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902 L. Banjai, M. Kachanovska

1 Introduction

In many physical applications, e.g. acoustic and electromagnetic scattering, it is nec-
essary to solve an exterior boundary value problem for the three-dimensional wave
equation. Such problems can be effectively treated with the use of time-domain bound-
ary integral equations (TDBIE). The well-posedness of such formulations for the wave
equation was analyzed in [3,4].

Solution of time domain boundary integral equations is usually performed with
Galerkin time-space methods [16], collocation methods [11] or Laplace-domain
approaches. A review of these methods can be found in [10]. However, compared
to the field of elliptic problems, fast solvers for time domain boundary integral equa-
tions are not as extensively developed. A particularly efficient approach to the solution
of retarded potential boundary integral equations is offered in [14,15].

One of the methods for the solution of TDBIE, convolution quadrature [22–24],
combines Laplace-domain and time-stepping techniques. It is stable, efficient and
does not require intricate, highly accurate quadrature in space in contrast to standard
Galerkin time-space methods. The applicability of the method to external boundary-
value problems for the wave equation was justified in [24]. These results were sup-
ported by extensive numerical experiments in [5] where it was also shown that Runge–
Kutta convolution quadrature [25] is preferable to multistep convolution quadrature
whenever the scattering domain is non-convex. In [6] the theoretical justification of
this fact was given.

In this paper we discretize the time-domain single layer boundary operator by
an m-stage A-stable Runge–Kutta convolution quadrature [25]. The weights of the
quadrature are boundary integral operators. The main part of this paper is devoted to
the investigation of the behaviour of the kernels wh

n (d) of these operators. We prove
estimates that show an exponential decay of ‖wh

n (d)‖ away from a neighbourhood of
nh ≈ d, where h > 0 denotes the timestep. The paper ends with an illustration of
how these results can be used to speed up existing algorithms for the computation of
convolution weights.

2 Statement of the problem

Let Ω ⊂ R
3 be a bounded Lipschitz domain with boundary Γ and let Ωc = R

3 \Ω
be its complement.

We will consider the homogeneous wave equation set in Ωc,

∂2u

∂t2 −Δu = 0 in [0, T ] ×Ωc,

u(0, .) = ∂u

∂t
(0, .) = 0 in Ωc, (2.1)

u(t, x) = g(t, x) on [0, T ] × Γ.

The solution u of the above system can be represented as the single-layer potential
of an unknown density λ
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Sparsity of Runge–Kutta convolution weights 903

u(t, x̃) = (S λ)(t, x̃) =
t∫

0

∫

Γ

δ(t − τ − ‖x̃ − y‖)
4π‖x̃ − y‖ λ(τ, y)dΓydτ,

=
∫

Γ

λ(t − ‖x̃ − y‖, y)

4π‖x̃ − y‖ dΓy, (t, x̃) ∈ [0, T ] ×Ωc,

where δ(·) denotes the Dirac delta function. Single layer potential S λ is also known
as the retarded potential, the name being justified by the second expression above. For
any density λ, the function u = S λ satisfies the first two equations in (2.1), therefore
to solve (2.1) it remains to choose λ so that the boundary condition is also satisfied.
The single layer potential S λ is continuous across Γ , so letting in the above equation
x̃ → x ∈ Γ and using the boundary condition from (2.1), we obtain a boundary
integral equation for the unknown density λ

g(t, x) = (V λ)(t, x) =
t∫

0

∫

Γ

δ(t − τ − ‖x − y‖)
4π‖x − y‖ λ(τ, y)dΓydτ,

∀(t, x) ∈ [0, T ] × Γ. (2.2)

Here, the operator V is called the single layer boundary integral operator. For the
existence and uniqueness of solutions of this equation see [3].

For further discussion we will require the Laplace transforms of S and V . With
the Laplace transform defined by

L f (s) =
∞∫

0

e−st f (t)dt, Re s > 0,

and causal f , i.e. f (t) = 0, for t ≤ 0, it holds that

L ( f (· − r))(s) =
∞∫

0

e−st f (t − r)dt = e−srL f (s), r ≥ 0. (2.3)

Hence the Laplace transforms of S and V are given respectively by

S(s)ϕ(x̃) =
∫

Γ

e−s‖x̃−y‖

4π‖x̃ − y‖ϕ(y)dΓy, x̃ ∈ Ωc,

and

V (s)ϕ(x) =
∫

Γ

e−s‖x−y‖

4π‖x − y‖ϕ(y)dΓy, x ∈ Γ.

Next, we address the time-discretization of retarded potentials.
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904 L. Banjai, M. Kachanovska

2.1 Convolution quadrature based on backward differences

Let h > 0 denote the timestep and t j = jh the equally spaced time-points. Then the
derivative of a causal function f can be approximated by

f ′(t) ≈ 1
h ( f (t)− f (t − h)). (2.4)

Taking the Laplace transform of the above approximation and applying (2.3) gives

sL f (s) ≈ 1− e−sh

h
L f (s). (2.5)

We can also reverse this procedure: approximate the differentiation symbol s in the

Laplace domain by 1−e−sh

h = s+sO((sh)), see (2.5), and compute the inverse Laplace
transform of the approximation to obtain the backward difference approximation of
the derivative (2.4).

Convolution quadrature of S λ and V λ proceeds in a similar way. First the approx-
imation in the Laplace domain is made

V (s)L λ ≈ V
(

1−e−sh

h

)
L λ (2.6)

and then the inverse Laplace transform of the approximation is computed and used as
an approximation of V λ. Let the following expansion hold

V
(

1−e−sh

h

)
=
∞∑
j=0

ω j (V )e
−sh j =

∞∑
j=0

ω j (V )e
−st j , Re s > 0.

Remark 2.1 Note that V (s) is an analytic and bounded function of s for Re s > 0,

‖V (s)‖H1/2(Γ )←H−1/2(Γ ) ≤ C(σ )|s|, Re s ≥ σ > 0,

see [3]. Also 1 − e−sh is an analytic function of e−sh and Re(1 − e−sh) > 0 for
Re s > 0. Hence, the above expansion is well defined and the linear operators ω j (V ) :
H−1/2(Γ )→ H1/2(Γ ) are bounded.

Using (2.3) again, we see that the inverse Laplace transform of the approximation
in (2.6) is given by

V λ(t) ≈
∞∑
j=0

ω j (V )λ(t − t j ).

Assuming causality ofλwe obtain the convolution quadrature approximation at t = tn :

n∑
j=0

ω j (V )λ(tn − t j ) =
n∑

j=0

ωn− j (V )λ(t j ).
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Sparsity of Runge–Kutta convolution weights 905

Error and stability analysis of this first order time-discretization method and of con-
volution quadrature based on other A-stable linear multistep methods can be found in
[24].

2.2 Runge–Kutta based convolution quadrature

Since A-stable linear multistep methods have order restricted to p ≤ 2, Runge–Kutta
based methods need to be considered. For the importance of high order methods in
wave propagation problems see [5,6] and for the analysis of the resulting discrete
systems see [25] and [8,9].

Let an m-stage Runge–Kutta method be given by its Butcher tableau

c A

bT
.

In terms of A, b, and c, an m-stage Runge–Kutta discretization of the initial value
problem y′ = f (t, y), y(0) = y0, is given by the recurrence

Yni = yn + h
m∑

j=1

ai j f (tn + c j h,Ynj ), i = 1, . . . ,m,

yn+1 = yn + h
m∑

j=1

b j f (tn + c j h,Ynj );

here, h is the time-step and t j = jh. The values Yni and yn are approximations to
y(tn+ci h) and y(tn), respectively. This Runge–Kutta method is said to be of (classical)
order p ≥ 1 and stage order q if for sufficiently smooth right-hand sides f ,

Y0i − y(ci h) = O(hq+1), for i = 1, . . . ,m, and y1 − y(t1) = O(h p+1),

as h→ 0.
The corresponding stability function is defined by R(z) = 1 + zbT (I − Az)−11,

where 1 = (1 . . . 1)T and the following approximation property holds

R(z) = ez + O(z p+1). (2.7)

We will make the following assumptions on the stability function of the Runge–
Kutta method and will further assume that the coefficient matrix A is invertible. These
assumptions are required by the theory of Runge–Kutta convolution quadrature for
hyperbolic problems as described in [9].

Assumption 2.1 (a) The Runge–Kutta method is A-stable, namely |R(z)| ≤ 1 for all
z, s.t. Re z ≤ 0.
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906 L. Banjai, M. Kachanovska

(b) |R(∞)| = 1− bT A−11 = 0.
(c) |R(iy)| < 1, for all y ∈ R \ {0}.
Note that the second assumption above implies cm = 1. Examples of Runge–Kutta
methods satisfying these assumptions are the Radau IIA and Lobatto IIIC methods.

As in the previous section we will want to approximate the derivative of a function
f , but this time at the vector of stages:

f (t + ch) =
⎛
⎜⎝

f (t + c1h)
...

f (t + cmh)

⎞
⎟⎠ .

Using (2.3) and proceeding as in the previous section we see that an approximation in
the Laplace domain of the form

secshL f (s) ≈ Δ(e−sh)

h
ecshL f (s)

is required, where

ecsh =
⎛
⎜⎝

ec1sh

...

ecm sh

⎞
⎟⎠

and Δ(ζ) : C→ C
m×m is a matrix valued function with the property

Δ(e−z)ecz ≈ zecz .

The next lemma defines such a function and proves some of its properties.

Lemma 2.1 Let

Δ(ζ) =
(

A + ζ

1− ζ 1bT
)−1

= A−1 − ζ A−11bT A−1. (2.8)

Then the following hold:

(a) For z→ 0 it holds

Δ(e−z)ecz = zecz + O(zq+1).

(b) If μ /∈ σ(A−1), then R(μ) = ζ−1 if and only if μ ∈ σ(Δ(ζ )).
Proof Note that the equality in (2.8) is readily proved using the Sherman–Morrison
formula and bT A−11 = 1, where the latter is implied by Assumption 2.1(b). Result
(b) follows from the expression
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Sparsity of Runge–Kutta convolution weights 907

(z I −Δ(ζ))−1 = A(z A − I )−1 − ζ

1− R(z)ζ
(z A − I )−11bT (z A − I )−1

proved in [25, Lemma 2.4].
Proof of (a) requires a few more steps. In [9, Lemma 2.5], it has been shown that

zbT ecz = ez − 1+ O(z p+1) and z Aecz = ecz − 1+ O(zq+1).

Hence,

Δ(e−z)−1zecz = ecz − 1+ 1

1− e−z
1− e−z

1− e−z
1+ O(zq+1)

= ecz + O(zq+1).


�
Therefore we are in a similar position as in the previous section. The last step that we
need to do is construct the expansion

V

(
Δ(ζ)

h

)
=
∞∑
j=0

W h
n (V )ζ

j .

Remark 2.2 Note that A-stability and Lemma 2.1(b) imply that the eigenvalues of
Δ(ζ) for |ζ | < 1 all lie in the right-half complex plane. Therefore the same arguments
as in Remark 2.1 tell us that the above expansion is well defined and that the convolu-
tion weights W h

n (V ) are m × m matrices of bounded linear operators mapping from
H−1/2(Γ ) to H1/2(Γ ).

Recalling the definition of V (s) we see that W h
n ≡ W h

n (V ) are integral operators
defined by

W h
n λ(x) =

∫

Γ

wh
n (‖x − y‖)λ(y)dΓy, x ∈ Γ,

where the kernels wh
n (d) are defined by the corresponding expansion

exp
(
−Δ(ζ)h d

)

4πd
=
∞∑

n=0

wh
n (d)ζ

n . (2.9)

Let us denote by gn and gn the following functions

gn(x) = g(nh, x), gn(x) =
⎛
⎜⎝

g(nh + c1h, x)
...

g(nh + cmh, x)

⎞
⎟⎠ .
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908 L. Banjai, M. Kachanovska

With this notation the Runge–Kutta convolution quadrature of (2.2) is given by

gn(x) =
n∑

i=0

(
W h

n−iλi

)
(x),

where λn denotes

λn(x) =
⎛
⎜⎝
λ(nh + c1h, x)

...

λ(nh + cmh, x)

⎞
⎟⎠ .

In the remainder of the paper we will require the scaled convolution kernels
wn(d) := 4πdwh

n (hd). Notice that wn(d) are the coefficients of the following expan-
sion:

exp (−Δ(ζ)d) =
∞∑

n=0

wn(d)ζ
n . (2.10)

3 Sparsity of Runge–Kutta convolution weights

Our task in this section is to find estimates for convolution weights wh
n (d) in terms of

d and n. To do so, we first derive bounds for the scaled convolution weights wn(d)
and then use these results to show that similar bounds hold also for wh

n (d).
The scaled convolution weight wn(d) for d > 0 can also be expressed as

wn(d) = 1

2π i

∮

γ

R(z)n−1(I − Az)−11bT (I − Az)−1e−zddz, (3.1)

see [25]. Here, γ represents a contour that encloses all the eigenvalues of A−1.
To prove the main estimates, we need to choose the contour γ carefully. First, we

consider the domain Υr , r > 0:

Υr = {z ∈ C : |R(z)| > r} .

We denote by γr the boundary of this domain, i.e., γr := ∂Υr . Hence, |R(z)| = r
holds for all z ∈ γr . Next, we prove some properties of domains Υr .

Let

A+ =
{
z ∈ C : |R(z)| > |ez |, Re z > 0

}

denote the order star of R restricted to the right-half complex plane, see [20]. In
fact A+ denotes just the m bounded fingers containing the m, counting multiplicities,
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Sparsity of Runge–Kutta convolution weights 909

singularities of R. Since |R(iy)| < 1 for y �= 0, the origin is the only point of the
intersection of the closure of the order star with the imaginary axis and hence

A+ ⊂ Υ1 ∪ {0}.

Recall that the stability function of the Runge–Kutta method is a rational function

R(z) = P(z)

Q(z)
,

where P(z) and Q(z) are polynomials, see [20]. Without loss of generality we can
assume that Q(0) = 1. The so-called E-polynomial is defined by

E(y) = |Q(iy)|2 − |P(iy)|2 = e0 y2s + O(y2s+2). (3.2)

It can be shown that for Runge–Kutta methods satisfying Assumption 2.1 the constant
e0 is positive.

We will need the following lemma. We believe this result to be known, however were
not able to find an exact reference. Therefore, we provide its proof in the appendix.

Lemma 3.1 For an A-stable Runge–Kutta method of order p there exist q, ν > 0,
such that the domain

{(x, y) ∈ R
2 : |y| < νx

1
� , 0 < x < q}

belongs to Υ1 (and intersects all the order star fingers). Here

� =
{

p + 1, if p is odd,
2s, if p is even,

where s is defined by (3.2) with e0 > 0.

Lemma 3.2 Under Assumption 2.1, the domain Υ1 is located in the open right-half
plane and is bounded and connected (possibly multiply).

Proof The boundedness follows directly from the assumption R(∞) = 0. A-stability
and the bound |R(iy)| < 1, y ∈ R\ {0} imply that Υ1 is located in the open right-half
plane.

Let Υ̃1 be a connected (possibly multiply) component ofΥ1. Then, by the maximum
principle, Υ̃1 must contain a singularity of R(z) and the closure of the corresponding
finger (minus the origin). According to Lemma 3.1, the intersection of Υ̃1 with all
the other fingers is nonempty. Since Υ̃1 contains all the singularities of Υ1, by the
maximum modulus principle applied to R(z), it coincides with Υ1. 
�

Remark 3.1 The domainΥ1 is not necessarily simply connected and can contain a hole
Υ ′. Namely, a bounded domain Υ ′ can exist, s.t. R(z) vanishes in one of its interior
points, |R(z)| < 1 inside Υ ′ and ∂Υ ′ ⊂ ∂Υ1. This is the case for the diagonally
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Fig. 1 The boundary of Υ1 for an A-stable DIRK method defined by (3.3)

implicit Runge–Kutta (DIRK) method of order 2, see [1, Theorem 5], defined by the
Butcher tableau

a a 0
1 1− a a

1− a a

, a = 1+ 1√
2
. (3.3)

Its stability function is given by R(z) = 1+(1−2a)z
(1−az)2

and satisfies Assumption 2.1, see
also [20, Section 4.6, p.98]. The boundary of the domain Υ1 for this method is shown
in Fig. 1.

Remark 3.2 Note that by continuity of R(z), in a sufficiently small vicinity of r = 1,
Υr stays bounded and connected.

Corollary 3.1 If the stability function of a Runge–Kutta method that satisfies Assump-
tion 2.1 coincides with a Padé approximant for the exponential, the domainΥ1 is simply
connected. Further, for small enough ε > 0, the perturbed domainΥ1±ε is also simply
connected.

Proof For the proof we need two ingredients:

1. Ehle’s Conjecture [26, Theorem 7]. Any Padé approximation R(z) = P(z)
Q(z) ,

deg P = k, deg Q = m is A-stable iff m − 2 ≤ k ≤ m.
2. All zeros of such Padé approximants lie in the open left-half plane, see [12,13].

Hence, the existence of a bounded domainΥ ′, s.t. |R(z)| < 1 insideΥ ′ and ∂Υ ′ ⊂ ∂Υ1
(i.e. a hole in Υ1), contradicts the maximum modulus principle applied to the analytic
function 1

R(z) , z ∈ C+. The proof for the perturbed domain is similar. The main thing to
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Sparsity of Runge–Kutta convolution weights 911

notice is that if ε is small enough, then there exists ε′ > 0 such that the zeros of R(z) are
contained in the half-plane Re z < −ε′ and that Υ1±ε is contained in Re z > −ε′. 
�

Again, the stability functions of the Radau IIA and Lobatto IIIC methods satisfy the
assumptions of the above corollary.

Lemma 2.1(b) provides us with an easy way to draw the curves γr = ∂Υr , i.e.,
by plotting the eigenvalues of Δ(ζ) for all |ζ | = 1/r . In [5] the multiplicity of the
eigenvalues of Δ(ζ) for the 2- and 3-stage Radau IIA Runge–Kutta methods was
discussed. In both cases Δ(ζ) has only simple eigenvalues for |ζ | = 1, as explained
also by Corollary 3.1. For the 2-stage version, eigenvalues of multiplicity greater than
1 occur only for ζ = −5 ± 3

√
3. For a plot of these curves at the critical values and

r = 1 see Fig. 2.
Since the domain Υ1 is connected, by Remark 3.2, Υr is also connected (not nec-

essarily simply) for sufficiently small |r − 1|. Let δ∗ be such that

the domain Υr is bounded and connected for |r − 1| < δ∗. (3.4)

From now on we will make use of γ chosen as the positively oriented boundary of a
domain Υr , i.e. γ = γr , with |r − 1| < δ∗.

Remark 3.3 Note that the total length of γr is bounded, see [2, Lemma 3], by

|γr | ≤ 4md(γr ),

where d(γr ) is the diameter of γr .

−15 −10 −5 0 5 10 15 20 25 30 35

−20

−15

−10

−5

0

5

10

15

20

Fig. 2 Curves γr , for the 2-stage Radau IIA method, are plotted for r = 1 (the middle curve in blue) and
the critical values r = r1 = 5+ 3

√
3 (the outer curve in green) and r = r2 = 3

√
3− 5 (the inner curve in

red). For r > r1 and r < r2 the curve splits into two disjoint curves
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From (3.1) it follows that the Euclidean norm of wn(d) is bounded as

‖wn(d)‖ ≤ 1

2π

∥∥∥∥∥∥
∫

γr

R(z)n−1e−zd(I − Az)−11bT (I − Az)−1dz

∥∥∥∥∥∥
≤ 1

2π
|γr |rn−1 max

z∈γr
‖e−zd(I − Az)−11bT (I − Az)−1‖.

Denoting by U (z) = (I − Az)−1, we can deduce the bound

max
z∈γr
‖(I − Az)−11bT (I − Az)−1‖ ≤ max

z∈γr
‖(I − Az)−1‖2‖1bT ‖

≤ max
z∈γr
‖U (z)‖2‖b‖√m,

which implies that

‖wn(d)‖ ≤ 1

2π
rn−1|γr |‖b‖

√
m max

z∈γr
|e−zd |max

z∈γr
‖U (z)‖2. (3.5)

To understand the behaviour of a scaled convolution weight wn(d) we need to find
a bound on maxz∈γr |e−zd |. To do so, we use the fact that the stability function R(z)
approximates ez , see (2.7), and thus maxz∈γr |e−zd | can be expressed via the value of
|R(z)| on γr .

For a Runge–Kutta method of order p we can write

R(z) = ez + f (z),

where f (z) = O(z p+1).
Let us consider z ∈ γr and d ∈ R>0. Multiplying the last equation by e−z R(z)−1,

we get the following identity:

e−z = R(z)−1 (
1+ f (z)e−z) . (3.6)

Clearly,

max
z∈γr
|e−z | = e−x0 ,

where x0 = min
z∈γr

Re z. Let z0 = x0 + iy0 ∈ γr be a point such that

Re z′ ≥ Re z0, for all z′ ∈ γr . (3.7)

Note that such a point is not necessarily unique. Taking the modulus and raising both
sides of (3.6) to the dth power, we obtain

max
z∈γr
|e−zd | = |e−z0 |d = |R(z0)

−1 (
1+ f (z0)e

−z0
) |d .
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Sparsity of Runge–Kutta convolution weights 913

Hence

max
z∈γr
|e−zd | = r−d

∣∣1+ f (z0)e
−z0

∣∣d
, (3.8)

where z0 = x0 + iy0 is a point satisfying (3.7).

Remark 3.4 The points z0 ∈ γr with the smallest real part can alternatively be char-
acterized by the following two properties:

– For all z such that Re z < Re z0, it holds that

|R(z0)| > |R(z)|. (3.9)

This is due to the analyticity of R(z), as well as the definition of γr and points z0.
– Let us fix x0 = Re z0. Note that the continuous function |R(x0 + iy)| → 0 as

y →∞. Then y0, see (3.7), are the points in which |R(x0+ iy)| achieves its local
maximum. Let us show this. We assume the contrary, namely, that there exists
y′ ∈ R s.t.

|R(x0 + iy′)| > |R(x0 + iy0)|.

Since R(z) is analytic in z′ = x0 + iy′, there exists an ε-neighborhood of z′ s.t.

|R(z)| > |R(x0 + iy0)|, |z − z′| ≤ ε.

Taking z = z′ − ε = (x0 − ε)+ iy′, we arrive at the contradiction to (3.9).

In order to bound this product we need to understand how x0 and x0 + iy0 behave.
This question has been studied in [19] examining the behaviour of R(z) in the order
star [26]. Namely, when r → 1, all such points z0 satisfy |z0| ≤ C |r − 1|a for some
C, a > 0. This and the fact that f (z) = O(z p+1) will allow us to obtain bounds on
the scaled convolution weights. Here we will employ the results from [19].

Definition 3.1 [19] Given a rational function R(z)we define the error growth function
as the real-valued function φ(x) := supRe z<x |R(z)|.
Theorem 3.1 (Theorem 7 in [19]) Let R(z) = P(z)

Q(z) be an A-stable approximation to
ez of exact order p ≥ 1, i.e.,

R(z) = P(z)

Q(z)
= ez + C p+1z p+1 + O(z p+2), for z→ 0, C p+1 �= 0. (3.10)

Furthermore, assume |R(iy)| < 1 for y �= 0 and |R(∞)| < 1. Then we have for
x → 0:

– if p is odd,

φ(x) = ex + O(x p+1).
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914 L. Banjai, M. Kachanovska

– if p is even and (−1)p/2C p+1x < 0,

φ(x) = ex + O(x p+1).

– if p is even and (−1)p/2C p+1x > 0,

φ(x) = ex + O(x1+p/(2s−p)),

where s is defined by

E(y) = |P(iy)|2 − |Q(iy)|2 = e0 y2s + O(y2s+2), e0 > 0. (3.11)

Remark 3.5 [19] For x < Re λmin , with λmin being an eigenvalue of A−1 with the
smallest real part, φ(x) is a strictly monotonically increasing continuous function.

The following proposition shows that for r → 1, x0 = minz∈γr Re z is close to
r − 1.

Proposition 3.1 Let R(z) be the stability function of the Runge–Kutta method satis-
fying Assumption 2.1, let (3.10) hold and let x0 = minz∈γr Re z. Then for r → 1:

x0 = r − 1+ o(|r − 1|).

Proof By definition, |R(z)| = r on γr . Since the error growth function φ(x) is a
strictly monotonically increasing continuous function, see Remark 3.5, φ(x0) = r .
The statement of the proposition follows from the application of the implicit function
theorem to the 3 cases of Theorem 3.1 and the fact that φ(0) = 1, dφ

dx (0) = 1. 
�

Next proposition shows that when r ≈ 1, the point z0 defined by (3.7) lies in a
small circle centered at the origin.

Proposition 3.2 Let R(z) be the stability function of the Runge–Kutta method satisfy-
ing Assumption 2.1 and (3.10). Then there exist δ0 > 0 and K > 0, s.t., for all r, with
|r − 1| < δ0, the point z0 ∈ γr defined by (3.7) lies inside one of the circles specified
below:

1. for p odd:

|z0| ≤ K |r − 1|.

2. for p even:
(a) if r > 1 and (−1)

p
2 C p+1 < 0 or r < 1 and (−1)

p
2 C p+1 > 0,

|z0| ≤ K |r − 1|.
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(b) if r > 1 and (−1)
p
2 C p+1 > 0 or r < 1 and (−1)

p
2 C p+1 < 0,

|z0| ≤ K |r − 1| 1
2s−p ,

where s is defined by (3.11).

Proof The proof of this statement follows closely the proof of Theorem 7 in [19].
Recall that z0 = x0 + iy0 is a (not necessarily unique) point in which |R(x0 +
iy)|, y ∈ R, achieves its local maximum, see Remark 3.4. As argued in [19], for
x0 → 0 the maximum of |R(x0 + iy)|, y ∈ R, lies inside the order star close to the
origin. We consider the following cases for r → 1 (and, consequently, x0 → 0, see
Proposition 3.1):

1. p is odd. As shown in the proof of Theorem 7 in [19], the local extrema of
|R(x0 + iy)| lie asymptotically (as x0 → 0) on the lines y = x0 tan (kπ/p),
k = 0, 1, . . . , p − 1. Since |R(z)| achieves an extremum at z0, it follows that
|z0| ≤ C |x0|, where C > 0 and depends on the Runge–Kutta method.
Proposition 3.1 gives an expression for x0 (using φ(x0) = r ):

x0 = r − 1+ o(|r − 1|).

Hence,

|z0| ≤ K |r − 1|,

for some K > 0.
2. p is even.

(a) As proved in Theorem 7 in [19], for (−1)p/2C p+1x0 < 0 and x0 → 0, the
point z0 satisfies |z0| ≤ C |x0|, C > 0. The statement of the proposition is
then obtained with similar arguments as in the previous case and the fact that
sgnx0 = sgn(r − 1).

(b) For the last case, namely (−1)p/2C p+1x0 > 0, in the proof of Theorem 7 in
[19] it was shown that the local extrema of |R(x0 + iy)|, y ∈ R, for x0 → 0,
are achieved near the imaginary axis and lie on a curve y2s−p = Dx0, for
some D ∈ R and with s defined in (3.11).
Then there exists C > 0, such that for all sufficiently small x0,

|z0| ≤ C
(
|x0| + |x0|1/(2s−p)

)
= C |x0|1/(2s−p)

(
|x0|1−1/(2s−p) + 1

)
.

According to Proposition 3.4 in [20] 2s ≥ p + 1, therefore, for even p, 2s ≥
p + 2. This implies that |x0|1−1/(2s−p) = o(|x0|), hence

|z0| ≤ K |r − 1| 1
2s−p ,

for some K > 0. 
�
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916 L. Banjai, M. Kachanovska

Now we have all the estimates necessary to prove the next proposition on the decay
of the scaled convolution weights.

Proposition 3.3 Let R(z) be the stability function of an m-stage Runge–Kutta method
of order p satisfying Assumption 2.1 and (3.10).

Let s be defined by (3.11). Then there exist positive constants G, G ′, C, C ′ and
δ̄ ∈ (0, 1), such that for n ≥ 1 and 0 < δ < δ̄ the following estimates hold:

1. p is odd

‖wn(d)‖ ≤ G(1− δ)n−d(1+ Cδ p+1)d for d ≤ n,

‖wn(d)‖ ≤ G ′(1+ δ)n−d(1+ C ′δ p+1)d for d > n; (3.12)

2. p is even
(a) C p+1(−1)

p
2 > 0

‖wn(d)‖ ≤G(1− δ)n−d(1+ Cδ p+1)d for d ≤ n,

‖wn(d)‖ ≤G ′(1+ δ)n−d(1+ C ′δ
p+1

2s−p )d for d > n;
(3.13)

(b) C p+1(−1)
p
2 < 0

‖wn(d)‖ ≤ G(1− δ)n−d(1+ Cδ
p+1

2s−p )d for d ≤ n,

‖wn(d)‖ ≤ G ′(1+ δ)n−d(1+ C ′δ p+1)d for d > n.
(3.14)

The scaled convolution weight w0(d) satisfies:

‖w0(d)‖ ≤ exp(−μd), (3.15)

for some μ > 0.
Constants G,G ′,C,C ′, δ̄, μ depend only on the Runge–Kutta method and are inde-

pendent of n and d.

Proof Let us start with w0(d). From the definition of the scaled convolution weights

exp (−Δ(ζ)d) =
∞∑

n=0

wn (d) ζ
n,

Δ(ζ ) = A−1 − ζ A−11bT A−1,

it follows that w0(d) = exp(−A−1d). All the eigenvalues of A lie on the right of the
imaginary axis (due to the A-stability of the Runge–Kutta method) and hence the same
holds for the eigenvalues of A−1. The bound on w0(d) can then be obtained from the
definition of the matrix exponential.
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For the general case wn(d), n ≥ 1, we use the bounds derived before, inserting
(3.8) into (3.5):

‖wn(d)‖ ≤ 1

2π
rn−1‖b‖√m|γr |max

z∈γr
|e−zd |max

z∈γr
‖U (z)‖2

= 1

2π
rn−d−1|γr |max

z∈γr
‖U (z)‖2‖b‖√m|1+ f (z0)e

−z0 |d , (3.16)

where f (z) = R(z)− ez and z0 is such that Re z′ ≥ Re z0 for all z′ ∈ γr .
Let us first derive a bound for |1+ f (z0)e−z0 |. For |z| < 1

λ0
, where λ0 is the spectral

radius of A, we can expand R(z) = 1+ zbT (I − Az)−11 with the help of Neumann
series to obtain an explicit expression for f (z):

f (z) = R(z)− ez = z
∞∑

l=p

bT Al1zl −
∞∑

l=p+1

zl

l! .

For |z| < 1
‖A‖ , we can trivially bound

|1+ f (z)e−z |d ≤
(

1+ C |z|p+1
)d
, (3.17)

where C depends on the Runge–Kutta method, but not on z or d.

Now let n > d. We choose r < 1, r = 1− δ, 0 < δ < min
{
δ∗, 1

‖A‖ , 1
}

. Here δ∗
is the constant from (3.4).

Then the bound (3.16), using (3.17), can be written as

‖wn(d)‖ ≤ 1

2π
(1− δ)n−d−1|γ1−δ| max

z∈γ1−δ
‖U (z)‖2‖b‖√m

(
1+ C |z0|p+1

)d
,

where z0 is such that Re z0 < Re z for all z ∈ γ1−δ .
The total length of γ1−δ as well as maxz∈γ1−δ ‖U (z)‖ can be bounded by constants

that depend on the Runge–Kutta method, see also Lemma 3.2 and Remarks 3.2 and
3.3. Applying Proposition 3.2 to estimate (1 + C |z0|p+1)d , we obtain the required
expressions for the case n > d.

The bound for n < d can be obtained similarly by setting r = 1+ δ, with 0 < δ <

min
{
δ∗, 1

‖A‖ , 1
}

. 
�

Remark 3.6 Note that for even p the above bounds imply that when 2s − p < p + 1
scaled convolution weights decay exponentially. However, since 2s ≤ 2m (m is the
number of stages and the degree of the denominator in R(z) = P(z)

Q(z) ), for exponential
decay it suffices that p ≥ m.

Remark 3.7 From the proof it can be seen that the increase of widths of (approximate)
supports of convolution weights is due to the term |1+ f (z0)e−z0 |, which we bounded
by a constant greater than 1. We have not observed in numerical experiments a case
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918 L. Banjai, M. Kachanovska

where this term is noticeably smaller than 1. Note that if this term were smaller
than 1, the convolution weights wn(d) would decay exponentially with increasing
n ≈ d.

We have shown that scaled convolution weights wn(d) exhibit exponential decay
outside of a neighborhood of n ≈ d, which is an expression of the strong Huygens
principle. Additionally, the above estimates suggest that the size of the approximate
support of a convolution weight wn(d) increases with n. Let us examine this in more
detail.

We consider Runge–Kutta methods satisfying the following assumption.

Assumption 3.1 Let the order of the Runge–Kutta method be p ≥ 1. If p is even,
then let 2s − p < p + 1, where s is as in (3.11), see also Remark 3.6.

In particular, this assumption holds true for the Radau IIA and Lobatto IIIC methods.

For n ≥ 1, wn(d) is bounded by ε > 0 outside the interval
[
d(n,ε)1 , d(n,ε)2

]
, where

d(n,ε)1 = sup
{

d ≥ 0 : ‖wn(d
′)‖ < ε, for all 0 ≤ d ′ < d

}
,

d(n,ε)2 = inf
{

d ≥ 0 : ‖wn(d
′)‖ < ε, for all d ′ > d

}
.

The set

{
d : ‖wn(d

′)‖ < ε, 0 ≤ d ′ < d
}

is non-empty for n ≥ 1, since wn(0) = 0 (as we show in the proof of Proposition 3.4)
and wn(d) is smooth as a function of d ≥ 0. The set

{
d : ‖wn(d

′)‖ < ε, d ′ > d
}

is non-empty for all n ≥ 0 by Proposition 3.3 for the Runge–Kutta methods under
consideration. Hence, the values d(n,ε)1 , d(n,ε)2 are defined for all n ≥ 1.

To find estimates on d(n,ε)1 and d(n,ε)2 , n > 0, we make use of the bounds of
Proposition 3.3 that can be written in a more general form:

‖wn(d)‖ ≤ G(1− δ)n−d(1+ Cδα)d for all d ≤ n,

‖wn(d)‖ ≤ G ′(1+ δ)n−d(1+ C ′δα′)d for all d > n,

for all 0 < δ < δ̄ < 1 and constants C,C ′,G,G ′, α, α′, δ̄ > 0 depending only on the
Runge–Kutta method. We can estimate d(n,ε)1 and d(n,ε)2 from

G(1− δ)n−d(1+ Cδα)d ≤ ε, (3.18)

G ′(1+ δ)n−d(1+ C ′δα′)d ≤ ε. (3.19)
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The first inequality is satisfied if

d ≤ n log
1

1− δ
(

log
1

1− δ + log(1+ Cδα)

)−1

− log
G

ε

(
log

1

1− δ + log(1+ Cδα)

)−1

= n −
(

log
1

1− δ + log(1+ Cδα)

)−1 (
n log

(
1+ Cδα

)+ log
G

ε

)
.

Hence, for small enough δ, there exist constants c1, c2 > 0 s.t. (recall that α > 1)

d ≤ n − c1nδα + log G
ε

δ(1− c2δ)

implies (3.18). This in turn implies that

d(n,ε)1 ≥ n − c1nδα−1 + δ−1 log G
ε

1− c2δ
.

Let us choose δ to minimize the expression c1nδα−1 + δ−1 log G
ε

as n → ∞. In
particular, setting

δ = cn−
1
α log

1
α

G

ε
, (3.20)

with c being a small constant independent of n, ε (chosen so that δ < δ̄, where δ̄ is
defined in Proposition 3.3), ensures that

d(n,ε)1 ≥ n − C1n
1
α log1− 1

α
G

ε
, (3.21)

for some C1 depending on the Runge–Kutta method. Similarly,

d(n,ε)2 ≤ n + C ′1n
1
α′ log1− 1

α′
G ′

ε
, (3.22)

for C ′1 > 0 that depends on the Runge–Kutta method. To check this estimate, we plot
the dependence of numerically determined valuesΔn,ε

1 = n−dn,ε
1 andΔn,ε

2 = dn,ε
2 −n

on n in Fig. 3 for different Runge–Kutta methods.
Our estimates predict that for methods with odd order p, namely BDF1 (p = 1),

2-stage Radau IIA (p = 3) and 3-stage Radau IIA (p = 5), Δn,ε
1 , Δ

n,ε
2 increase as

O
(

n
1

p+1

)
. This is in close agreement with the numerical results shown in Fig. 3.

For Runge–Kutta methods of even orders obtained estimates predict that for larger
n and d the width of a convolution weight gets larger in a non-symmetric manner:
Δ

n,ε
1 can get larger with increasing n faster than Δn,ε

2 or vice versa. For larger n
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n
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7

n
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2
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Fig. 3 Dependence of Δn,10−4

1 , Δ
n,10−4

2 on n for different Runge–Kutta methods

and d the asymmetry becomes more visible. This can be illustrated by the Lobatto
IIIC method of 6th order. Numerical experiments indicate that with increasing n the
part of the approximate support of the convolution weight wn(d) of the Lobatto IIIC
method corresponding to d < n increases slower than the part of the approximate
support corresponding to d > n. This effect can be explained by estimates (3.13) as
follows. The stability function of the 4-stage Lobatto IIIC method is the (2, 4)-Padé
approximation to ez . For such approximants the sign of C p+1 is negative (see, for
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Fig. 4 We examine the dependence of Δn,ε
2 for the BDF1 method on ε. In the left plot we show the

dependence of Δ10,ε
2 on log 1

ε , and in the right plot the dependence of Δ103,ε
2 on log

1
2 1
ε is demonstrated.

We compare the rate of growth of Δ103,ε
2 to O(log 1

ε ) and O(log
1
2 1
ε ): this rate is closer to O(log

1
2 1
ε )

rather than O(log 1
ε )

example, [20, Theorem 3.11]); then the sign of C p+1(−1)
p
2 is positive. According to

the estimates (3.13), Δn,ε
1 = O

(
n

1
p+1

)
, with p = 6, while Δn,ε

2 = O

(
n

2s−p
p+1

)
, with

s = 4 for Lobatto IIIC (this value can be obtained by examining E(y) = O(y2s) for
small y ∈ R). Again, the results in Fig. 3 are in close agreement with these estimates.

Remark 3.8 The choice of δ provided by (3.20) is valid only if

(
log G

ε

n

) 1
α

can be bounded by a constant (otherwise it is impossible to choose c > 0 independent
of n, ε > 0 in (3.20)). Hence, the suggested dependence ofΔn,ε

1 , Δ
n,ε
2 on the accuracy

ε > 0 is not necessarily valid in the regime when n is fixed and ε → 0. In this case
an optimal choice of δ is δ = c > 0, and Δn,ε

1 ,Δ
n,ε
2 increase as O

(
log 1

ε

)
rather than

O
(

log
1
α

1
ε

)
.

This can be seen in Fig. 4, where we plot Δ10,ε
2 and Δ103,ε

2 for BDF1 convolution
weights for a range of ε > 0.

The next proposition is a corollary of Proposition 3.3 and shows that (unscaled)
convolution weights wh

n (d) also experience exponential decay away from d
h ≈ n.

Proposition 3.4 Let R(z) be the stability function of an m-stage Runge–Kutta method
of order p satisfying Assumptions 2.1 and (3.10).

Let s be defined by (3.11). Then there exist positive constants G, G ′, C, C ′ and
δ̄ ∈ (0, 1), such that for n ≥ 1 and 0 < δ < δ̄ the following estimates hold:
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1. p is odd

‖wh
n (d)‖ ≤

G

h
(1− δ)n− d

h (1+ Cδ p+1)
d
h for

d

h
≤ n,

‖wh
n (d)‖ ≤

G ′

d
(1+ δ)n− d

h (1+ C ′δ p+1)
d
h for

d

h
> n;

(3.23)

2. p is even
(a) C p+1(−1)

p
2 > 0

‖wh
n (d)‖ ≤

G

h
(1− δ)n− d

h (1+ Cδ p+1)
d
h for

d

h
≤ n,

‖wh
n (d)‖ ≤

G ′

d
(1+ δ)n− d

h (1+ C ′δ
p+1

2s−p )
d
h for

d

h
> n;

(3.24)

(b) C p+1(−1)
p
2 < 0

‖wh
n (d)‖ ≤

G

h
(1− δ)n− d

h (1+ Cδ
p+1

2s−p )
d
h for

d

h
≤ n,

‖wh
n (d)‖ ≤

G ′

d
(1+ δ)n− d

h (1+ C ′δ p+1)
d
h for

d

h
> n.

(3.25)

The convolution weight wh
0 (d) satisfies:

‖wh
0 (d)‖ ≤

exp(−μ d
h )

4πd
,

for some μ > 0.
Constants G,G ′,C,C ′, δ̄, μ depend only on the Runge–Kutta method and do not

depend on n, d and h.

Proof Let us again start with wh
0 (d). From the definition of the scaled convolution

weights it follows that wh
0 (d) = w0(

d
h )

4πd , and the required bound can be obtained from
(3.15). Note, however, that the convolution weight wh

0 (d) has a singularity at d = 0.
Bounds for the case d

h > n can be obtained straightforwardly from expressions

(3.12, 3.13, 3.14) applied to wh
n (d) = wn(

d
h )

4πd .
The case d

h ≤ n has to be treated separately: we cannot directly apply Proposition 3.3

for boundingwh
n (d) = wn(

d
h )

4πd , since for small d this bound would be far from optimal.
We will proceed as follows. First, we will show that a scaled convolution weight wn(d)
has a zero at d = 0 of multiplicity at least n. Next, this fact and ideas from the proof
of Proposition 3.3 will be used to demonstrate that away from a neighbourhood of
d ≈ nh convolution weights wh

n (d) decay exponentially.
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Let us first expand the generating function of the scaled convolution weights
e−Δ(ζ)d , see (2.10), into a Taylor series in ζ and then into a series in d:

exp (−Δ(ζ)d) =
∞∑

n=0

wn(d)ζ
n,

exp (−Δ(ζ)d) =
∞∑

n=0

(−Δ(ζ))n
n! dn .

Matching the powers of ζ we obtain the following expansion for wn(d), n ≥ 0:

wn(d) =
∞∑

m=n

dm f n
m (A, b, h) ,

where f n
m(A, b, h) are matrix-valued functions of A, b and h.

Therefore, wn(0) = 0, n ≥ 1. The above also implies that convolution weights
wh

n (d), n ≥ 1, have a zero at d = 0 of order at least n − 1.
Let us recall the representation of the scaled convolution weights (3.1):

wn(d) = 1

2π i

∮

γ

R(z)n−1(I − Az)−11bT (I − Az)−1e−zddz, (3.26)

where γ is a contour that encloses all the eigenvalues of A−1, n ≥ 1. From this it
follows that

wn(0) = 1

2π i

∮

γ

R(z)n−1(I − Az)−11bT (I − Az)−1dz = 0. (3.27)

Now let us prove the bounds (3.23, 3.24, 3.25) for d
h < n. Let d �= 0. We express

e−z d
h in terms of an integral of a parameter 0 ≤ ρ ≤ 1:

e−z d
h = 1− zd

h

1∫

0

e−z d
h ρdρ.

The definition (3.26) can then be rewritten:

wh
n (d) =

1

2π id

∮

γ

R(z)n−1(I − Az)−11bT (I − Az)−1e−z d
h dz

= 1

2π id

∮

γ

R(z)n−1(I − Az)−11bT (I − Az)−1dz
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− 1

2π ih

1∫

0

∮

γ

R(z)n−1(I − Az)−11bT (I − Az)−1ze−z d
h ρdzdρ.

The first term in the above sum equals 0, due to (3.27). The modulus of the second
term, namely,

1

2π ih

1∫

0

∮

γ

R(z)n−1(I − Az)−11bT (I − Az)−1ze−z d
h ρdzdρ,

can be estimated using the mean value theorem. We first bound the value of the integral

I (ρ, d) = 1

2π ih

∮

γ

R(z)n−1(I − Az)−11bT (I − Az)−1ze−z d
h ρdz

repeating the arguments of the proof of Proposition 3.3. Note that two changes have
to be made. First, d has to be replaced with d

h ρ. Further, instead of bounding ‖(I −
Az)−11bT (I − Az)−1‖ we now bound ‖(I − Az)−11bT (I − Az)−1z‖, for z lying
on γ = γr , by a constant that does not depend on d, h or n, but does depend on the
Runge–Kutta method.

It is not difficult to see that there exist positive constants G, C , δ̄ ∈ (0, 1), q > 0
such that for n ≥ 1 and 0 < δ < δ̄ the following estimate holds:

|I (ρ, d)| ≤ 1

h
G(1− δ)n− d

h ρ(1+ Cδq)
d
h ρ,

for d
h ρ ≤ n. In the above expression q is either p + 1 or p+1

2s−p , as in Proposition 3.3.

Clearly this estimate is valid for all d such that d
h < n and ρ ∈ [0, 1].

Next, we bound
1∫

0
I (ρ, d)dρ as:

∣∣∣∣∣∣
1∫

0

I (ρ, d)dρ

∣∣∣∣∣∣ ≤ max
ρ∈[0, 1]

|I (ρ, d)|

≤ 1

h
G(1− δ)n max

ρ∈[0, 1]

(
1+ Cδq

1− δ
) d

h ρ

≤ 1

h
G(1− δ)n− d

h
(
1+ Cδq) d

h .

This finishes the proof of the statement. 
�
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Sparsity of Runge–Kutta convolution weights 925

4 Computation of convolution weights

Let us write

Kd(ζ ) = exp
(−Δ(ζ) d

h

)
4πd

.

The expansion (2.9) shows thatwh
n (d) is the nth Taylor coefficient ofKd (ζ ). Therefore,

the Cauchy integral formula gives another representation of wh
n (d),

wh
n (d) =

1

2π i

∮

C

Kd(ζ )ζ
−n−1dζ.

Let us choose the contour C to be the circle centered at the origin with radius � < 1.
Discretizing this integral with the composite Trapezoid rule gives the approximation

wh
n (d) = �−n

N∑
j=0

Kd

(
�ei j 2π

N+1

)
e−i jn 2π

N+1 + O(�N+1), n = 0, 1, . . . , N .

(4.1)

In practice, the parameter � > 0 cannot be chosen arbitrarily small in finite precision
arithmetic. If eps denotes the machine precision the best accuracy that can be achieved

is
√

eps with the choice � = eps
1

2N , see [23]. Using FFT, wh
n (d) can be computed

in O(N log N ) time for all n = 0, 1, . . . , N . However, if d is bounded by K h, for a
constant K > 0, it is possible to avoid the scaling parameter � as described in the next
proposition.

Proposition 4.1 Let wh
n , n ≥ 0, be the Runge–Kutta convolution weights (2.9), and

let the Runge–Kutta method satisfy Assumption 2.1.
Let K > 0 be fixed. There exist μ1, μ2, μ3 > 0, s.t. for all ε > 0, h > 0, L ∈ N

satisfying

L ≥ μ1 log
1

εh
+ μ2 K + μ3,

and all 0 < d ≤ K h the following holds true.

1. There exists an L-term approximation to the convolution kernel Kd(ξ) =
exp

(
−Δ(ξ) d

h

)
4πd :

∣∣∣∣∣Kd(ξ)−
L−1∑
�=0

wh
� (d)ξ

�

∣∣∣∣∣ ≤ ε

for all ξ ∈ C : |ξ | ≤ 1.
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926 L. Banjai, M. Kachanovska

2. Convolution weights can be approximated with an accuracy ε by an L-term discrete
Fourier transform of the convolution kernel

∣∣∣∣∣wh
n (d)−

1

L

L−1∑
�=0

Kd(e
i� 2π

L )e−i�n 2π
L

∣∣∣∣∣ ≤ ε

for all n < L.

Proof Let us prove the first statement using the bounds on convolution weights derived
in Proposition 3.4. The second statement then follows directly from the first statement
by the application of the aliasing formula.

By definition, for all |ξ | < 1

Kd(ξ) =
∞∑
�=0

wh
� (d)ξ

� =
L−1∑
�=0

wh
� (d)ξ

� +
∞∑
�=L

wh
� (d)ξ

�.

Let us show that given ε > 0, there exists L s.t.

EL(ξ, d) =
∥∥∥∥∥
∞∑
�=L

wh
� (d)ξ

�

∥∥∥∥∥ ≤ ε. (4.2)

First, let L > K . In a generalized form, the bounds on the scaled convolution weights
wh
� (d) for � ≥ L and d ≤ K h < �h can be stated as

∥∥∥wh
� (d)

∥∥∥ ≤ G

h
(1− δ)�− d

h (1+ Aδα)
d
h ,

for some 0 < δ < δ̄ < 1 and A,G, α, δ̄ > 0 being constants. Then, after inserting
this bound into the expression (4.2) for EL(ξ, d),

EL(ξ, d) ≤ G

h

(
1+ Aδα

1− δ
) d

h
∞∑
�=L

(1− δ)�

≤ G

h

(
1+ Aδα

1− δ
) d

h

(1− δ)Lδ−1 ≤ G

hδ

(
1+ Aδα

1− δ
)K

(1− δ)L , (4.3)

where we used that d ≤ K h. From the above it can be seen that L has to be chosen
larger than K and so that

G

hδ

(
1+ Aδα

1− δ
)K

(1− δ)L < ε.
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Sparsity of Runge–Kutta convolution weights 927

Namely,

L ≥ K

(
log(1+ Aδα) log−1 1

1− δ + 1

)

+ log
1

hε
log−1 1

1− δ + log
G

δ
log−1 1

1− δ .

This proves the statement of the proposition for |ξ | < 1. For |ξ | = 1 the correctness
of the statement can be seen from the bound (4.3) which is valid for |ξ | = 1. 
�
Remark 4.1 Note that in the above statement the dependence of L on log 1

h cannot
be removed. To illustrate this fact, in Fig. 5 we plot n∗ = sup{n ∈ N | ‖wh

� (d) ‖ <
ε, for all � ≥ n, d ≤ D} for different values of h and ε and fixed D

h = 10, for the
3-stage Radau IIA method of order five.

A similar statement holds for the scaled convolution weights.

Proposition 4.2 Let wn, n ≥ 0, be the scaled Runge–Kutta convolution weights
(2.10), and let the Runge–Kutta method satisfy Assumption 2.1.

Let K > 0 be fixed. There exist μ1, μ2, μ3 > 0, s.t. for all ε > 0 and L ∈ N

satisfying

L ≥ μ1 log
1

ε
+ μ2 K + μ3,

the following holds true for 0 ≤ d ≤ K .

1. There exists an L-term approximation to the convolution kernel Kd(ξ) =
exp (−Δ(ξ)d):

∣∣∣∣∣Kd(ξ)−
L−1∑
�=0

w�(d)ξ
�

∣∣∣∣∣ ≤ ε

for all ξ ∈ C : |ξ | ≤ 1.

Fig. 5 Dependence of
n∗ = sup{n ∈ N | ‖wh

�
(d)‖ <

ε, for all � ≥ n, d ≤ D} on 1
h ,

for ε = 1e− 4, 1e− 5 and fixed
D
h = 10, for the 3-stage Radau

IIA method
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928 L. Banjai, M. Kachanovska

2. Scaled convolution weights can be approximated with the accuracy ε by an L-term
discrete Fourier transform of the convolution kernel Kd(ξ)

∣∣∣∣∣wn(d)− 1

L

L−1∑
�=0

Kd(ξ)(e
i� 2π

L )e−i�n 2π
L

∣∣∣∣∣ ≤ ε

for all n < L .

Proof The proof of the proposition mimics the proof of Proposition 4.1. 
�

5 Applications

The idea of using the sparsity of convolution weights to speed up calculations is
not new. The most straightforward way of using the sparsity is to notice that for large
enough n, the weights W h

j , j > n, need not be computed at all but can be approximated
by zero. In order to describe more advanced algorithms we need to briefly introduce
the Galerkin boundary element discretization of convolution weights.

Let the boundary Γ be split into M disjoint panels τ1, . . . , τM so that Γ = ∪i τ̄i .
The span of piecewise constant basis functions

bi (x) =
{

1 x ∈ τi

0 x /∈ τi
, i = 1, 2, . . . ,M,

defines a finite dimensional subspace X ⊂ H−1/2(Γ ).
The corresponding Galerkin discretization of a convolution weight W h

n is given by

(
Wh

n

)
i j
=

∫

Γ

(
W h

n bi

)
(x)b j (x)dΓx

=
∫

Γ

∫

Γ

wh
n (‖x − y‖)bi (y)b j (x)dΓydΓx

=
∫

τi

∫

τ j

wh
n (‖x − y‖)dΓydΓx .

Remark 5.1 Convolution weights W h
n are m × m-matrices of operators bounded as

mappings from H−1/2(Γ ) to H1/2(Γ ). Therefore if

W h
n =

⎛
⎜⎝

W 11
n · · · W 1m

n
... · · · ...

W m1
n · · · W mm

n

⎞
⎟⎠ ,
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Sparsity of Runge–Kutta convolution weights 929

then Wh
n should be understood as a matrix of matrices (a tensor) and

(
Wh

n

)
i j
=

⎛
⎜⎝

∫
Γ

(
W 11

n bi
)
(x)b j (x)dΓx · · ·

∫
Γ

(
W 1m

n bi
)
(x)b j (x)dΓx

... · · · ...∫
Γ

(
W m1

n bi
)
(x)b j (x)dΓx · · ·

∫
Γ

(
W mm

n bi
)
(x)b j (x)dΓx

⎞
⎟⎠ .

The sparsity of convolution weights shows that many entries in the Galerkin matri-
ces need not be computed. This fact, though only for linear multistep based methods,
has already been used in [17,18,21] to construct and analyse an efficient algorithm.
In the next section we analyze the complexity of such an algorithm for Runge–Kutta
convolution quadrature.

5.1 Sparse Runge–Kutta convolution quadrature

In this section, using the new estimates proved in this paper, we analyse the complexity
of sparse Runge–Kutta convolution quadrature. We will throughout consider Runge–
Kutta methods satisfying Assumptions 2.1 and 3.1.

The main idea behind the a priori cut-off strategy of [17,18,21] is to approximate
Wh

n , n = 0, . . . , N (for a fixed time interval [0, T ], N = �T/h�) by sparse matrices.
For Runge–Kutta based methods we can use the results of Proposition 3.3 to decide
what proportion of the entries in the matrices can be set to zero. More precisely, let
i, j, n be s.t. for all x ∈ τi , y ∈ τ j

∥∥∥∥wn

(‖x − y‖
h

)∥∥∥∥ < ε,

where ε > 0 is a given accuracy. Then, using wh
n (d) =

wn

(
d
h

)
4πd , we obtain

∥∥∥∥
(

Wh
n

)
i j

∥∥∥∥ =
∥∥∥∥∥∥∥
∫

τi

∫

τ j

wn

( ‖x−y‖
h

)

4π‖x − y‖ bi (x)b j (y)dΓx dΓy

∥∥∥∥∥∥∥
≤

∫

τi

∫

τ j

ε

4π‖x − y‖
∣∣bi (x)b j (y)

∣∣ dΓx dΓy ≤ CΓ ε‖bi‖L2(Γ )‖b j‖L2(Γ ), (5.1)

for some constant CΓ > 0 that depends only on Γ . The last inequality was obtained
from the L2-continuity of the Laplace single layer boundary operator, see also [21].

Let us denote the spatial meshwidth by Δx and assume that

cΔx < diam τi < Δx, i = 1, . . . ,M,

for some c > 0 independent of Δx . Therefore, there exists a positive C ′ > 0, s.t.∥∥∥(
Wh

n

)
i j

∥∥∥ ≤ C ′ (Δx)2 ε.
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930 L. Banjai, M. Kachanovska

In [18] it is shown (for the BDF2 method) that the stability and convergence of
the method based on the a priori cut-off strategy for BDF2 convolution quadrature is
ensured if ε is chosen s.t.

log
1

ε
= O(log M). (5.2)

Similar analysis as in [18] shows that we can use the same lower bound for ε.
Additionally, let us assume that

Δx = O(hν), ν > 0. (5.3)

The case ν = 1 is of particular interest in applications, e.g., scattering of waves of
high frequency content where the time step and meshwidth are restricted more by the
highest frequency present in the system than the required accuracy. Namely, given
the highest frequency in the system f , the time step h is chosen as h ≈ C f −1, for
C > 0, and the meshwidth Δx ≈ K h, K > 0, see [14]. Under the assumption
M = O

(
(Δx)−2), this implies the following condition on N (the number of time

steps) and M (the size of the spatial discretization):

M = O
(

N 2ν
)
. (5.4)

To estimate the number of non-zero elements in
(
Wh

n

)kl
, k, l = 1, . . . ,m, 0 ≤

n ≤ N , recall that for some α > 1, wn

( ‖x−y‖
h

)
is negligible if

∣∣∣∣‖x − y‖
h

− n

∣∣∣∣ ≥ max(Δn,ε
1 ,Δ

n,ε
2 ) ∼ n1/α log1−1/α 1

ε
.

Hence the support of the kernel is widest for n = N . Therefore, for each of the M2

pairs (i, j), i, j = 1, . . . ,M , the corresponding entry in the Galerkin matrix
(
Wh

n

)
i j

is non-zero for at most O(N 1/α log1−1/α 1
ε
) convolution weights. Summing all this

together we obtain

O(M2 N 1/α log1−1/α 1
ε
) = O(M2 N 1/α log1−1/α M)

as an estimate of the number of non-zero entries in the sparse approximation of the N
convolution weights.

For the 3-stage Radau IIA method α = p+1 = 6. Taking ν = 1, i.e., M = O(N 2),
we obtain as the total storage cost for N convolution weights

O(M2 N 1/6 log5/6 M) = O(M2+1/12 log5/6 M).

Hence, a straightforward application of sparsity does not give an algorithm of linear
complexity. Nonetheless, the memory requirements are very close to those of many
MOT and Galerkin methods, which scale as O(M2).
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As a remedy, in [21] it was suggested to combine the a priori cutoff strategy with
panel clustering. Although the extension of these ideas to Runge–Kutta CQ may lead
to a method with improved memory requirements, the total complexity of such an
algorithm would not scale better than O(M N 2), due to the use of back substitution
to solve the convolution system. This difficulty needs to be circumvented in order
to allow for efficient large scale Runge–Kutta convolution quadrature algorithms.
Improved complexity can be recovered if FFT methods are used. In the next section
we describe briefly how FFT can be combined with the sparsity of the convolution
weights to a good effect.

5.2 FFT and sparsity

The use of FFT, as in (4.1), usually destroys any sparsity, but in [7] it was shown that
also in this case advantage can be made of sparsity. Here we will just briefly explain
the main idea.

In (4.1) we have seen that the convolution kernels can be approximated by a discrete
Fourier transform and hence the same is true of the convolution weights

Wh
n ≈ �−n 1

N + 1

N∑
�=0

V(�ei� 2π
N+1 )e−i�n 2π

N+1 ,

for n = 0, 1, . . . , N . This shows that N convolution weights can be computed in
O(N log N ) time. Recall that for a fixed time interval [0, T ], N = �T/h�.

From Proposition 3.3 we know that for a fixed n0 > 0

‖wh
n (d)‖ =

1

4πd

∥∥∥∥wn

(
d

h

)∥∥∥∥ ≤ C

4πd
(1− δ)n− d

h ≤ C

4πd
(1− δ)n−n0 ,

for all d ∈ (0, n0h) and n > n0 with constant C . Hence there exists n1 ∝ log ε−1

such that

‖wh
n (d)‖ ≤

ε

4πd
, for all 0 < d < n0h and n > n1.

Therefore for n > n1, the ”near-field” of the matrices Wh
n can be approximated by

zero [c.f. (5.1)]:

(
Wh

n

)
i j
=

∫

τi

∫

τ j

wh
n (‖x − y‖)dΓydΓx ≈ 0, if dist(τi , τ j ) < n0h, n > n1.

Unfortunately this is not true for the N+1 matrices V(�ei� 2π
N+1 ), further problem being

that the near-field forms the part of the matrix which fast methods such as hierarchical
matrices and the fast multipole method cannot be applied to. To considerably reduce
the computational costs, we show now how to reduce the number of matrices for which
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932 L. Banjai, M. Kachanovska

the near-field needs to be computed from O(N ) to O
(
log 1

ε

)
and still make effective

use of the FFT. First we compute the n1 weights Wh
n , n = 0, 1, . . . , n1, using

Wh
n ≈

�−n

n1 + 1

n1∑
�=0

V(�e
i� 2π

n1+1 )e−i�n1
2π

N+1 , n = 0, 1, . . . , n1.

This is not an expensive operation since n1 depends only logarithmically on the desired
accuracy ε, see Proposition 4.2 and (5.1). The remaining weights are computed using
a similar formula as before in O(N log N ) time

Wh
n ≈

�−n

N + 1

N∑
�=0

Ṽ(�ei� 2π
N+1 )e−i�n 2π

N+1 , n = n1 + 1, . . . , N ,

where

(Ṽ(s))i j =
{

0 if dist(τi , τ j ) < n0h

(Ṽ(s))i j otherwise.

Thereby N convolution weights can still be computed in O(N log N ) time, but only
for a O

(
log 1

ε

)
number of evaluations of V(s) is it necessary to compute the near-field.

For a more thorough explanation of how to use such ideas in a full algorithm for
solving the discretized equations see [7].

6 Conclusions

We have analysed the behaviour of convolution weights of Runge–Kutta convolution
quadrature. We have proved that convolution weightswh

n (d) decay exponentially away
from nh ≈ d. The obtained estimates explain the dependence of the size of the
approximate support of a convolution weight on the order of the underlying Runge–
Kutta method. The results of this work can be used for the design and complexity
analysis of fast algorithms based on sparsity for the solution of TDBIE for the three-
dimensional wave equation.

Appendix: Proof of Lemma 3.1

Lemma 7.1 (Lemma 3.1) For an A-stable Runge–Kutta method of order p there exist
q, ν > 0, such that the domain

{(x, y) ∈ R
2 : |y| < νx

1
� , 0 < x < q}

belongs to Υ1 (and intersects all the order star fingers). Here

� =
{

p + 1, if p is odd,
2s, if p is even,
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Sparsity of Runge–Kutta convolution weights 933

where s is defined by (3.2) with e0 > 0.

Proof Let us first remark that this proof is similar to the proof of Theorem 7 in [19].
We rewrite the stability function as

R(z) = ez + C p+1z p+1 + r(z), C p+1 �= 0, (7.1)

where r(z) = O(z p+2).

Let us consider (x, y) satisfying

|R(x + iy)| = 1.

Clearly, R(0) = 1 and ∂|R(x+iy)|
∂x

∣∣∣
(0,0)
= 1. By the implicit function theorem, there

exists ε > 0 and a unique continuously differentiable function f : Bε(0) → R, s.t.
f (0) = 0, and |R( f (y), y)| = 1. Then, for y→ 0,

x = f (0)+ f ′(0)y + O(y2) = O(y).

To prove the statement of the lemma, we explicitly study the behavior of the function
f (y) in the vicinity of 0. Let us consider the following cases.

1. p is odd.

|R(x + iy)|2 = e2x + 2C p+1 Re
(

ex+iy(x − iy)p+1
)

+2 Re
(

ex+iyr(x − iy)
)
+ C2

p+1(x
2 + y2)p+1 + |r(x + iy)|2

+2C p+1 Re
(

r(x + iy)(x − iy)p+1
)
. (7.2)

Next we expand this expression into the Taylor series in x and y, singling out higher
order terms while making use of x = O(y):

e2x = 1+ x + O(x2),

Re
(

ex+iy(x − iy)p+1
)
= Re

p+1∑
k=0

(
p + 1

k

)
xki p+1−k y p+1−k(1+ r (2)1 (x))

×(1+ r (2)2 (y)), (7.3)

where r (2)1 (x) = ex − 1 = O(x), r (2)2 (y) = O(y).

Since p+ 1 is even, Re
(
ex+iy(x − iy)p+1

) = (−1)
p+1

2 y p+1 + O(y p+2). Finally,
Re

(
ex+iyr(x − iy)

) = O(y p+2), which follows from the definition of r(z) =
O(z p+2), and

(x2 + y2)p+1 = O(y2p+2),

|r(x + iy)|2 = O(y2p+2),

Re
(

r(x + iy)(x − iy)p+1
)
= O(y2p+2).
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934 L. Banjai, M. Kachanovska

Summarizing,

|R(x + iy)|2 = 1+ 2x + 2C p+1(−1)
p+1

2 y p+1 + O(y p+2 + x2).

Hence,

|R(x + iy)|2 = 1+ y p+1
(

2C p+1(−1)
p+1

2 + 2xy−p−1 + O(y)+ O(x2 y−p−1)

)
. (7.4)

We look for x, y lying in an ε-neighborhood of 0 and satisfying |R(x + iy)|2 = 1.
From the expression (7.4) we deduce that x = f (y) with

x = −C p+1(−1)
p+1

2 y p+1 + O(y p+2).

Note as well that (3.2) with e0 > 0 implies that for sufficiently small y |R(iy)|2 < 1
(recall as well the convention Q(0) = 1), hence from (7.1)

C p+1(−1)
p+1

2 < 0.

Hence there exist ã, ν > 0 s.t. |R(x + iy)|2 > 1 for
{
(x, y) ∈ R

2 : 0 < x

< ã, |y| < νx
1

p+1

}
.

2. p is even.
In this case we will make use of the properties of the E-polynomial (3.11), similarly

to the approach taken in the proof of Theorem 7 in [19].
Let us define

ψy(x) = |R(x + iy)|2.
For a fixed y we can expand the above expression into a Taylor series in x :

ψy(x) = |R(iy)|2 + x
dψy

dx
(0)+ O(x2). (7.5)

Using (3.11), we can rewrite the first term:

|R(iy)|2 = |P(iy)|2
|Q(iy)|2 = 1− E(y)

|Q(iy)|2 ,

which, after expansion into Taylor series (and using the convention Q(0) = 1), gives

|R(iy)|2 = 1− e0 y2s + O(y2s+2).

Next, we need an expression for d
dxψy(0). From (7.2, 7.3), for odd p (using the

same arguments as previously),

|R(x + iy)|2 = 1+ 2x + 2C p+1(p + 1)xy p(−1)
p
2 + O(xy p+1 + y p+2 + x2)
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Hence

dψy

dx
(0) = 2+ 2C p+1(p + 1)y p(−1)

p
2 + O(y p+1).

Substituting the above into (7.5), we obtain

ψy(x) = 1− e0 y2s + x(2+ 2C p+1(p + 1)y p(−1)
p
2 + O(y p+1))

+O(y2s+2)+ O(x2)

= 1+ y2s
(
−e0 + 2xy−2s + 2C p+1(p + 1)xy p−2s(−1)

p
2

+O
(

xy p+1−2s + x2 y−2s
)
+ O(y2)

)
.

Recall that e0 > 0. From the above expression we can see that |R(x + iy)|2 = 1 in
the vicinity of zero for (x, y):

x = e0 y2s + O(y2s+1).

Hence there exist q̃, ν > 0 s.t. |R(x + iy)|2 > 1 for all

{
(x, y) | 0 < x < q̃, |y| < νx

1
2s

}
.

Since the bounds derived are asymptotically optimal, this domain indeed intersects all
the order star fingers. 
�
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