized in Table 2 for the different examples.

We run each algorithm 100 times for each tolerance and show in plots in the next
section the medians with vertical bars spanning from the 5% percentile to the 95%
percentile. Finally, all results were generated on the same machine with 52 gigabytes
of memory to ensure that no overhead is introduced due to hard disk access dur-
ing swapping that could occur when solving the three-dimensional PDEs with a fine
mesh.

In order to compare CMLMC to SMLMC, and since the latter does not include a
step to fit q1 and q2, we assume that these parameters are both known as discussed in
Examples 2.1 and 2.2. Moreover, we use the parameters listed in Table 3.

5.3 Results

Figure 1 shows that the running time of CMLMC follows the expected complexity
rates O(TOLs1 log(TOL)s2) as summarized in Table 2. Notice that the running time in
this and all figures that we present in this work include the time necessary to sample
the underlying stochastic solution and the time to do the necessary computation to
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estimate the problem parameters. However, the computational complexity of calcu-
lating of problem parameters is largely dominated by the computational complexity
of sampling the approximate solution to the differential equations at hand. Indeed, the
computations described in Sect. 4.2 are inexpensive post-processing calculations of
the these samples. Moreover, our results show that the algorithm has the same com-
plexity as the theoretical work (c.f. [30, Theorem 2.3]) of the last iteration where we
effectively solve the problem with the required tolerance requirements. Next, Fig. 2
shows the number of levels, L , in the last iteration of CMLMC for different toler-
ances. As expected, even though L depends on the particular realization, it is well
approximated by a linear function of log(TOL−1).

Next, Fig. 3 shows the computational errors of CMLMC that were computed using
the reference solutions as listed in Sect. 5.1. This indicates that the imposed accuracy
is achieved with the required confidence of 95 %—since Cα = 2. Compare this figure
to Fig. 4 which shows the computational errors of SMLMC. One can see that, in
certain cases, SMLMC solves the problem for a smaller tolerance than the imposed
TOL. This is because θ is fixed and the statistical error is not relaxed when the bias
is small. This can be especially seen in Ex.2 where the choice h0 = 1/8 produces a
bias much smaller than 0.5TOL for the shown tolerances. On the other hand, Fig. 5 is
a QQ-plot showing that the empirical cumulative distribution function (CDF) of the
MLMC error estimates is well approximated by the standard normal CDF, even for
finite tolerances.

Figure 6 shows a comparison of the running time of CMLMC and SMLMC. Notice
that a good value of M̃ in SMLMC is not known a priori and the computational time
varies considerably for different values of M̃ , especially for smaller tolerances in Ex.1
and Ex.2. Specifically, a larger M̃ in SMLMC increases the computational time of the
algorithm, but also decreases its variability. A smaller M̃ gives a smaller computa-
tional time at the expense of increased variation. The variation of the running time
is due to inaccurate estimates of V� due to the smaller number of initial samples.
On the other hand, the running time of CMLMC is less varied, which is a reflec-
tion of the stability of the estimates of V�. The computational savings of CMLMC
over SMLMC is an aggregate effect of the different improvements. This includes
(1) a more stable variance and bias estimates as already discussed, (2) a better split-
ting of bias and statistical tolerances. This second point can be seen in Fig. 7, which
shows the tolerance splitting parameter, θ , used in CMLMC as computed by (4.2).
We can clearly see here that θ is not trivial and changes with the tolerance. Look-
ing closely, one can notice sudden jumps in the values of θ due to changes in the
discrete number of levels, L . Between jumps, θ changes continuously due to inaccu-
racies in the estimation of the weak error constant, QW . Specifically, notice that for
TOL ≈ 0.015 in Ex.1 when using the direct solver, the splitting parameter θ used
in CMLMC is very close to 0.5 which explains why, for this case, the computational
time of SMLMC is very close to the computational time of CMLMC as shown in
Fig. 6.

Finally, the bias of the MLMC estimator when using samples generated in pre-
vious iterations to compute the quantity of interest is not well understood. Using
CMLMC, generating new samples at each iteration, instead of using samples from
previous iterations, does not add a significant overhead to the total running time of the
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Fig. 1 From top: Ex.1, Ex.2, Ex.3. These plots show the total running time of CMLMC. The reference
dashed lines are O(TOL−s1 log(TOL)s2 ) as summarized in Table 2. Notice that, asymptotically, the total
running times seem to follow the expected rates. This shows that the algorithm, in our examples, has the
same complexity as the theoretical work (c.f. [30, Theorem 2.3]) of the last iteration where we effectively
solve the problem with the required tolerance requirements
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Fig. 2 From top Ex.1, Ex.2, Ex.3. These plots show the number of levels, L , for different tolerances, as
produced in the last iteration of CMLMC. Here, it is clear that L depends on the particular realization.
However, the relation between L and log(TOL−1) looks reasonably linear, as expected. Note that in Ex.2,
L does no exhibit significant variations. This is because, for the tolerances considered, L = 3 already
satisfies the bias constraint
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Fig. 3 From top Ex.1, Ex.2, Ex.3. Actual computational errors based on the reference solutions when
using CMLMC. The numbers above the dashed line show the percentage of runs that had errors larger than
the required tolerance. We observe that these results are consistent with the imposed error constraints with
a 95 % confidence
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Fig. 4 From top Ex.1, Ex.2, Ex.3. Actual computational errors based on the reference solutions when
using SMLMC. The numbers above the dashed line show the percentage of runs that had errors larger
than the required tolerance. We observe that these results are consistent with the imposed error constraints
with a 95 % confidence. However, for particular tolerances, the error is smaller than TOL because the
statistical error is not relaxed when the bias is small since tolerance splitting parameter, θ , is kept fixed for
all tolerances
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Fig. 5 From topEx.1, Ex.2, Ex.3. Normalized empirical cumulative distribution function (CDF) of MLMC
error estimates for different tolerances versus the standard normal CDF. Notice that, even for finite tolerances,
the standard normal CDF is a good approximation of the CDF of the error estimates
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Fig. 6 From top Ex.1, Ex.2, Ex.3. The running time of CMLMC and SMLMC for different M̃ and θ ,
normalized by the median running time of CMLMC. This plot shows that a larger M̃ increases the median
running time of the SMLMC but also decreases its variability. One sees that CMLMC outperforms SMLMC
even for a small M̃ in all numerical examples. Note that for Ex.1 using direct method and for TOL ≈ 0.015,
all algorithms perform similarly. This is because, for this example, the optimal error splitting parameter, θ ,
according to (4.2) is approximately 0.5
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Fig. 8 From top Ex.1, Ex.2, Ex.3. Running time of CMLMC versus SMLMC when reusing samples for
both. Also included, is CMLMC without reusing samples from previous iterations. All running times are
normalized by the median of the running time of CMLMC when reusing samples. Notice that reusing
samples in CMLMC does not add a significant advantage. Moreover, CMLMC still produces savings over
SMLMC, even when reusing samples in the latter
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algorithm. Figure 8 explains this point by comparing the running time of CMLMC
for both cases for both CMLMC and SMLMC. This figure shows that computational
savings of CMLMC over SMLMC whether we reuse samples or not in the former,
mainly due to better splitting of the tolerance between bias and statistical errors.
Moreover, it shows that reusing samples in CMLMC does not offer significant com-
putational savings that justify the increased complexity in the analysis of the resulting
estimator.

6 Conclusions

We have proposed a novel Continuation Multi Level Monte Carlo (CMLMC) algo-
rithm for weak approximation of stochastic models. Our algorithm uses discretization
hierarchies that are defined a priori for each level and are geometrically refined across
levels. These hierarchies are either uniform at each level or obtained by regular sub-
division of a non-uniform mesh.

The actual choice of computational work across levels uses the optimal number
of samples per level given the variance and the work contribution from each level.
Accurate computation of these relevant quantities is based on parametric models.

These parameters are calibrated using approximate samples, either produced before
running the CMLMC and/or during the actual runs. We also propose a novel Bayesian
estimation of the variance and weak convergence model parameters, taking particular
notice of the deepest levels of the discretization hierarchy, where only a few realizations
are available to produce the required estimates. The idea is to use results from coarser
levels, where more samples are available, to stabilize the estimates in the deeper
levels. The resulting MLMC estimator exhibits a non-trivial splitting between bias
and statistical contributions. Indeed, the actual split depends on the given accuracy
and other problem parameters. In fact, as the numerical examples show, there are cases
where most of the accuracy budget is devoted to the statistical error. Finally, using the
Lindeberg–Feller theorem, we also show the asymptotic normality of the statistical
error in the MLMC estimator and justify in this way our error estimate that allows
prescribing both required accuracy and confidence in the final result.

We presented three numerical examples to substantiate the above results, exhibiting
the robustness of the new CMLMC Algorithm and to demonstrate its corresponding
computational savings. The examples are described in terms of differential equations
either driven by random measures or with random coefficients.

Other aspects of MLMC estimators can also be explored, such as the optimality of
geometric hierarchies compared to non-geometric ones. This will be the subject of a
forthcoming work, where extensions of the CMLMC to that setting will be considered.
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7 Appendix: Normality of MLMC estimator

Theorem 7.1 ([10, LindebergspsFeller Theorem, p. 114]) For each n, let Xn,m, for
1 ≤ n ≤ m, be independent random variables (not necessarily identical). Denote

an =
n∑

m=1

Xn,m,

Yn,m = Xn,m − E
[
Xn,m

]
,

s2
n =

n∑

m=1

E
[
Y 2
n,m

]
.

Suppose the following Lindeberg condition is satisfied for all ε > 0:

lim
n→∞ s−2

n

n∑

m=1

E
[
Y 2
n,m1|Yn,m |>εsn

]
= 0. (7.1)

Then,

lim
n→∞P

[
an − E [an]

sn
≤ z

]
= Φ(z),

where Φ(z) is the normal cumulative density function of a standard normal random
variable.

Lemma 7.1 Consider the MLMC estimator A given by

A =
L∑

�=0

M�∑

m=1

G�(ω�,m)

M�

,

whereG�(ω�,m) denote as usual i.i.d. samples of the randomvariable G�. The family of
random variables, (G�)�≥0, is also assumed independent. Denote Y� = |G� − E [G�]|
and assume the following

C1β
−q3� ≤ E

[
Y 2

�

]
for all � ≥ 0, (7.2a)

E
[
Y 2+δ

�

]
≤ C2β

−τ� for all � ≥ 0, (7.2b)

for some β > 1 and strictly positive constants C1,C2, q3, δ and τ . Choose the number
of samples on each level M� to satisfy, for q2 > 0 and a strictly positive sequence
{H�}�≥0

M� ≥ β−q2�TOL−2H−1
�

(
L∑

�=0

H�

)

for all � ≥ 0. (7.3)
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Moreover, choose the number of levels L to satisfy

L ≤ max

(

0,
c log

(
TOL−1

)

log β
+ C

)

(7.4)

for some constants C, and c > 0. Finally, denoting

p = (1 + δ/2)q3 + (δ/2)q2 − τ,

if we have that either p > 0 or c < δ/p, then

lim
TOL→0

P

[A − E [A]√
Var [A]

≤ z

]
= Φ (z) .

Proof We prove this lemma by ensuring that the Lindeberg condition (7.1) is satisfied.
The condition becomes in this case

lim
TOL→0

1

Var [A]

L∑

�=0

M�∑

m=1

E

[
Y 2

�

M2
�

1 Y�
M�

>ε
√

Var[A]

]

︸ ︷︷ ︸
:=F

= 0,

for all ε > 0. Below we make repeated use of the following identity for non-negative
sequences {a�} and {b�} and q ≥ 0.

∑

�

aq� b� ≤
(
∑

�

a�

)q∑

�

b�. (7.5)

First we use the Markov inequality to bound

F = 1

Var [A]

L∑

�=0

M�∑

m=1

E

[
Y 2

�

M2
�

1Y�>ε
√

Var[A]M�

]

≤ ε−δ

Var [A]1+δ/2

L∑

�=0

M−1−δ
� E

[
Y 2+δ

�

]
.
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Using (7.5) and substituting for the variance Var [A] where we denote Var [G�] =
E
[
(G� − E [G�])2] by V�, we find

F ≤
ε−δ

(∑L
�=0 M

−1
� V�

)1+δ/2

(∑L
�=0 V�M

−1
�

)1+δ/2

L∑

�=0

V−1−δ/2
� M−δ/2

� E
[
Y 2+δ

�

]

≤ ε−δ
L∑

�=0

V−1−δ/2
� M−δ/2

� E
[
Y 2+δ

�

]
.

Using the lower bound on the number of samples M� (7.3) and (7.5) again yields

F ≤ ε−δTOLδ

(
L∑

�=0

V−1−δ/2
� β

δq2�

2 H δ/2
� E

[
Y 2+δ

�

])( L∑

�=0

H�

)−δ/2

≤ ε−δTOLδ

(
L∑

�=0

V−1−δ/2
� β(δ/2)q2�E

[
Y 2+δ

�

])

.

Finally using the bounds (7.2a) and (7.2b)

F ≤ ε−δTOLδ

(

C−1−δ/2
1 C2

L∑

�=0

β(1+δ/2)q3�β(δ/2)q2�β−τ�

)

= ε−δTOLδC−1−δ/2
1 C2

β(L+1)p − 1

β p − 1
,

We distinguish two cases here, namely:

– If p > 0 is satisfied then limTOL→0 F = 0 for any c > 0.
– Otherwise, substituting (7.4) gives

F ≤ ε−δTOLδC−1−δ/2
1 C2

TOL−cpβ(C+1)p − 1

β p − 1
= O(TOLδ−cp),

and since in this case cp < δ then limTOL→0 F = 0. ��
Remark 7.1 The choice (7.3) mirrors the choice (2.7), the latter being the optimal
number of samples to bound the statistical error of the estimator by TOL. Specifically,
H� ∝ √

V�W� where W� is the work per sample on level �. Moreover, the choice (2.7)
uses the variances {V�}L�=0 or an estimate of it in the actual implementation. On the
other hand, the choice (7.3) uses the upper bound of V� instead, if q2 is the rate of
variance convergence therein. Furthermore, if we assume the weak error model (2.9a)
holds and hL = h0β

−L then we must have

QWhq1
L = QWhq1

0 β−Lq1 ≤ (1 − θ)TOL,
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which gives a lower bound on the number of levels L , namely

L ≥ log(TOL−1)

q1 log(β)
+ − log(1 − θ) + log(QW ) + q1 log(h0)

q1 log(β)
,

to bound the bias by TOL.
Finally, in Example 2.1 the conditions (7.2) are satisfied for q3 = 2 and, assuming

p∗ > 3, for δ = 1 and τ = 6. Similarly, Example 2.2 satisfies the conditions (7.2) are
for q3 = 1 and δ = 2 and τ = 2, cf. [20].

Remark 7.2 The assumption (7.2a) can be relaxed. For instance, one can assume
instead that

V�+1 ≤ V� for all � ≥ 1,

0 < lim
�→∞ Var [Y�]βq3� < ∞,

and slightly different conditions on L .
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