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Abstract Fractional differential equations are becoming increasingly used as a power-
ful modelling approach for understanding the many aspects of nonlocality and spatial
heterogeneity. However, the numerical approximation of these models is demand-
ing and imposes a number of computational constraints. In this paper, we introduce
Fourier spectral methods as an attractive and easy-to-code alternative for the inte-
gration of fractional-in-space reaction-diffusion equations described by the fractional
Laplacian in bounded rectangular domains of R

n . The main advantages of the proposed
schemes is that they yield a fully diagonal representation of the fractional operator,
with increased accuracy and efficiency when compared to low-order counterparts,
and a completely straightforward extension to two and three spatial dimensions. Our
approach is illustrated by solving several problems of practical interest, including the
fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an
analysis of the properties of these systems in terms of the fractional power of the
underlying Laplacian operator.
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1 Introduction

Fractional differential equations are becoming increasingly used as a modelling tool for
diffusive processes associated with sub-diffusion (fractional in time), super-diffusion
(fractional in space) or both, and have a long history in, for example, physics, finance,
mathematical biology and hydrology. In water resources, fractional models have been
used to describe chemical and pollute transport in heterogeneous aquifers [1,5,28].
In finance, they have been used because of the relationship with certain option pric-
ing mechanisms and heavy tailed stochastic processes [37]. More recently, fractional
models of the Bloch–Torrey equation have been used in magnetic resonance [27].

In this paper we will only consider super-diffusion effects (space-fractional mod-
els) in spatially extended structures. In this context, random walks (and the asso-
ciated standard diffusion equation) may have limitations, and they do not apply to
cases where extended heterogeneities or spatial connectivities of the medium can
facilitate transport processes within certain space scales, which can be interpreted as
temporal correlations on all time scales [45]. These inhomogeneities of the medium
may fundamentally alter the laws of Markov diffusion, leading to long range fluxes,
and non-Gaussian, heavy tailed profiles [4,30]. Different generalizations of Brownian
motion have been developed to describe these situations, as Lévy walks, where parti-
cles dynamics are sampled from a probabilistic distribution that decays as a power law
instead of exponential decay. In the continuous limit, the analogy between Lévy flights
and certain types of space-fractional models has been established [30]. As such, these
fractional models can be viewed as describing the probability time-space distribution
of an ensemble of particles undergoing stochastic Lévy walks, with a heavy tailed
distribution characteristic of anomalous diffusion.

A standard approach for solving fractional in space diffusion problems is to apply a
finite difference, finite element or finite volume discretisation of the fractional operator,
and then use a semi-implicit Euler formulation for the time evolution of the solution.
This requires the solution of a linear system of equations at each time step, whose left
hand side matrix has a fractional power. The main hurdle to overcome is the non-local
nature of the fractional operator, which leads to large, dense matrices. Various authors
such as Ilić et al. [18], Meerschaert et al. [29], Roop [35], Wang et al. [40,41], Liu
et al. [25] and Pang et al. [33] have considered the numerical solution of such problems
using various discretisations, but most of these approaches either do not scale well or
their scalability has not been demonstrated. Even the construction of such matrices
presents difficulties, especially in efficiency [35]. Very recently, two approaches have
been developed that use Krylov approaches [43] or fast numerical integration in con-
junction with effective preconditioners and matrix transfer techniques [11] that allow
for problems in two or three spatial dimensions to be tackled. However, even these
latter approaches do not scale perfectly as the spatial dimension increases to three and
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their effectiveness still depends on the mesh discretisation. Alternatively, in the set-
ting of a Riesz fractional derivative formulation, a finite difference formula on tensor
grids using a shifted Grünwald discretisation may be applied, which leads to relatively
sparse, well structured, positive definite matrices [18,25,29,42]. The solution of these
linear systems can be approximated efficiently using a combination of multigrid and
conjugate gradient methods [33].

Despite their higher order of convergence when compared to low order stencils
and being in nature nonlocal, little use has been made of spectral methods for the
solution of fractional-in-space equations. Li and Xu [24] have considered a spectral
approach for the weak solution of the space-time fractional diffusion equation. Khader
et al. [20,21]have proposed Chebyshev and Legendre Galerkin methods for the dis-
cretisation of fractional advection-dispersion equations where the spatial derivatives
are considered in the Caputo sense, similar to the results of Li and Xu [23] for the
time-fractional diffusion equation. Hanert [17] also has considered the use of a Cheby-
shev spectral element method for the numerical solution of the fractional Riemann–
Louiville advection-diffusion equation for tracer transport. Very recently, a collocation
method based on fractional Lagrange interpolants has been presented by Zayernouri
and Karniadakis [44] for solving steady-state and time-dependent fractional partial dif-
ferential equations. However, all previous works were restricted to one-dimensional
simulations, and to our knowledge there is no rigorous study on the application of
Fourier spectral methods to fractional-in-space reaction-diffusion equations. This will
be the main contribution of this paper, where we introduce Fourier spectral methods
as an efficient alternative approach to solving fractional reaction-diffusion problems
in rectangular domains of R

n . The main advantage of this approach is that it gives a
full diagonal representation of the fractional operator, being able to achieve spectral
convergence regardless of the fractional power in the problem. An additional advan-
tage is that the application to two and three spatial dimensions is essentially the same
as the one dimensional problem.

The outline of the paper is as follows. Section 2 gives the main elements of our
spectral approach and presents convergence results for different types of initial and
boundary conditions. In Sect. 3 we present the applicability of these ideas to a number
of important problems in mathematical modelling: (1) the Allen–Cahn equation, which
describes domain coarsening kinetics in alloys and other systems developing formation
and motion of phase boundaries [3,11]; (2) the FitzHugh–Nagumo model, as a model
to represent impulse propagation in nerve membranes [14,32], and the basis for more
sophisticated models of cardiac electrophysiology [8]; and (3) the Gray-Scott model
[15,16], as an example of autocatalytic chemical reaction with important applications
to the study of pattern formation and morphogenesis [22,34]. Finally, Sect. 4 offers
some conclusions and thoughts for future work.

2 Fourier spectral method for fractional diffusion

A space fractional diffusion equation can be derived by replacing the standard Laplace
operator by its fractional counterpart

∂t u = −K (−�)α/2u, 0 < α ≤ 2, x ∈ � ⊂ R
n, (2.1)
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with initial condition u(x, 0) = u0(x) ∈ L2(�), where K is the conductivity or dif-
fusion coefficient and (−�)α/2 is the fractional Laplacian [18,39,42]. The system is
closed with either a homogeneous Dirichlet boundary condition, representing a fixed
concentration of u on ∂�, or a homogeneous Neumann one, where mass is conserved
in � [18].

Spectral decomposition plays a central role in the interpretation of the fractional
Laplacian – see [18] and [42]. Suppose the Laplacian (−�) has a complete set of ortho-
normal eigenfunctions

{
ϕ j

}
satisfying standard boundary conditions on a bounded

region� ⊂ R
n , with corresponding eigenvaluesλ j , i.e., (−�)ϕ j = λ jϕ j on�, and let

Uα :=
⎧
⎨

⎩
u =

∞∑

j=0

û jϕ j , û j = 〈u, ϕ j 〉,
∞∑

j=0

|û j |2|λ j |α/2 < ∞, 0 < α ≤ 2

⎫
⎬

⎭
.

(2.2)

Then, for any u ∈ Uα ,

(−�)α/2u =
∞∑

j=0

û jλ
α/2
j ϕ j . (2.3)

Therefore, (−�)α/2 has the same interpretation as (−�) in terms of its spectral
decomposition. Furthermore, the former result suggests that a spectral approach may
be feasible for solving problems in the form of (2.1). In fact, the spectral decomposition
given by Eqs. (2.2)–(2.3) is well known, and has been previously used in combination
with trigonometric (Fourier) basis functions to obtain analytical benchmark solutions
for problems in the form of (2.1) [19,42,43]. However, its use has been restricted to
situations where the integrals defining the Fourier coefficients û j of the associated
initial data can be calculated in closed form. Here we show how to develop suitable
numerical methods allowing for a straightforward use of (2.2)–(2.3) without such
explicit calculations, and, in particular, their extension for the solution of nonlinear
reaction-diffusion systems governed by the fractional Laplacian.

2.1 Space discretisation

In order to present the basis of the method, let us consider for simplicity the fractional
heat Eq. (2.1) in one space dimension, subject to u(x, 0) = u0(x) and homogeneous
Dirichlet or Neumann boundary conditions in x ∈ [a, b]. By using (2.2)–(2.3), we can
easily derive the analytical solution of (2.1) as

u(x, t) =
∞∑

j=0

û j (t)ϕ j (x) =
∞∑

j=0

û j (0)e−Kλ
α/2
j t

ϕ j (x), (2.4)

with û j (0) = 〈u0(x), ϕ j (x)〉. Eigenfunctions and eigenvalues will depend on the

specified boundary conditions: λ j = ( ( j+1)π
L

)2, ϕ j =
√

2
L sin

( ( j+1)π(x−a)
L

)
for
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homogeneous Dirichlet, or λ j = ( jπ
L

)2, ϕ j =
√

2
L cos

( jπ(x−a)
L

)
for the homoge-

neous Neumann type, where L = b − a.
Fourier spectral methods represent the truncated series expansion of (2.4) when a

finite number of orthonormal trigonometric eigenfunctions {ϕ j } (equal to the number
of discretisation points) are considered

u(x, t) ≈
N−1∑

j=0

û j (t)ϕ j (x) =
N−1∑

j=0

û j (0)e−Kλ
α/2
j t

ϕ j (x). (2.5)

For each of the specified types of boundary data, coefficients û j in (2.5), as well as
the inverse reconstruction of u in physical space, can be efficiently computed by fast
and robust existing algorithms (direct and inverse Discrete Sine/Cosine Transforms,
see [6,9]). To illustrate the ease of application of the approach, the 5-lines of Matlab
Codes 1 and 2 exemplify the numerical solution of (2.1) in x ∈ [−L/2, L/2], subject
to homogeneous Dirichlet and Neumann boundary conditions, respectively. In all the
codes provided, N represents the number of internal equispaced mesh points, hence
not including boundary nodes. These restrictions in mesh generation are implicitly
requested by the respective discrete transforms, so that the extension of the numerical
solution avoids repetition of boundary values, therefore keeping C∞ at the discrete
level [6]. The above conditions can be easily accommodated by the choice of meshes
given by

Dirichlet : xn = a + n�x, �x = L/(N + 1),

Neumann : xn = a + (n − 1)�x + �x/2, �x = L/N ,

where n ∈ {1, N }. For the same number of internal discretisation points N , the corre-
sponding �x in both cases is clearly illustrated by Fig. 1.
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942 A. Bueno-Orovio et al.

Fig. 1 Selection of appropriate internal nodes for mesh discretisation for homogeneous Dirichlet (left) and
homogeneous Neumann (right) boundary conditions, in order to ensure continuity of the periodic extension
of the solutions at the discrete level (dashed lines)

2.2 Convergence in space

Equivalently, the solution of (2.1) using a finite differences or finite elements matrix-
based approach can be approximated as

u(t) ≈ Q diag
{

e−Kλ
α/2
0 t , e−Kλ

α/2
1 t , . . . , e−Kλ

α/2
N−1t

}
Q−1u0, (2.6)

where Q represents the matrix of corresponding eigenvectors and u denotes the vector
of node values of u [43]. Since both (2.5) and (2.6) are exact in time, all of the error
in both schemes is associated with the spatial discretisation, so we can use this simple
example to study the convergence of the two schemes in the numerical approximation
of (2.1) for varying values of the fractional power α.

Convergence results in the 	∞-norm are presented in Fig. 2 for the Fourier and
finite differences approximations of (2.1) in x ∈ [−1, 1] at t = 0.1, with K = 1.
Two different initial conditions were considered: a smooth Gaussian profile, subject
to homogeneous Dirichlet conditions (Fig. 2a); and a sigmoid exhibiting sharper gradi-
ents, with homogeneous Neumann data (Fig. 2b). Reference solutions were calculated
by evaluating (2.4) with 212 Fourier modes, with coefficients û j computed by adaptive
Gauss-Kronrod quadrature. In both situations, the Fourier approach is able to achieve

Fig. 2 Convergence results for the fractional heat equation in one space dimension for Fourier (solid lines)
and finite differences (dashed lines) methods. A value of k = 25 was used in both cases. Right panel
illustrates evolution of initial data (dashed black lines) at t = 0.1, for K = 1 and varying α
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spectral convergence up to machine precision regardless of α, whereas the finite dif-
ferences solutions show the standard O(N−2) accuracy of these schemes. Figure 2c
shows the effect of the fractional order in space for this problem, reflecting the slower
rate of diffusion for α < 2.

The applicability of the spectral approach to higher dimensions is illustrated in
Fig. 3 for the numerical solution of the fractional heat equation in [0, 1]2, for different
values of the fractional power α and K = 1. Fourier and finite difference approxima-
tions were computed at t = 0.1 (Fig. 3a), subject to homogeneous Dirichlet boundary
conditions and initial data u0(x, y) = δ

(
x − 1

2 , y − 1
2

)
, where δ(x, y) is the Dirac

delta function. Numerical solutions were compared with the analytical solution given
in [43] (same choice of α’s to facilitate visual comparison), resulting in the conver-
gence plot presented in Fig. 3b, which further evidences the increased accuracy of the
spectral approach when compared to lower order counterparts. The associated 7-lines
of Matlab Code 3 also demonstrates the ease of extension of the spectral scheme
to higher dimensions, where the multi-dimensional direct/inverse transforms can by
easily computed by recursively applying the one-dimensional discrete transformations
to each of the spatial dimensions of the data.

Execution times are given in Tables 1 and 2 for comparison between both methods,
showing a much better performance of the Fourier stencil, especially for larger N and
higher space dimensions. All computations presented in this work were performed on
a standard i5 Intel 2.3 GHz laptop in Matlab 7.6.

2.3 Time discretisation

For reaction-diffusion systems of P species u = [u1, . . . , u P ]T in the form of

∂t ui = −Ki (−�)α/2ui + fi (u, t), 0 < α ≤ 2, x ∈ � ⊂ R
n, (2.7)
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944 A. Bueno-Orovio et al.

Fig. 3 Numerical solutions of the fractional heat equation in two space dimensions at t = 0.1, for K = 1
and varying α. The right panel illustrates convergence results for the Fourier method (solid lines) compared
to finite differences (dashed lines). N indicates the number of discretisation points in each domain direction

Table 1 Timing results (seconds) for solving Eq. (2.1) in one space dimension for different discretisations

N 32 64 128 256 512

Fourier 1.4149e−4 1.7433e−4 2.2572e−4 2.8651e−4 3.8439e−4

Finite differences 6.3810e−4 2.1640e−3 9.4125e−3 5.7550e−2 3.8384e−1

Results are independent of α

Table 2 Timing results (seconds) for solving Eq. (2.1) in two space dimensions for different discretisations

N 19 39 59 79 99

Fourier 5.3956e−4 1.0141e−3 1.8745e−3 2.6891e−3 4.3763e−3

Finite differences 1.2374e−1 8.2588 94.8947 539.7145 2352.0046

N indicates points in each domain direction. Results are independent on α

where Ki is the diffusion coefficient of the i th species ui and fi represents its associated
reaction term, we consider a backward Euler discretisation of the time derivative
presented in [11], where in each time step [tn, tn+1] the nonlinear term is treated
using the following fixed point iteration: given un , define un+1,0 := un , and for
m = 1, 2, . . . , M find un+1,m such that

un+1,m
i − un

i

�t
= −Ki (−�)α/2un+1,m

i + fi

(
un+1,m−1, tn+1

)
, (2.8)

where M is to be chosen. Clearly, M = 1 leads to the fully explicit treatment of the
nonlinear term, and for sufficiently large M the method is fully implicit.

By applying the Fourier transform to both sides of (2.8) and the definition of the
fractional Laplacian given by (2.3), one gets

ûi
n+1,m
j − ûi

n
j

�t
= −Kiλ

α/2
j ûi

n+1,m
j + f̂i j

(
un+1,m−1, tn+1

)
, (2.9)

where f̂i j is the j th Fourier coefficient of the i th reaction term, and the orthogonality
of the basis functions has been used, implying that each of the Fourier coefficients
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evolves independently to the others. After rearrangement of terms, the time-space
discretisation for the j th Fourier mode simply becomes

ûi
n+1,m
j = 1

1 + Kiλ
α/2
j �t

[
ûi

n
j + �t f̂i j

(
un+1,m−1, tn+1

)]
. (2.10)

Note that (2.10) is fully diagonal, thus requiring no preconditioning, and that it
also avoids associated numerical challenges for the treatment of singular Laplacians
(containing the eigenvalue λ j = 0), as in the case of homogeneous Neumann boundary
conditions [11]. Also note that, if any Ki = 0, the above stencil simply reduces to the
backward Euler discretisation of the given species.

An additional advantage of the proposed time-space stencil is the fully implicit
treatment of the fractional Laplacian, resulting in an unconditionally stable scheme in
terms of the non-local operator. This can be verified in (2.10) in the absence of reaction
sources, since for fi (u, t) = 0 all Fourier coefficients monotonically decay to zero as
t → ∞ (with the exception of the zero-frequency mode associated to λ j = 0 in the
case of homogeneous Neumann boundary conditions, which remains constant). Any
possible time step restrictions will therefore be related only to the explicit treatment of
source terms. Hence, the convergence of the proposed fixed point iteration is dependent
upon the time step, although in practice, even when using reasonably large time steps,
convergence was always experienced. Alternative linearisations of these terms and
adapted time stepping may be constructed to improve both the time step restriction
and the convergence rates of the ones presented; this constitutes ongoing research.
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2.4 Convergence in time

The Matlab Code 4 exemplifies the use of the above presented time-space stencil
(2.10) for the numerical solution of the fractional reaction-diffusion Eq. (2.7) in two
space dimensions (x, y) ∈ [0, 1]2, with

f (u, t) = tα
K

16

4∑

i=1

(1 + λ
α/2
i )vi + αtα−1 sin3(πx) sin3(πy) − K u (2.11)

where
v1 = 9 sin(πx) sin(πy), λ1 = π2 + π2

v2 = −3 sin(πx) sin(3πy), λ2 = π2 + (3π)2

v3 = −3 sin(3πx) sin(πy), λ3 = (3π)2 + π2

v4 = sin(3πx) sin(3πy), λ4 = (3π)2 + (3π)2,

subject to u(x, y, 0) = 0 and homogeneous Dirichlet boundary conditions. The exact
solution to this problem is u(x, y, t) = tα sin3(πx) sin3(πy), which can be verified
by applying Fourier decomposition and Definition (2.3). Errors in the 	∞-norm in the
numerical solution at t = 1 are listed in Table 3 for different time steps and number
of fixed-point iterations, using α = 1.5, K = 10 and N = 51 points in each domain
direction. As expected for the implicit Euler method, the order of convergence for
the scheme in time is O(�t). Table 3 also indicates that the numerical error of the
method is controlled to a larger extent by the time resolution, �t , than by the number
of fixed-point iterations, M .

3 Fractional-in-space reaction-diffusion systems

The former results show that the global interpolant properties and the diagonal structure
of the proposed Fourier spectral method enable the accurate and efficient simulation
of fractional-in-space dynamical systems. In this section, we present numerical results
of large-scale simulations of different reaction-diffusion models of general interest.
Due to their wide use in this type of models, we will concentrate here on the use of
homogeneous Neumann boundary conditions, ∂nu = 0. We also restrict our interest
to the upper part of the super-diffusive range (1 < α < 2), comparing our results
against the pure diffusion case (α = 2).

Table 3 Time convergence in the solution of the fractional heat Eq. (2.7) in two space dimensions with
source term given by (2.11) at t = 1 (α = 1.5, N = 51, K = 10), subject to u(x, y, 0) = 0 and
homogeneous Dirichlet boundary conditions

�t 0.1 0.05 0.025 1e−3 5e−4 2.5e−4

M = 1 1.0070e−2 5.0880e−3 2.5571e−3 1.0279e−4 5.1398e−5 2.5700e−5

M = 3 3.3956e−4 1.6201e−4 7.5956e−5 2.5366e−6 1.2653e−6 6.3223e−7

M = 5 2.5809e−4 1.2778e−4 6.3547e−5 2.5287e−6 1.2642e−6 6.3208e−7

123



Fourier spectral methods 947

3.1 Allen–Cahn equation: metastability

The Allen–Cahn equation with a quartic double well potential is a simple nonlinear
reaction-diffusion model that arises in the study of formation and motion of phase
boundaries. The fractional-in-space version of this equation takes the form

∂t u = −K (−�)α/2u + u − u3, (3.1)

where K is a small positive constant. The steady states u = ±1 are attracting, and
solutions tend to exhibit flat areas around these two values separated by interfaces of
increasing sharpness as the control parameter K is reduced to zero. On the other hand,
the state u = 0 is unstable, and solutions around this value vanish or coalesce over
long time scales in a phenomenon known as metastability [38].

The interfacial properties of the Allen–Cahn equation in the fractional case have
been previously analysed [11], indicating that for decreasing α the solution changes
significantly faster near the center of the interface. Away from the centre the solutions
become less steep and the whole interface becomes thicker, reflecting the non-local
character of the fractional operator. However, the effect of fractional diffusion on the
metastability of the solutions has still not been studied.

Figure 4 shows the effect of varying α in the metastability of solutions of the
Allen–Cahn equation in x ∈ [−1, 1], with parameter K = 0.01 and initial data
u(x, 0) = 1

2 sin( 3π
2 x)(cos(πx) − 1). For the pure diffusion case (Fig. 4a), the initial

data evolves to an intermediate unstable equilibrium, followed by a rapid transition to
a solution with just one interface. As the fractional power is decreased, the lifetime
of the unstable interface is largely prolonged (Fig. 4b), eventually becoming fully
stabilised due to the long-tailed influence of the fractional diffusion process (Fig. 4c).
Our last Matlab example, Code 5, illustrates the solution of the fractional-in-space
Allen–Cahn equation using the proposed Fourier method.
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Fig. 4 Metastability of solutions of the Allen–Cahn equation for varying α

3.2 FitzHugh–Nagumo model: excitable media

The FitzHugh–Nagumo model represents one of the simplest models for the study
of excitable media [14,32]. The propagation of the transmembrane potential in the
nerve axon is modeled by a diffusion equation with a cubic non-linear reaction term,
whereas the recovery of the slow variable is represented by a single ordinary differential
equation in the form

∂t u = −Ku(−�)α/2u + u(1 − u)(u − a) − v

∂tv = ε(βu − γ v − δ),
(3.2)

where we consider the following choice of model parameters, a = 0.1, ε = 0.01,
β = 0.5, γ = 1, δ = 0, which is known to generate stable patterns in the system in
the form of re-entrant spiral waves. In our simulations, the trivial state (u, v) = (0, 0)

was perturbed by setting the lower-left quarter of the domain to u = 1 and the upper
half part to v = 0.1, which allows the initial condition to curve and rotate clockwise
generating the spiral pattern. The domain is taken to be [0, 2.5]2, discretised using
N = 256 points in each spatial coordinate, with a diffusion coefficient Ku = 10−4.

Stable rotating solutions at t = 2,000 are presented in Fig. 5 to illustrate the effect
of fractional diffusion in the FitzHugh–Nagumo model. The width of the excitation
wavefront (red areas) is markedly reduced for decreasing α, so is the wavelength of the
system, with the domain being able to accommodate a larger number of wavefronts
for smaller α.

Fig. 5 Spiral waves in the FitzHugh–Nagumo model for varying α
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Fig. 6 Solutions of the FitzHugh–Nagumo model for varying diffusion coefficient and α = 2

However, it is important to emphasise here that the role of reducing the fractional
power α is not equivalent to the influence of a decreased diffusion coefficient in the pure
diffusion case (Fig. 6). This can be clearly observed by comparison of Figs. 5b, c and
6b, c: for approximately the same width of the excitation wavefront, the wavelength of
the system is larger in the fractional diffusion case, due to the long-tailed mechanisms
of the fractional Laplacian operator. These results are therefore consistent with those
of Engler [12] for the fractional reaction-diffusion Fisher equation, showing distinct
effects of fractional diffusion to those of reduced conductivity for a family of travelling
wave solutions. They also illustrate the use of fractional diffusion as a modelling tool
to characterise intermediate dynamic states not solely described by pure diffusion
mechanisms.

3.3 Gray–Scott model: morphogenesis

The extension of the Fourier stencil to systems of reaction-diffusion equations is as well
straightforward. We consider the fractional version of the Gray–Scott model [15,16]

∂t u = −Ku(−�)α/2u − uv2 + F(1 − u)

∂tv = −Kv(−�)α/2v + uv2 − (F + κ)v,
(3.3)

where Ku , Kv , F and κ are positive constants. For a ratio of diffusion coefficients
Ku/Kv > 1, the model is known to generate different mechanisms of pattern forma-
tion depending on the values of the feed, F , and depletion, κ , rates. Here we select
Ku = 2 × 10−5, Ku/Kv = 2, F = 0.03, and vary κ in a range in which the standard
diffusion model is known to exhibit interesting dynamics [34]. The domain of interest
is taken to be [0, 1]2, discretised using N = 400 points in each spatial coordinate.
Initially, the entire system was placed in the trivial state (u, v) = (1, 0), and a 32 ×32
mesh point area located symmetrically about the centre of the grid was perturbed to
(u, v) = (1/2, 1/4). The initial disturbance then propagates outward from the central
square until the entire grid is affected by the initial perturbation.

Figure 7 summarizes the effects of fractional diffusion in the Gray–Scott model.
For κ = 0.055 (Fig. 7a), the model with standard diffusion (α = 2) is known to
organize in a steady state field of negative solitons. A reduction in the fractional order
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950 A. Bueno-Orovio et al.

Fig. 7 Pattern formation in the Gray–Scott model for different values of parameter κ and fractional
power α
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of the diffusive process (α = 1.7) produces a decrease in the velocity of propagation
of the initial perturbation, and a much finer granulation in the size of the structures of
the final steady state field. For smaller values of the fractional power (α = 1.5), a new
process of nucleation of structures in the centre and in the boundaries of the domain is
observed, that then grow outward until the entire domain reaches its final steady state
configuration.

For κ = 0.061 (Fig. 7b), the original model produces a wavefront propagation
partially driven by curvature, and a final steady state pattern showing the presence of
filaments. The curvature driven mechanisms are increased by the diffusive effects of the
fractional Laplacian operator, yielding a final field formed by much thiner filaments,
and steady state patterns totally different to those generated by standard diffusion.

Finally, the Gray–Scott model exhibits mitosis for κ = 0.063 under conditions
of normal diffusion (Fig. 7c). However, the replication pattern is completely altered
when the fractional order of the model is decreased, as shown in this Figure for
α = 1.7. In fact, further reductions of the fractional power, as shown for α = 1.5,
produce dynamical states where solitons and filaments may coexist, the latter slow-
ing self-dividing into the former until the whole domain is filled by a soliton-like
pattern.

3.4 Gray–Scott model: patterns in three dimensional space

Numerical simulation of the Gray–Scott model in three spatial dimensions represents
an even more interesting scenario where more exotic patterns may arise. For the
parameter regime where wavefront motion is partially driven by curvature (κ = 0.061),
and for two different α, Fig. 8 illustrates the three dimensional propagation of the initial
perturbation before the interaction of the solution with the domain boundaries. As can
be clearly appreciated, the smooth growing of lobes in the presence of normal diffusion
(Fig. 8a) is replaced by more intriguing patterns in the fractional diffusion case (Fig.
8b). For improvement of visualization results, the domain size is [0, 1]3 in Fig. 8a, and
[0.25, 0.75]3 in Fig. 8b. Note that, for a spatial discretisation of N = 256 points in each
space dimension, the numerical solution of this problem using finite differences would
involve the solution of a linear system of 4N 6 ≈ 1015 equations per time step, which
falls outside reasonable computational limits even by using matrix transfer techniques
to keep the sparsity of the standard Laplacian discretisation [11,43]. On the other hand,
our Fourier implementation yields the solution of two fully diagonal systems of N 3

unknowns, which can be directly updated without requiring the solution of any linear
system.

4 Conclusions

In this paper, Fourier spectral methods have been introduced as an attractive and
easy-to-code alternative for the integration of fractional-in-space reaction-diffusion
equations. These methods offer several advantages over traditional alternatives. Since
the operator is non-local, the benefits of using a basis with locally supported ele-
ments are destroyed. Hence, the use of an orthogonal, with respect to the opera-
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Fig. 8 Isosurfaces u = 0.65 for the Gray–Scott model for κ = 0.061

tor, non-local basis is preferable and will give rise to a fully diagonal representa-
tion of the fractional operator, thus avoiding the solution of large systems of equa-
tions or the use of matrix transfer techniques. In terms of accuracy and efficiency,
Fourier methods have been proven to be not only advantageous relative to mem-
ory requirements (number of discretisation points) when compared to low-order
schemes, but also computationally efficient in execution times. Furthermore, the use
of established discrete fast Fourier transforms ensures efficiency, makes immedi-
ate the implementation of appropriate boundary conditions, and allows the exten-
sion of the stencil to two and three dimensions in a completely straightforward
manner.

Simulation results of the fractional-in-space Allen–Cahn, FitzHugh–Nagumo and
in particular Gray–Scott models show that such systems can exhibit dramatically
different dynamics to standard diffusion, and as such represent a powerful modelling
approach for understanding the many aspects of heterogeneity in excitable media.
The efficiency of the Fourier spectral methods developed in this paper allows the
simulation of these systems with a level of spatial resolution unreported to date in
fractional calculus computations in two and three dimensions.

However, and as expected for Fourier spectral methods, a larger number of dis-
cretisation points is required to significantly reduce the approximation error in the
presence of steep numerical gradients (see Fig. 3). This can be particularly relevant
for slower diffusion rates, such as those in the range 0 < α ≤ 1. In this regard, the

123



Fourier spectral methods 953

results presented in [46], where the Fourier coefficients of a non-local peridynamic
continuum model were shown to converge to those of the original Laplace operator,
may help to improve convergence rates at these super-diffusive regimes.

Recent work in combining spectral methods with domain embedding techniques
has allowed the extension of spectral methods to irregular domains [7,9,10,26,36].
The use of these techniques may constitute a suitable approach for extending our
results in the fractional-in-space setting to irregular shape geometries. Finally, spatial
adaptivity can be incorporated in spectral methods by means of spatial mappings [2] or
the so-called moving mesh techniques, also known as r -adaptivity [13,31]. All these
points, including the existence of variable coefficients in fractional-in-space reaction
diffusion equations, constitute current lines of our future work.
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