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874 W. Auzinger et al.

1 Introduction

This paper is devoted to the efficient and accurate a posteriori error estimation for
numerical approximations to boundary value problems (BVPs) for second order ordi-
nary differential equations (ODEs). We consider the class of BVPs

L u(t) = f (t, u(t), u′(t)) =: F(u)(t), a < t < b, L u = u′′, (1.1a)

with general linear boundary conditions

Ba ·
⎧
⎪⎪⎩

u(a)

u′(a)

⎫
⎪⎪⎭+ Bb ·

⎧
⎪⎪⎩

u(b)

u′(b)

⎫
⎪⎪⎭ =

⎧
⎪⎪⎩

s0
s1

⎫
⎪⎪⎭ , Ba, Bb ∈ R

2×2. (1.1b)

We assume that the problem is well-posed, with Lipschitz continuous right-hand side
and a sufficiently smooth solution u(t).

Problem (1.1) can be cast into the standard form of a system of first-order ODEs, and
techniques developed for the first-order case may be applied (cf. e.g. [5]). The alter-
native is direct discretization which we are considering here, since we are explicitly
exploiting it in the design and analysis of a method for estimating the global error. As
we shall see, this estimate is of a particularly high accuracy on arbitrary meshes. The
present paper is of a theoretical nature; more practical questions concerning adap-
tive mesh selection and comparison which other established adaptive strategies are
not addressed. However, in [9] it has been demonstrated that direct treatment of the
second-order problem promises computational advantages particularly with respect to
adaptive mesh selection, and the conditioning may also be favorable in some situations,
see [13].

A preliminary version of the respective analysis has been given in the PhD thesis
by the third author [18]. In particular, we consider asymptotically correct global error
estimators, designed for the purpose of practical mesh adaptation, for given piece-
wise polynomial collocation solutions. This continues the work from [5,6,15], where
related techniques for first order ODE systems were analyzed. Our particular focus on
collocation approximations is motivated by their satisfactory and robust performance
for large classes of ODE problems, see for instance [1–3,14].

A collocation solution is a piecewise polynomial function the defect of which (i.e.,
its pointwise residual with respect to the given ODE) is well-defined and vanishes at the
collocation nodes. The overall behavior of the defect is a quality measure which may be
used for mesh adaptation, but it yields no direct indication of the behavior of the global
error. In [20] it was proposed, in a general setting, to combine defect computation with
a backsolving procedure based on an auxiliary, simple finite-difference scheme (SDS)
in order to estimate the global error. The heuristic motivation for this approach is based
on the well-known principle of defect correction [20]. But already for first order ODEs
it turns out that the precise definition of the defect and its interplay with the auxiliary
scheme is essential for the successful performance of defect correction algorithms,
see for instance [3,7,8,11,15] and references therein, and [4,5], in particular.

The concept of exact difference schemes (EDS) for ODEs is very useful in this
context. An EDS is a system of difference equations involving integral terms obtained
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Defect-based error estimation for BVPs 875

by locally integrating the given ODE over a grid, which is exactly satisfied by the
solution of the ODE. This serves as the conceptual basis for the design of high order
schemes. Detailed material on EDS and their direct or iterative computational real-
ization can for example be found in [8,10,12,16,19]. Here, in contrast, we are using
an appropriately designed EDS for defect computation only, i.e., the defect of a given
numerical solution will be defined as its residual with respect to the EDS. In practice
this is realized via sufficiently accurate quadrature.

1.1 Overview

The analysis of a defect-based global error estimate in the context of first-order nonlin-
ear regular problems was given in [5]. It could be shown that for a collocation method
with an O(h) mesh and stage order O(hm), the error of the estimate (the difference
between the global error and its estimate) is of order O(hm+1).

In the case of second order ODEs, the analysis of the error estimator is significantly
more involved. Therefore, for the details of this analysis, we restrict ourselves to
a standard class of scalar second order semilinear ODEs with Dirichlet boundary
conditions, see Sect. 3. The focus of our analysis is on the robustness with respect to
nonequidistant grids and on the particular high asymptotic quality of the estimator.
Indeed, it turns out that the deviation of the error estimator for a collocation method
of order m is at least of order m + 2 due to a supraconvergence effect1 and may be
even higher in special situations. The scope of applicability of our approach is much
wider than the presentation in this paper, however, awaiting closer investigation of
more general BVPs; see the discussion in Sect. 7.3.

Remark 1.1 In our analysis we are assuming that (1.1) is well-posed and that the
methods considered (a collocation method and a simple auxiliary finite-difference
scheme) are stable. We do not explicitly recapitulate standard stability arguments for
these schemes which are available in the literature. The stability and convergence
arguments as given in [2], for instance, are natural in the sense that the stability of
the discrete schemes is directly related to the conditioning of the given BVP; see
[2, section 5].

However, in order to obtain sharp estimates for the deviation of the advocated global
error estimate, we will make use of refined finite-difference stability estimates based
on the structure of Green’s function of the (linearized) BVP, see Sect. 3.3.

2 Error estimation based on EDS defect: general setting

2.1 Design of an a posteriori error estimate

In an abstract, informal setting, the defect-based error estimation procedure can be
described as follows:2

1 See Sect. 3.3 for an explanation of the notion of supraconvergence.
2 In this introductory section, we refrain from denoting continuous and discrete objects in different styles.
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876 W. Auzinger et al.

– Let

L u = F(u) (2.1a)

represent the given ODE problem, with exact solution u. Here, L is to be identified
with the leading, explicit linear part of the given differential operator.

– An EDS is a discrete version of (2.1a) in the form of a set of finite-difference
equations

L�u = I(F(u)), (2.1b)

which is exactly satisfied by the solution u of (2.1a). Here, L� is a discretization
of L over a given grid �, and I(·) is a certain linear functional typically defined
via weighted local integral means of F(u). For computational realization, I(·) is
replaced by a higher-order quadrature approximation Q(·).

– Furthermore, let û be defined as the solution of an auxiliary (discrete) problem

L�û = F̂ (̂u) (2.2)

which will be chosen as a simple, stable, low-order finite-difference approximation
(SDS) to (2.1a) over a grid �. Note that L� in (2.1b) and (2.2) are assumed to be
identical.

Now, for a given approximation ũ ≈ u (in our case computed by a high-order
collocation method), we consider its (discrete) defect

d := L�ũ − Q(F (̃u)) ≈ L�ũ − I(F (̃u)), (2.3a)

such that ũ is an exact solution of the ‘neighboring problem’

L�ũ = Q(F (̃u)) + d. (2.3b)

We approximate (2.3b) by its SDS analog,

L�
̂̃u = F̂ (̂̃u) + d. (2.4)

For sufficiently small d, we expect

̂̃u − ũ ≈ û − u, (2.5a)

i.e., the known error of the SDS approximation ̂̃u of the neighboring problem (2.3b)
serves as an estimate for the unknown error of the SDS approximation û to the original
problem (2.1) over the grid �. Equivalently,

ε := ̂̃u − û ≈ ũ − u =: e, (2.5b)

123



Defect-based error estimation for BVPs 877

i.e., the left-hand side ε of (2.5b), computed at low cost compared to the typical effort
for computing ũ, provides an estimate for the error e = ũ − u.

Remark 2.1 In the concrete setting which we consider in the sequel, two different grids
are involved (see Sects. 3, 4): a coarse grid �N which corresponds to N collocation
intervals, and a fine grid � comprising �N together with all interior collocation nodes.
The auxiliary scheme (2.2) operates on the fine grid �.

2.2 How to analyze the deviation of the error estimate

Let

θ := e − ε = (̃u − u) − (̂̃u − û
)

(2.6)

denote the deviation of the error estimate. For the analysis of the asymptotic behavior
of θ we will proceed as follows. From (2.1b) and (2.3b),

L�e = Q(F (̃u)) + d − I(F(u))

= Q(F (̃u) − F(u)) + (Q − I)(F(u)) + d. (2.7)

On the other hand, from (2.2) and (2.4),

L�ε = L�

(
̂̃u − û

) = F̂
(
̂̃u
)− F̂ (̂u) + d. (2.8)

Subtracting (2.8) from (2.7) the defect cancels out, giving

L�θ = (F̂ (̂u) − F̂ (̂̃u)) + Q(F (̃u) − F(u)) + (Q − I)(F(u))

= (F̂ (̃u) − F̂(u)) − (F̂ (̂̃u) − F̂ (̂u))

+Q(F (̃u) − F(u)) − (F̂ (̃u) − F̂(u)) + (Q − I)(F(u)). (2.9)

Relation (2.9) is sort of a nonlinear difference equation of SDS type for θ . In order to
show that ε is asymptotically correct, i.e., that θ is of higher order than e itself, one
uses quasilinearization combined with stability arguments and, in addition, estimates
the asymptotic behavior of both contributions to the inhomogeneity in (2.9),

(i) the difference (QF − F̂)(̃u) − (QF − F̂)(u),
(ii) the quadrature error (Q − I)(F(u)) = (Q − I)(L u).

Assuming sufficient smoothness of the problem data and u, (ii) indicates the required
order for the quadrature formula Q�(·). On the other hand, (i) is typically determined
by the asymptotic behavior of the error e and some of its lower derivatives. This has
to be analyzed in detail with the goal to ensure that (i) is of higher order than the error
e itself.

These relations become particularly simple for linear problems, F(u) = Hu + q,
where H denotes the linear part of the affine operator F . In this case, ε can be directly
obtained by solving the SDS
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L�ε = Ĥε + d. (2.10)

Using an analogous notation for F̂� we obtain from (2.9):

L�θ = Ĥθ + (Q(He) − Ĥe) + (Q − I)(F(u)). (2.11)

The analysis in Sect. 6 will be based on (2.11) and (2.9), respectively.

Remark 2.2 Recapitulating these considerations, with the ‘classical’, pointwise defect
L ũ − F (̃u) instead of the modified EDS-defect (2.3a), one observes that an additional
term would arise which influences the quality of ε, namely (L� − L)(e). Typically,
this term depends on a higher derivative of the error e, and it will not show the desired
asymptotic behavior in typical applications. We also note that for a collocation solution
ũ the pointwise defect evaluated at the collocation nodes vanishes and thus provides
no information.

Another feature of the EDS formulation is that it is robust with respect to nonequidis-
tant grids, e.g., for the case of Gaussian collocation points. See also the discussion
in [5,7] for the case of first order ODE systems. In this case the quadrature realization
of the EDS is closely related to a higher-order implicit Runge-Kutta scheme. This way
of estimating the global error for first-order problems has also been analyzed for the
case of singular BVPs, see [6,15], and it is implemented in the Matlab3 package
sbvp, an adaptive solver for first order boundary value problems, see [3].

3 Second order boundary value problems, SDS and EDS

3.1 Problem class

Considering the problem class (1.1), a complete analysis will be given for the case of
Dirichlet boundary conditions

u(a) = ua, u(b) = ub. (3.1)

We will first consider well-posed linear Dirichlet problems

u′′(t) = c1(t)u
′(t) + c0(t)u(t) + q(t) =: (Hu)(t) + q(t), (3.2a)

u(a) = ua, u(b) = ub, (3.2b)

with bounded, smooth data functions. It will then be shown how this analysis extends to
nonlinear problems (1.1a). The treatment of more general boundary conditions (1.1b)
will be briefly discussed from the algorithmic point of view in Sect. 7.

For v ∈ C[a, b], as usual we denote

‖v‖∞ := max
a≤t≤b

|v(t)|.

3 Matlab is a trademark of The MathWorks, Inc. sbvp is available at www.mathworks.de/matlabcentral/
fileexchange/1464-sbvp-1-0-package.
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Defect-based error estimation for BVPs 879

In the following subsections we introduce some further notation and briefly recall
relevant facts about finite-difference approximations to be used later on.

3.2 Simple finite-difference scheme (SDS)

Consider a grid

� := (a = t0 < t1 < · · · < tn−1 < tn = b
) ⊆ [a, b]. (3.3)

For an interior grid point t�, we denote

δ�− 1
2

:= t� − t�−1, δ�+ 1
2

:= t�+1 − t�, δ� := 1

2

(
δ�− 1

2
+ δ�+ 1

2

)
. (3.4a)

Then,

δ�− 1
2

= α� δ�, δ�+ 1
2

= β� δ�, with α� + β� = 2. (3.4b)

Furthermore we denote

t�± 1
2

= t� ± 1

2
δ�± 1

2
, � = 1 . . . n − 1. (3.4c)

We assume that � is quasiuniform, i.e.,

h := max
1≤�≤n−1

δ� ≤ K · min
1≤�≤n−1

δ� (3.5)

with a moderate-sized constant K , see [2, Assunption 5.92]. On �, we define corre-
sponding grid functions

v� = (v0, . . . , vn
)
.

The max-norm on the space of grid functions is denoted by

‖v�‖� := max
0≤�≤n

|v�|.

For a continuous function v ∈ C[a, b], we denote by R� its pointwise projection
onto the space of grid functions,

R�(v) := (v(t0), . . . , v(tn)
)
.

We also denote v(t�) simply by v�, and f (t�, · · · ) by f�(· · · ). The second difference
quotient

(L�v)� :=
v�+1−v�

δ
�+ 1

2

− v�−v�−1
δ
�− 1

2

δ�

= β� v�−1 − 2 v� + α� v�+1

α�β� δ�
2 (3.6a)
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880 W. Auzinger et al.

is an approximation to (L v)(t�). Furthermore, let

(∂�v)� := v�+1 − v�−1

2 δ�

(3.6b)

denote the centered difference approximation to v′(t�). Both (3.6a) and (3.6b) are
first-order accurate, in the equidistant case they are second-order accurate.

The standard compact, centered finite-difference approximation (SDS) to (1.1a)
reads

(L�û�)� = f�
(
û�, (∂�û�)�

) =: F̂�(̂u�)�, � = 1 . . . n − 1. (3.7)

Solution of (3.7) subject to boundary conditions (3.2b) provides a grid function

û� = (û0, û1, . . . , ûn−1, ûn
)

(3.8)

with û0 = ua , ûn = ub, and û� ≈ u(t�).
For the linear BVP (3.2), the SDS (3.7) takes the form

(L�û�)� = (Ĥ�û�)� + q�, � = 1 . . . n − 1, (3.9a)

where Ĥ�v� denotes the centered discretization of H(v)(t�), i.e.,

(
Ĥ�v�

)

�
= c1(t�)(∂�v�)� + c0(t�)v�. (3.9b)

We assume that the SDS discretization is stable with respect to ‖ · ‖� for sufficiently
small h. Typically, stability depends on � in an uncritical way under the assumption
of a quasiuniform grid �.4

3.3 Discrete Green’s function and supraconvergence of the SDS

Since (3.6a) and (3.6b) are only first-order accurate in the nonequidistant case, the
local truncation error of the SDS (3.7) is only O(h). However, it is well-known that
the global order of the resulting approximation is again O(h2), a phenomenon called
supraconvergence. This has been analyzed in [17], see also references therein.

Here we do not repeat a proof of supraconvergence in detail, but we list the essential
technical tools. Namely, in Sect. 6 we will rely on related techniques; in particular, we
will show that the global error estimate to be defined in Sect. 5 is also ‘supra-accurate’.

We will make use of the following facts. Consider the simple Dirichlet problem

u′′(t) = q(t), a < t < b, u(a) = u(b) = 0, (3.10a)

4 This remark applies to several related estimates, as for instance (3.13c), (3.16) below, and to all error
estimates obtained.
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with solution

u(t) =
b∫

a

G(t, τ ) q(τ ) dτ, a ≤ t ≤ b, (3.10b)

where G(t, τ ) is Green’s function

G(t, τ ) =

⎧
⎪⎨

⎪⎩

(b − t)(a − τ)

b − a
, a ≤ τ ≤ t ≤ b,

(b − τ)(a − t)

b − a
, a ≤ t ≤ τ ≤ b.

(3.10c)

The proof of the following lemma is straightforward.

Lemma 3.1 Consider an arbitrary interior grid point t� and let g�;� := G(·, t�), i.e.,
(g�;�)k = G(tk, t�). Then,

(L� g�;�)k =
{

0, k 	= �,
1
δ�

, k = �.

Discretization of (3.10a) according to (3.6a), i.e.,

(L�û�)� = q�, � = 1 . . . n − 1, (3.11)

leads to a system of n − 1 difference equations for û�, with û0 = ûn = 0. As a
consequence of Lemma 3.1, the inverse of this discrete system, i.e., its discrete Green’s
function, is the exact pointwise restriction of G(t, τ ) onto � × �. The following
discrete solution representation is a direct consequence of this fact.

Lemma 3.2 The unique solution û� of (3.11) is given by

û� = L−1
� R�(q) =

n−1∑

k =1

G(t�, tk) δk qk, � = 1 . . . n − 1. (3.12)

In the remainder of this section we discuss the solution structure of an SDS with
a special inhomogeneity, which provides the technical basis for supraconvergence
proofs and for the analysis to be given in Sect. 6. In particular, we consider

(L�v̌�)� = 1

δ�

(
z�+ 1

2
− z�− 1

2

)+ r�, � = 1 . . . n − 1, (3.13a)

with given zk and r�. Using Lemma 3.2 and applying partial summation, the solution
v̌� of (3.13a) with v̌0 = v̌n = 0, can be written as

v̌� =
n−1∑

k=0

(
G(t�, tk) − G(t�, tk+1)

)
zk+ 1

2
+

n−1∑

k=0

G(t�, tk) δk rk . (3.13b)
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Since G(t, τ ) is bounded and smooth away from the diagonal t = τ , this shows that
an estimate

‖v̌�‖� ≤ C
(

max
0≤k≤n−1

|zk+ 1
2
| + max

1≤k≤n−1
|rk |
)

(3.13c)

is valid. Furthermore, from (3.13b) we obtain

(∂�v̌�)� =
n−1∑

k=0

(
∂

[2]
� G

)

�,k zk+ 1
2

+ (∂ [1]
� G

)

�,k rk, (3.14)

with

(
∂

[1]
� G

)

�,k = 1

2 δ�

(
G(t�+1, tk) − G(t�−1, tk

) =
{O(h), k 	= �,

O(1), k = �,
(3.15a)

and

(
∂

[2]
� G

)

�,k = 1

2 δ�

(
G(t�+1, tk) − G(t�−1, tk)

)

− 1

2 δ�

(
G(t�+1, tk+1) − G(t�−1, tk+1)

) =
{O(h), k 	∈ {� − 1, �},

O(1), k ∈ {� − 1, �}.
(3.15b)

This shows that there exists a constant C such that we also have

‖∂�v̌�‖� ≤ C
(

max
0≤k≤n−1

∣
∣
∣zk+ 1

2

∣
∣
∣+ max

1≤k≤n−1
|rk |
)

. (3.16)

For a proof of supraconvergence of the SDS one makes use of (3.13), representing
the local truncation error in the form of the right-hand side in (3.13a), i.e., as a dif-
ference quotient which is O(h) plus an O(h2) term. This is combined with a stability
argument for the full scheme.

In a way analogous to (3.13), the solution v̌� of an SDS of the form

(L�v̌�)� = (∂�z�)� + r� = 1

2 δ�

(
z�+1 − z�−1

)+ r�, � = 1 . . . n − 1, (3.17a)

with v̌0 = v̌n = 0, can be written as

v̌� =
n−1∑

k=0

(
G(t�, tk−1) − G(t�, tk+1)

)
zk +

n−1∑

k=0

G(t�, tk) δk rk, (3.17b)

resulting in estimates analogous to (3.13c) and (3.16).
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As a result of these considerations, a perturbation argument combined with stability
of the full SDS, involving some minor technicalities, implies supraconvergence of û�

and (∂�û�)�, that is,

‖û� − R�(u)‖� = O(h2) and ‖∂�û� − R�(u′)‖� = O(h2). (3.18)

3.4 Exact finite-difference scheme (EDS)

Definition 3.1 By

Ĉ2[t�−1, t�, t�+1] :=
{

v ∈ C1[t�−1, t�+1] : v′′ continuous on [t�−1, t�) ∪ (t�, t�+1],

lim
t ↑ t�

v′′(t) ∈ R, lim
t ↓ t�

v′′(t) ∈ R exist

}

we denote the class of functions from C1[t�−1, t�+1] for which v′′ is allowed to have
a jump discontinuity at t = t�.

Lemma 3.3 For v ∈ Ĉ2[t�−1, t�, t�+1] and L�v defined in (3.6a), we have

(L�v)� =
β�∫

−α�

K�(ξ) v′′(t� + δ� ξ) dξ, (3.19a)

with kernel

K�(ξ) =
⎧
⎨

⎩

1 + ξ
α�

, ξ ∈ [−α�, 0],
1 − ξ

β�
, ξ ∈ [0, β�].

(3.19b)

Proof A routine argument based on integration by parts [12,19]. �
Lemma 3.3 represents a special instance of an identity sometimes called Marchuk

or Chawla identity, relating a general second order differential operator to its finite-
difference analog via local weighted integral means.

For functions w = w(t) we adopt the denotation

I�(w) :=
β�∫

−α�

K�(ξ)w
(
t� + δ� ξ

)
dξ (3.20)

with K� from (3.19b). By locally integrating the ODE (1.1a), we see that, at all interior
grid points t�, its solution u(t) exactly satisfies the EDS equations

(L�u)� = I�( f (·, u(·), u′(·)). (3.21)
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884 W. Auzinger et al.

Later on, (3.21) together with appropriate quadrature formulas Q� ≈ I� will be used
for defining a higher-order EDS-type defect of a given numerical solution, see Sect. 5.

4 Review of collocation methods

We recapitulate classical results for piecewise polynomial collocation methods for
second order BVPs (1.1), see [2, Section 5]. For the numerical approximation we
define a mesh

�N := (a = τ0 < τ1 < · · · < τN = b
) ⊆ [a, b],

and set li := τi − τi−1, i = 1 . . . N . Here li = O(h), with h defined in (3.5).
For collocation, m points are inserted in each subinterval [τi , τi+1]. This yields the

(fine) grid5

� := {ti, j = τi + ρ j li , i = 0 . . . N − 1, j = 0 . . . m + 1
}
, (4.1a)

with given nodes

0 =: ρ0 < ρ1 < · · · < ρm < ρm+1 := 1. (4.1b)

This grid � contains n + 1 = (m + 1)N + 1 points and is to be identified with �

from (3.3), with flattened indexing

t� ≡ ti, j , � = (m + 1)i + j, i = 0 . . . N − 1, j = 0 . . . m. (4.2)

Definition 4.1 Consider a quasiuniform grid � as specified in (4.1a). A continuously
differentiable collocation solution ũ(t) := ũi (t), t ∈ [τi , τi+1], i = 0 . . . N − 1,
of (1.1) is a piecewise polynomial function of degree m + 1, corresponding to m
collocation points in each subinterval, which satisfies (1.1a) at the m collocation points
in each of the N subintervals, i.e.

ũ′′(ti, j ) = f (ti, j , ũ
(
ti, j ), ũ′(ti, j )

)
, i = 0 . . . N − 1, j = 1 . . . m,

and, in addition, the boundary conditions (1.1b). Here, ũ(t) and ũ′(t) are required
to be continuous at the endpoints of the subintervals [τi , τi+1], but ũ′′(t) will have
jump discontinuities at the τi . Thus, in the neighborhood of τi , ũ(t) is of the type
Ĉ2[τi−1, τi , τi+1] in the sense of Definition 3.1.

Let

e(t) := ũ(t) − u(t)

5 For convenience, we denote τi by ti,0 ≡ ti−1,m+1, i = 1 . . . N − 1.
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denote the collocation error. Under standard assumptions on the given BVP, a collo-
cation solution is stable and convergent (see [2, Chapter 5]). The following theorem
states a convergence result for the problem (1.1a). The proof of the following theorem
follows from general convergence results, see [2, Sect. 5.6].

Theorem 4.1 Assume that the given BVP is well-posed, i.e., it has a locally unique
and sufficiently smooth solution u(t). For a collocation solution ũ(t) according to
Definition 4.1, the following uniform estimates hold:

∥
∥e(ν)

∥
∥∞ = ∥∥ũ(ν) − u(ν)

∥
∥∞ = O(hm), ν = 0, 1, 2. (4.3a)

The higher derivatives satisfy

∥
∥e(ν)

∥
∥∞ = ∥∥ũ(ν) − u(ν)

∥
∥∞ = O(hm+2−ν), ν = 3 . . . m + 1. (4.3b)

In the special case where m is odd and the nodes ρ j are symmetrically distributed,
i.e., ρ j = ρm+1− j , the following improved uniform estimates hold:

∥
∥e(ν)

∥
∥∞ = ∥∥ũ(ν) − u(ν)

∥
∥∞ = O(hm+1), ν = 0, 1. (4.4)

5 Construction of the error estimate

We design an a posteriori estimate for the global error e(t) of a given collocation
solution ũ(t). The construction principle has been introduced in Sect. 2.1 and it is
now applied in our concrete setting. We mainly consider the case of Dirichlet condi-
tions (3.1) where no defect occurs at the boundary. Remarks on handling more general
boundary conditions are given in Sect. 7.

Let us describe the procedure and its algorithmic components in detail:

– The given approximation is the collocation solution ũ(t), for which the error e(t) =
ũ(t) − u(t) is to be estimated.

– The (discrete) defect d� of ũ is computed by inserting ũ(t) into the EDS reformu-
lation of the original problem [see (2.1b)], which has been introduced in Sect. 3.4.
In the computational realization, the integral operators I� = Ii, j are replaced by a
set of higher-order quadrature formulas Q� = Qi, j , see (2.3a) and Sect. 5.1 below.

– The auxiliary scheme (2.2) is the SDS (3.7) operating on the fine grid � given
by (4.1a). Its solution is denoted by û� = (̂u0, û1, . . . , ûn−1, ûn), see (3.8).

– Solving the auxiliary scheme with additional inhomogeneity d� [see (2.4)] gives
another grid function ̂̃u� = (̂̃u0,̂̃u1, . . . ,̂̃un−1,̂̃un

)
.

With these settings, the (discrete) error estimator ε� is defined according to (2.5b)
as

ε� := ̂̃u� − û� ≈ R�(e). (5.1)
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5.1 Quadrature formulas for defect computation

At each interior grid point t� = ti, j ∈ �, the exact EDS defect of ũ reads [see (3.21)]

(L�ũ)i, j − Ii, j ( f (·, ũ(·), ũ′(·)). (5.2)

Here,

Ii, j (w) =
βi, j∫

−αi, j

Ki, j (ξ)w(ti, j + δi, j ξ) dξ (5.3a)

is the integral operator defined in (3.20), with kernel

Ki, j (ξ) =
⎧
⎨

⎩

1 + ξ
αi, j

, ξ ∈ [−αi, j , 0],
1 − ξ

βi, j
, ξ ∈ [0, βi, j ],

(5.3b)

from (3.19b). Practical approximation of integrals of the form (5.3) by interpolatory
quadrature can be performed in a standard way. We consider two different cases:

– For the case where ti, j ∈ (τi , τi+1) is an interior collocation node, we construct
interpolatory quadrature formulas Qi, j ≈ Ii, j in the usual way via

Ii, j (w) ≈ Qi, j (w) :=
βi, j∫

−αi, j

Ki, j (ξ) πi
(
ti, j + δi, j ξ

)
dξ =

m+1∑

k=0

ω j,k w(ti,k),

where πi is the local Lagrange interpolant of degree m + 1 to w at the nodes
ti,0, . . . , ti,m+1.

– For the case where ti,0 = τi ∈ (a, b) is an endpoint between two neighboring
collocation subintervals (i = 1 . . . N − 1), we split the integral into two parts,

Ii, j (w) = I−
i,0(w) + I+

i,0(w) :=

=
0∫

−αi,0

(

1 + ξ

αi,0

)

w(τi + δi,0 ξ) dξ +
βi,0∫

0

(

1 − ξ

βi,0

)

w
(
τi + δi,0 ξ

)
dξ,

and we separately approximate the two terms using data from the left and right
subintervals, respectively, in the same way as before. This gives

Ii,0(w) ≈ Qi,0(w) = Q−
i,0(w) + Q+

i,0(w)

=
m+1∑

k=0

ω−
0,k w(ti−1,k) +

m+1∑

k=0

ω+
0,k w(ti,k)

for i = 1 . . . N − 1.
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Since the distribution of the collocation nodes is fixed [defined via ρ j ∈ [0, 1],
see (4.1)], the coefficients ω

[±]
j,k of these quadrature formulas do not depend on i and

can be computed in a preprocessing phase. In this way, the defect of ũ(t) is defined
by the computable object

di, j := (L�ũ)i, j − Qi, j ( f (·, ũ(·), ũ′(·)), (5.4)

at all interior grid points ti, j ∈ �.
Standard arguments show

Qi, j (w) − Ii, j (w) = O(hm+2), (5.5a)

for sufficiently smooth w = w(t). In the special case where m is odd and the nodes ρ j

are symmetrically distributed, i.e., ρ j = ρm+1− j , we have

Qi, j (w) − Ii, j (w) = O(hm+3). (5.5b)

In particular, we shall make use of (5.5) for w = u′′.

6 Analysis of the error estimate

For simplicity of notation we write e, ε, θ , etc. instead of R�(e), ε�, θ�, etc., and
we use the flattened index notation (4.2).

For the deviation θ = e−ε, an estimate of the form ‖θ‖� = ‖e−ε‖� = O(hm+1)

can be derived in a similar manner as in [5] for the case of first-order systems. Here,
the asymptotic behavior of the collocation error described in Theorem 4.1 is essential.
In the sequel we prove that the error estimate is even supra-accurate, i.e., ‖θ‖� =
‖e − ε‖� = O(hm+2) is valid. In particular, this implies that the error estimate
is asymptotically correct also in the case where already e = O(hm+1) holds, see
Theorem 4.1.

Remark 6.1 We believe that for the case where e = O(hm+1), i.e., for m odd and
symmetrically distributed ρ j , the estimates (4.4) and (5.5b) can be exploited in order
to show that even ‖θ‖� = O(hm+3) is valid, which is also observed in numerical
experiments, see Sect. 7. This would involve further technicalities, in particular an
extension of Lemma 6.1 below, and coping with the reduced order e′′ = O(hm). This
would however exceed the scope of the present work.

For the sake of clarity we consider the linear case first. The proof for the nonlinear
case in Sect. 6.2 is an extension of the linear version, based on quasilinearization and
supraconvergence arguments.
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6.1 The linear case

We first derive a representation for the leading term in the inhomogeneity of the linear
difference equation (2.11) for θ in the form of a difference quotient plus a higher-order
term.

Lemma 6.1 For the linear BVP (3.2), at all grid points t� we have

I�(He) − (Ĥ�e)�

= 1

δ�

(

δ�+ 1
2

z[1]
�+ 1

2
− δ�− 1

2
z[1]
�− 1

2

)

+ 1

δ�

(

δ�+ 1
2

z[0]
�+ 1

2
− δ�− 1

2
z[0]
�− 1

2

)

+ O(hm+2).

(6.1)

Here,

z[0]
�± 1

2
= δ�± 1

2

1
2∫

− 1
2

(
ζ 2

2 + 1
8

)
(c0 e)′

(
t�± 1

2
+ ζ δ�± 1

2

)
dζ = O(hm+1), (6.2a)

z[1]
�± 1

2
= −c1

(
t�± 1

2

)
1
2∫

− 1
2

ζ e′ (t�± 1
2

+ ζ δ�± 1
2

)
dζ

−δ�± 1
2

c′
1

(
t�± 1

2

)
1
2∫

− 1
2

(
ζ 2 − 1

4

)
e′ (t�± 1

2
+ ζ δ�± 1

2

)
dζ = O(hm+1).

(6.2b)

Proof By definition of H and Ĥ� [see (3.2), (3.9b)],

I�(He) − (Ĥ�e)� = (I�(c1 e′) − c1(t�)(∂�e)�
)

︸ ︷︷ ︸
D1

+ (I�(c0 e) − (c0 e)(t�)
)

︸ ︷︷ ︸
D0

. (6.3)

Representation and estimation of D0. By definition of I� [see (3.20)] and with α� +
β� = 2,

D0 =
β�∫

−α�

K�(ξ) (c0 e)
(
t� + ξ δ�

)
dξ − (c0 e)(t�)

=
0∫

−α�

(

1 + ξ

α�

)

(c0 e)
(
t� + ξ δ�

)
dξ

︸ ︷︷ ︸

I−
0

− 1

2
α� (c0 e)(t�)
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+
β�∫

0

(

1 − ξ

β�

)

(c0 e)
(
t� + ξ δ�

)
dξ

︸ ︷︷ ︸

I+
0

− 1

2
β� (c0 e)(t�).

In I−
0 we substitute 1

2 + ξ
α�

= ζ and integrate by parts to obtain

I−
0 = α�

(
3

8
(c0 e)(t�) + 1

8
(c0 e)(t�−1)

−δ�− 1
2

1
2∫

− 1
2

(
ζ 2

2
+ ζ

2

)

(c0 e)′
(

t�− 1
2

+ ζ δ�− 1
2

)
dζ

)

= α�

⎛

⎜
⎜
⎝

1

2
(c0 e)(t�−1) − δ�− 1

2

1
2∫

− 1
2

(
ζ 2

2
+ ζ

2
− 3

8

)

(c0 e)′
(

t�− 1
2

+ ζ δ�− 1
2

)
dζ

⎞

⎟
⎟
⎠ ,

hence

I−
0 − 1

2
α� (c0 e)(t�) = −α� δ�− 1

2

1
2∫

− 1
2

(
ζ 2

2
+ ζ

2
+ 1

8

)

(c0 e)′
(

t�− 1
2

+ ζ δ�− 1
2

)
dζ

= −α� z[0]
�− 1

2
− α� δ�− 1

2

1
2∫

− 1
2

ζ

2
(c0 e)′

(
t�− 1

2
+ ζ δ�− 1

2

)
dζ,

with z[0]
�− 1

2
defined in (6.2a). Here, z[0]

�− 1
2

= O(hm+1) follows from e′ = O(hm), and

after integration by parts,

δ�− 1
2

1
2∫

− 1
2

ζ

2
(c0 e)′

(
t�− 1

2
+ ζ δ�− 1

2

)
dζ = O(hm+2)

follows from e′′ = O(hm) [see (4.3a)].
For I+

0 , substituting − 1
2 + ξ

β�
= ζ we obtain in an analogous way

I+
0 − 1

2
β� (c0 e)(t�) = β� z[0]

�+ 1
2

− β� δ�+ 1
2

1
2∫

− 1
2

ζ

2
(c0 e)′

(
t�+ 1

2
+ ζ δ�+ 1

2

)
dζ,
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with analogous estimates. Altogether, this shows

D0 = β� z[0]
�+ 1

2
− α� z[0]

�− 1
2

+ O(hm+2)

= 1

δ�

(

δ�+ 1
2

z[0]
�+ 1

2
− δ�− 1

2
z[0]
�− 1

2

)

+ O(hm+2), z[0]
�± 1

2
= O(hm+1). (6.4a)

Representation and estimation of D1. By definition of I� (see (5.3)) and with
α� + β� = 2,

D1 = I�(c1 e′) − c1(t�)(∂�e)�

=
β�∫

−α�

K�(ξ) (c1 e′)(t� + ξ δ�) dξ − 1

2
c1(t�)

β�∫

−α�

e′(t� + ξ δ�) dξ

=
β�∫

−α�

(
K�(ξ) c1(t� + ξ δ�) − 1

2
c1(t�)

)
e′(t� + ξ δ�) dξ

=
0∫

−α�

(
(1 + ξ

α�

) c1(t� + ξ δ�) − 1

2
c1(t�)

)
e′(t� + ξ δ�) dξ

︸ ︷︷ ︸

I−
1

+
∫ β�

0

(
(1 − ξ

β�

) c1(t� + ξ δ�) − 1

2
c1(t�)

)
e′(t� + ξ δ�) dξ

︸ ︷︷ ︸

I+
1

.

For I−
1 we substitute 1

2 + ξ
α�

= ζ to obtain

I−
1 = α�

1
2∫

− 1
2

(
(
ζ + 1

2

)
c1

(
t�− 1

2
+ ζ δ�− 1

2

)

−1

2
c1

(

t�− 1
2

+ 1

2
δ�− 1

2

))

e′ (t�− 1
2

+ ζ δ�− 1
2

)
dζ.

By Taylor expansion of c1(t) about t = t�− 1
2
,

(
ζ + 1

2

)
c1

(
t�− 1

2
+ ζ δ�− 1

2

)
− 1

2
c1

(

t�− 1
2

+ 1

2
δ�− 1

2

)

= ζ c1

(
t�− 1

2

)
+ δ�− 1

2

(
ζ 2 + ζ

2
− 1

4

)
c′

1

(
t�− 1

2

)
+ O(h2),
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and using analogous arguments as for D0 above we obtain

I−
1 = α� c1(t�− 1

2
)

1
2∫

− 1
2

ζ e′ (t�− 1
2

+ ζ δ�− 1
2

)
dζ

︸ ︷︷ ︸
=O(hm+1)

+α� δ�− 1
2

c′
1

(
t�− 1

2

)
1
2∫

− 1
2

(
ζ 2 − 1

4

)
e′ (t�− 1

2
+ ζ δ�− 1

2

)
dζ

︸ ︷︷ ︸
=O(hm )

+α� δ�− 1
2

c′
1

(
t�− 1

2

)
1
2∫

− 1
2

ζ

2
e′ (t�− 1

2
+ ζ δ�− 1

2

)
dζ

︸ ︷︷ ︸
=O(hm+1)

+O(hm+2),

i.e.,

I−
1 = −α� z[1]

�− 1
2

+ O(hm+2),

with z[1]
�− 1

2
defined in (6.2b), which is indeed seen to be O(hm+1).

For I+
1 , substituting − 1

2 + ξ
β�

= ζ we obtain in an analogous way

I+
1 = β� z[1]

�+ 1
2

+ O(hm+2),

with z[1]
�+ 1

2
= O(hm+1) defined in (6.2b). Altogether, this shows

D1 = β� z[1]
�+ 1

2
− α� z[1]

�− 1
2

+ O(hm+2)

= 1

δ�

(

δ�+ 1
2

z[1]
�+ 1

2
− δ�− 1

2
z[1]
�− 1

2

)

+ O(hm+2), z[1]
�± 1

2
= O(hm+1). (6.4b)

Combining (6.3) with (6.4a) and (6.4b) completes the proof. �
Theorem 6.1 For the linear BVP (3.2), the deviation of the error estimate satisfies

‖θ‖� = ‖e − ε‖� = O(hm+2).

Proof According to (2.11), the deviation θ = e − ε = (̃u − u) − (̂̃u − û) satisfies the
SDS-type difference equation
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(L� θ)� = (Ĥ� θ)� + (Q�(He) − (Ĥ�e)�
)+ (Q� − I�)(F(u))

= (Ĥ� θ)� + (I�(He) − (Ĥ�e)�
)

︸ ︷︷ ︸
J1

+ (Q� − I�

)
(He)

︸ ︷︷ ︸
J2

+O(hm+2), (6.5)

for � = 1 . . . n −1, with homogeneous boundary conditions. Here (Q� −I�)(F(u)) =
(Q� − I�)(L u) is a higher-order quadrature error, see Sect. 5.1.

Representation and estimation of J1 and J2. According to Lemma 6.1,

J1 = 1

δ�

(
z�+ 1

2
− z�− 1

2

)
+ O(hm+2), (6.6a)

with

z�± 1
2

= δ�± 1
2

(

z[1]
�± 1

2
+ z[0]

�± 1
2

)

= O(hm+2), (6.6b)

see (6.2). The quadrature error J2 depends on the (m + 2)-nd derivative of He =
c1 e′ + c0 e,

|J2| ≤ C hm+2, C = C
(
(c1 e′ + c0 e)(m+2)

)
.

In order to guarantee J2 = O(hm+2) we thus have to show that the higher derivatives
e(ν) = ũ(ν)−u(ν) are bounded independently of h up to ν = m+3. Since the degree of
ũ is m+1, we have e(ν) = −u(ν) for ν = m+2, m+3. For ν = 0 . . . m+1, the uniform
boundedness of e(ν) immediately follows from (4.3) (Theorem 4.1). Altogether this
shows

J2 = O(hm+2). (6.7)

Estimation of θ . From (6.5)–(6.7),

(L� θ)� = (Ĥ� θ
)

�
+ 1

δ�

(
z�+ 1

2
− z�− 1

2

)
+ O(hm+2), z�± 1

2
= O(hm+2), (6.8a)

with homogeneous boundary conditions. Let us first consider the simplified scheme

(L� θ̌)� = 1

δ�

(
z�+ 1

2
− z�− 1

2

)
+ O(hm+2) (6.8b)

of type (3.13a) with solution according to (3.13b),

θ̌� =
n−1∑

k=0

(
G(t�, tk) − G(t�, tk+1)

)
zk+ 1

2
+

n−1∑

k=0

G(t�, tk) · O(hm+2) = O(hm+2),

(6.9)
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see (3.13c). It remains to be shown that ‖θ−θ̌‖� = O(hm+2) holds. Subtracting (6.8b)
from (6.8a) yields

(
L�(θ − θ̌ )

)

�
= (Ĥ�(θ − θ̌ )

)

�
+ (Ĥ� θ̌

)

�
,

and, due to stability of the SDS, it remains to show that

(
Ĥ� θ̌

)

�
= c1(t�)

(
∂�θ̌

)

�
+ c0(t�)θ̌� = O(hm+2) (6.10)

is valid. Here, c0(t�)θ̌� = O(hm+2), and from (6.9) we obtain

(
∂� θ̌

)

�
=

n−1∑

k=0

(
∂

[2]
� G

)

�,k
zk+ 1

2
+
(
∂

[1]
� G

)

�,k
· O(hm+2),

with zk+ 1
2

= O(hm+2) and (∂
[ν]
� G)�,k from (3.15), which implies c1(t�)(∂�θ̌)� =

O(hm+2). Altogether this shows that (6.10) indeed holds, which completes the proof.
�

6.2 The nonlinear case

Supra-accuracy of the error estimate extends to the nonlinear case. We present the
proof in a concise style, using quasilinearization arguments. The focus is on how to
organize this in a way such that Lemma 6.1 and (supra)convergence of the SDS can
be exploited.

Theorem 6.2 For the nonlinear BVP (1.1a), (3.1), the deviation of the error estimate
satisfies

‖θ‖� = ‖e − ε‖� = O(hm+2).

Proof We use vector notation for continuous and discrete functions,

V (t) :=
⎧
⎪⎪⎩

v(t)
v′(t)

⎫
⎪⎪⎭ , V � :=

⎧
⎪⎪⎩

v�

(∂�v)�

⎫
⎪⎪⎭ ,

i.e., capital or boldface capital letters typographically represent the named object
together with its derivative or centered difference quotient, respectively. Furthermore,
emplyoing the the mean value theorem we will denote6

H(t, V, W ) :=
1∫

0

∇ f (t, V + σ W ) dσ, Ĥ�(V, W ) := H(t�, V, W ).

6 Here, ∇ f (t, V ) is the gradient with respect to V .
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Difference equation for θ via quasilinearization. According to (2.9), the deviation
θ = e − ε = (̃u − u) − (̂̃u − û) satisfies

(L� θ)� = (F̂ (̃u)� − F̂(u)�
)− (F̂ (̂̃u)� − F̂ (̂u)�

)

+Q�(F (̃u) − F(u)) − (F̂ (̃u)� − F̂(u)�
)+ (Q� − I�)(F(u))

= I�(F (̃u) − F(u)) − (F̂ (̂̃u)� − F̂ (̂u)�
)

+(Q� − I�)(F (̃u) − F(u)) + (Q� − I�)(L u)
︸ ︷︷ ︸

=O(hm+2)

, (6.11)

for � = 1 . . . n − 1, with homogeneous boundary conditions. Here,

(F̂ (̃u)� − F̂(u)�) = f�(Ũ�) − f�(U�) = Ĥ�(U�, E�) · E�,

(F̂ (̂̃u)� − F̂ (̂u)�) = f�(
̂̃U�) − f�(Û�) = Ĥ�(Û�,E�) · E�,

and

(F (̃u) − F(u))(t) = f (t, Ũ (t)) − f (t, U (t)) = H(t, U (t), E(t)) · E(t).

After rearranging terms, (6.11) now takes the form of a linearized scheme of SDS type
for �� = E� − E�,

(L� θ)� = Ĥ�(Û�,E�) · ��

+ (Ĥ�(U (t�), E(t�)) − Ĥ�(Û�,E�)
) · E�

︸ ︷︷ ︸
J0

+ (I�

(
H(·, U (·), E(·)) · E(·))− Ĥ�(U (t�), E(t�)) · E�

︸ ︷︷ ︸
J1

+ (Q� − I�)
(
H(·, U (·), E(·)) · E(·))

︸ ︷︷ ︸
J2

+O(hm+2).

Estimation of J0. In the linear case this term vanishes. For the nonlinear case
we exploit supraconvergence (3.18) of the SDS, i.e., U (t�) − Û� = O(h2), and
E(t) = O(hm) [Theorem 4.1, (4.3)] to conclude J0 = O(hm+2).

Estimation of J1. For all grid points t�,

H(t, U (t), E(t)) · E(t) = c1(t)e
′(t) + c0(t)e(t)

with smooth coefficient functions

c0(t) = c0(t, U (t), E(t)) =
1∫

0

∂v f (t, U (t) + σ E(t)) dσ,
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c1(t) = c1(t, U (t), E(t)) =
1∫

0

∂v′ f (t, U (t) + σ E(t)) dσ,

additionally depending on U = (u, u′) and E = (e, e′). Furthermore,

Ĥ�(U (t�), E(t�)) · E� = c1(t�)(∂�e)� + c0(t�)e(t�)

with the same functions c0 and c1. Thus, for J1 we can resort to Lemma 6.1 as in the
linear case.

Estimation of J2. The estimate

J2 = (Q� − I�)(c1 e′ + c0 e) = O(hm+2)

is obtained in the same way as in the linear case.
The assertion of the theorem is now also obtained in an analogous way as in the

proof of Theorem 6.1. �

7 Implementation, extensions, and numerical illustration

7.1 Implementation

The collocation method and the a posteriori error estimator were implemented in a
test code on the basis of Matlab. For an arbitrary given collocation mesh �N and
given collocation nodes {ρ j } the algebraic equations defining the piecewise polynomial
solution ũ(t) are generated via differentiation matrices representing the evaluation of
ũ′(ti, j ) and ũ′′(ti, j ) in terms of the ũ(ti, j ). The respective coefficients as well as the
quadrature coefficients required for evaluation of the defect are static data which can
be generated in a preprocessing step.

For linear problems, the respective systems of linear algebraic equations are solved
by direct elimination. For the nonlinear case, Newton iteration with residual-based
control was implemented.

7.2 Treatment of general linear boundary conditions

For boundary conditions (1.1b), the idea again is to convert them into exact difference
equations, employing the given differential equation. For illustration, let us consider
the case where Neumann data are given at tn = b, i.e., u′(b) = s1. In the SDS (2.2)
for computing û�, the difference equation at the Neumann boundary is discretized by
the one-sided difference quotient

(∂−
1 û)n := ûn − ûn−1

δn− 1
2

= s1. (7.1a)
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Due to the Peano representation

(∂−
1 v)n − v′(tn) = −δn− 1

2
In(v

′′), In(w) :=
1∫

0

ξ w(tn−1 + ξ δn− 1
2
) dξ,

the solution u(t) of the BVP exactly satisfies

(∂−
1 u)n = s1 − δn− 1

2
In
(

f (·, u(·), u′(·))).

The corresponding defect of the collocation solution ũ(t) is

dn = (∂−
1 ũ)n + δn− 1

2
Qn f

(·, ũ(·), ũ′(·))− s1,

where Qn is the quadrature approximation to In obtained in the same way as in
Sect. 5.1, with quadrature nodes from the rightmost collocation interval [τN−1, τN ].
In contrast to Dirichlet boundary conditions, which are exactly satisfied by ũ, we now
have to account for the defect with respect to the boundary condition. This means that
the boundary equation

(∂−
1
̂̃u)n = s1 + dn

is incorporated into the SDS (2.4) defining the auxiliary grid function ̂̃u�.
In order to further enhance the asymptotic quality of the error estimate obtained in

this way, one can modify the SDS using a one-sided second-order approximation ∂−
2 v

to v′ involving three consecutive grid points (as in BDF2 schemes), and replaces (7.1a)
by

(∂−
2 û)n = s1. (7.1b)

The respective coefficients, the corresponding ‘EDS integral operator’ In and its
quadrature approximation Qn are obtained by a routine calculation. This redefines
dn , and the rest of the procedure is the same as before. For a numerical illustration,
see Sect. 7.3.

It is evident how the procedure extends to the case of general linear boundary
conditions (1.1b). For the treatment of nonlinear boundary conditions, see Sect. 7.3.

7.3 Examples

We present two selected numerical examples. These serve to illustrate the theoretical
results but, in particular, Example 2 also indicates extensions of the convergence results
obtained, for the case of m odd and symmetric collocation nodes, and for general linear
boundary condition. Further numerical results are reported in [18].
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Example 1 A nonlinear BVP with Dirichlet boundary conditions. For

u′′(t) = 1 − (u′(t))2,

u(0) = 1

2
, u(1) = 1

4
,

the analytic solution is known. We choose m = 4 (with collocation degree m +
1 = 5), ρ = (0, ρ1, ρ2, ρ3, ρ4, 1) including Chebyshev nodes ρ1, ρ2, ρ3, ρ4, and N
collocation intervals of length 1/N . The results are shown in Table 1.

As the practical purpose of an error estimate is its use for mesh adaptation, it is
essential that collocation intervals of variable lengths are admitted. We note that our
theoretical results from Sect. 6 do not rely on the assumption of an equidistant collo-
cation mesh �N . We illustrate this point by repeating the experiment documented in
Table 1, but starting with a non-uniformly distributed mesh �N , followed by coherent
refinement to observe orders. The results are shown in Table 2.

Example 2 A linear BVP with general linear boundary conditions. For

u′′(t) = 1

2
u′(t) + 1

2
u(t) −

(
1

2
+ 3 t

)

et

with boundary conditions

⎧
⎪⎪⎩

1 −2
−1 0

⎫
⎪⎪⎭ ·
⎧
⎪⎪⎩

u(a)

u′(a)

⎫
⎪⎪⎭+

⎧
⎪⎪⎩

1 0
3 1

⎫
⎪⎪⎭ ·
⎧
⎪⎪⎩

u(b)

u′(b)

⎫
⎪⎪⎭ =

⎧
⎪⎪⎩

−2
−e

⎫
⎪⎪⎭

and known analytic solution,

Table 1 Results for Example 1

N ‖R�(e)‖� pe ‖θ�‖� pθ

4 7.171 e−08 6.588 e−10

8 4.524 e−09 3.99 9.187 e−12 6.16

16 2.809 e−10 4.01 1.212 e−13 6.24

Observed orders: pe ≈ m = 4 for the collocation error, and pθ ≈ m + 2 = 6 for the deviation of the error
estimate. These results are in accordance with the assertion of Theorem 6.2

Table 2 Results for Example 1, with initial mesh �N = (0, 0.01, 0.1, 0.3, 1
)

and coherent refinement

N ‖R�(e)‖� pe ‖θ�‖� pθ

4 4.481 e−06 5.234 e−07

8 3.267 e−07 3.77 4.254 e−09 6.94

16 1.936 e−08 4.08 6.054 e−11 6.13

All other data are the same as for Table 1. Here, the maximal stepsize is significantly larger, resulting in a
larger error. However, the behavior of the observed orders has not changed
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Table 3 Results for Example 2

N ‖R�(e)‖� pe

∥
∥
∥θ

[1]
�

∥
∥
∥
�

p[1]
θ

∥
∥
∥θ

[2]
�

∥
∥
∥
�

p[2]
θ

4 1.609 e−06 1.205 e−07 2.683 e−09

8 1.050 e−07 4.01 3.210 e−09 5.23 4.414 e−11 5.93

16 6.544 e−09 4.00 1.003 e−10 5.00 8.687 e−13 5.67

Here, θ
[1]
� and θ

[2]
� correspond to a treatment of the derivatives in the boundary conditions in the sense

of (7.1a) and (7.1b) respectively. The observed orders are of the expected quality, namely p[1]
θ ≈ m +1 = 5

and p[2]
θ ≈ m + 2 = 6

we choose m = 3 (with collocation degree m+1 = 4), ρ = (0, ρ1, ρ2, ρ3, 1) including
Chebyshev nodes ρ1, ρ2, ρ3, and N collocation intervals of length 1/N . The results
are shown in Table 3.

7.4 Further extensions

General nonlinear boundary conditions

Linear boundary conditions frequently occur in applications, but the case of nonlinear
boundary conditions

bi (u(a), u′(a), u(b), u′(b)) = 0, i = 1, 2, (7.2)

is of course also relevant. For the collocation solver, incorporation of (7.2) is straight-
forward; for the finite-difference schemes, u′(a) and u′(b) are again approximated by
difference quotients. Since our approach relies on an underlying EDS for the compu-
tation of the defect, the question is how to translate (7.2) to the EDS context. This
can be accomplished on the basis of the considerations from Sect. 7.2. Consider for
instance a right boundary condition of the form

b2(u(b), u′(b)) = 0. (7.3)

In the notation from Sect. 7.2, the solution u(t) of the BVP exactly satisfies

u′(b) = u′(tn) = (∂−
1 u
)

n + δn− 1
2
In
(

f (·, u(·), u′(·))).

On the basis of this identity, the defect of an approximate solution ũ with respect
to (7.3) reads

dn = b2(̃un, (∂−
1 ũ)n + δn− 1

2
Qn
(

f (·, u(·), ũ′(·)))).

In the SDS defining the auxiliary grid function ̂̃u�, the corresponding boundary equa-
tion becomes
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b2
(
̂̃un, (∂−

1
̂̃u)n
) = dn .

Variable coefficients, ODE systems, and higher-order problems

As the idea of EDS is rather general and well-developed, see [12,19], it can be expected
that a similar approach can be successfully applied to more general problem classes,
e.g., for the case where Lu is a differential operator with variable coefficients or of
higher order. Also, the extension to systems or mixed systems seems to be within the
scope. Again we stress that in our approach the EDS formulation is only used for
evaluation of the defect, which is significantly simpler to realize than solving the EDS
equations up to high order.

Acknowledgments We would like to thank Mechthild Thalhammer for helpful comments, and Gerhard
Kitzler for realizing numerical experiments in Matlab.
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