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Abstract In tensor completion, the goal is to fill in missing entries of a partially
known tensor under a low-rank constraint. We propose a new algorithm that performs
Riemannian optimization techniques on the manifold of tensors of fixed multilinear
rank. More specifically, a variant of the nonlinear conjugate gradient method is de-
veloped. Paying particular attention to efficient implementation, our algorithm scales
linearly in the size of the tensor. Examples with synthetic data demonstrate good re-
covery even if the vast majority of the entries are unknown. We illustrate the use
of the developed algorithm for the recovery of multidimensional images and for the
approximation of multivariate functions.
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1 Introduction

This paper is concerned with low-rank completion for tensors in the sense of multi-
dimensional arrays. To be more specific, we aim to solve the tensor completion prob-
lem

min
X

1

2
‖PΩX − PΩA‖2 (1.1)

subject to X ∈ Mr := {
X ∈R

n1×n2×···×nd | rank(X) = r
}
.

Here, rank(X) denotes the multilinear rank [15] of the tensor X, a tuple of d inte-
gers defined via the ranks of the matricizations of X (see Sect. 2.1 for details) and
PΩ : Rn1×···×nd →R

n1×···×nd is a linear operator. A typical choice for PΩ frequently
encountered in applications is

PΩX :=
{

Xi1i2...,id if (i1, i2, . . . , id ) ∈ Ω,

0 otherwise,

where Ω ⊂ [1, n1]× · · ·× [1, nd ] denotes the so-called sampling set. In this case, the
objective function ‖PΩX − PΩA‖2/2 measures the ability of X to match the entries
of the partially known tensor A in Ω .

The tensor completion problem (1.1) and variants thereof have been discussed a
number of times in the literature. Most of this work builds upon existing work for the
special case d = 2, also known as matrix completion, see [18] for a comprehensive
overview. One of the first approaches to tensor completion has been discussed by Liu
et al. [17]. It is based on extending the notion of nuclear norm to tensors by defining
‖X‖∗ as the (weighted) sum of the nuclear norms of the matricizations of X. This
leads to the convex optimization problem

min
X

‖X‖∗ subject to PΩX = PΩA, (1.2)

which can be addressed by established techniques such as block coordinate descent.
Allowing noise in the sampling data and thus somewhat closer to our formula-
tion (1.1) of tensor completion, Signoretto et al. [25] and Gandy et al. [11] consider
the unconstrained optimization problem

min
X

‖PΩX − PΩA‖2 + μ‖X‖∗

and propose the use of ADMM (alternating direction method of multipliers) and other
splitting methods. This approach has been shown to yield good recovery results when
applied to tensors from various fields such as medical imaging, hyperspectral images
and seismic data. However, nuclear norm minimization approaches are usually quite
costly and involve singular value decompositions of potentially very large matrices.
Liu/Shang [16] recently proposed the use of the economy sized QR decomposition,
reducing the cost per iteration step considerably.

Besides the two approaches described above, a number of variations [20] and al-
ternatives have been discussed in the literature. For example, [17] proposes a block
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coordinate descent method while [23] proposes an iterative hard thresholding method
for fitting the factors of a Tucker decomposition. In [3], gradient optimization tech-
niques have been proposed for fitting the factors of CP decomposition. Closely related
to the approach considered in this paper, Da Silva and Herrmann [8] have recently
proposed to perform tensor completion in the hierarchical Tucker format via Rieman-
nian optimization.

The approach proposed in this paper is based on the observation that the set of
tensors of fixed multilinear rank r, denoted by Mr, forms a smooth manifold [14,
28]. Manifold structure for low-rank tensors has recently been exploited in a num-
ber of works targeting applications in numerical analysis and computational physics,
see [12] for an overview. We will make use of this manifold structure by viewing (1.1)
as an unconstrained optimization problem on Mr. This view allows for the use of Rie-
mannian optimization techniques [2]. A similar approach has been considered in [19,
21, 30] for the matrix case, where it was shown to be competitive to other state-of-
the-art approaches to matrix completion. Note that it is not entirely trivial to extend
such Riemannian optimization techniques from the matrix to the tensor case, due to
the lack of a simple characterization of the metric projection onto Mr [15].

The rest of this paper is organized as follows. In Sect. 2, we recall differential
geometric properties of tensors having fixed multilinear rank and propose a suitable
retraction map for Mr. Section 3 proposes the use of the nonlinear CG algorithm on
Mr for solving (1.1), for which several algorithmic details as well as convergence
properties are discussed. Finally, in Sect. 4, we investigate the effectiveness of our
algorithm for various test cases, including synthetic data, hyperspectral images, and
function-related tensors.

2 Differential geometry for low-rank tensor manifolds

To adapt the nonlinear CG algorithm on manifolds to the tensor completion prob-
lem (1.1), we derive a number of basic tools from differential geometry for tensors of
low multilinear rank.

2.1 Preliminaries on tensors

Throughout this paper, we will follow the notation in the survey paper by Kolda and
Bader [15]. In the following, we give a brief summary.

The ith mode matricization

X(i) ∈R
ni×∏

j �=i nj

of a tensor X ∈ R
n1×···×nd is a rearrangement of the entries of X into the ma-

trix X(i), such that the ith mode becomes the row index and all other (d − 1)

modes become column indices, in lexicographical order. Similarly, the vectorization

vec(X) ∈ R

∏d
i=1 ni stacks all entries of X into one long vector. The ranks of all the

matricizations yield the multilinear rank tuple r of X:

rank(X) = (
rank(X(1)), rank(X(2)), . . . , rank(X(d))

)
.
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The ith mode product of X multiplied with a matrix M ∈ R
m×ni is defined as

Y = X ×i M ⇔ Y(i) = MX(i), Y ∈R
n1×···×ni−1×m×ni+1×···×nd .

The inner product of two tensors X and Y is given by

〈X,Y〉 = 〈
vec(X),vec(Y)

〉 = vec(X)T vec(Y) = trace
(
XT

(1)Y(1)

)
. (2.1)

This induces the norm ‖X‖ := √〈X,X〉.
Any tensor of multilinear rank r = (r1, r2, . . . , rd) can be represented in the so-

called Tucker decomposition

X = C ×1 U1 ×2 U2 · · · ×d Ud = C
d×

i=1
Ui, (2.2)

with the core tensor C ∈R
r1×···×rd , and the basis matrices Ui ∈ R

ni×ri . Without loss
of generality, all Ui are orthonormal: UT

i Ui = Iri , which will be assumed for the rest
of the paper.

Let us denote the truncation of a tensor X to multilinear rank r using the higher
order singular value decomposition (HOSVD) [9] by PHO

r . The HOSVD procedure
can be described by the successive application of best rank-ri approximations Pi

ri
in

each mode i = 1, . . . , d :

PHO
r : Rn1×···×nd → Mr, X �→ Pd

rd
◦ · · · ◦ P1

r1
X.

Each individual projection can be computed by a truncated SVD as follows. Let UY

contain the ri dominant left singular vectors of the ith matricization Y(i) of a given
tensor Y. Then the tensor resulting from the projection Ỹ = Pi

ri
Y is given in terms of

its matricization as Ỹ(i) = UY UT
Y Y(i).

In contrast to the matrix case, the HOSVD does in general not yield the best rank-r
approximation. Instead, the following quasi-best approximation property [9] holds:

∥∥X − PHO
r X

∥∥ ≤ √
d‖X − PMr X‖, (2.3)

where PMr X ∈ Mr is any best approximation of X ∈ R
n1×...×nd in the norm ‖ · ‖.

The HOSVD does inherit the smoothness of low-rank matrix approximations.

Proposition 2.1 (Smoothness of truncated HOSVD) Let X ∈ Mr. Then there exists
a neighborhood D ⊂ R

n1×···×nd of X such that PHO
r : D → Mr is C∞ smooth.

Proof Let Di denote the open set of tensors whose ith mode matricization has a
nonzero gap between the ri th and the (ri +1)th singular values. From standard results
in matrix perturbation theory, it then follows [7] that each projector Pi

ri
is smooth and

well-defined on Di . Since X ∈ Mr is contained in all Di and is a fixpoint of every
Pi

ri
, it is possible to construct an open neighborhood D ∈ R

n1×···×nd of X such that
Pi

ri
◦ · · · ◦ P1

r1
D ⊆ Di for all i. Hence, the chain rule yields the smoothness of the

operator PHO
r on D. �
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2.2 Manifold setting

The set Mr of tensors of fixed multilinear rank r = (r1, r2, . . . , rd) forms a smooth
embedded submanifold of Rn1×···×nd [28, 29]. By counting the degrees of freedom
in (2.2), it follows that the dimension of Mr is given by

dim(Mr) =
d∏

j=1

rj +
d∑

i=1

rini − r2
i .

Observe that dim(Mr) is much smaller than the dimension of Rn1×···×nd when
ri � ni . The Tucker decomposition (2.2) allows for the efficient representation and
manipulation of tensors in Mr.

According to [14], the tangent space of Mr at X = C ×1 U1 · · · ×d Ud can be
parametrized as

TXMr =
{

G
d×

i=1
Ui +

d∑

i=1

C ×i Vi ×
j �=i

Uj

∣∣∣∣ V T
i Ui = 0

}

, (2.4)

where G ∈ R
r1×···×rd and Vi ∈ R

ni×ri are the free parameters. Furthermore, the or-
thogonal projection of a tensor A ∈ R

n1×···×nd onto TXMr is given by

PTXMr :Rn1×···×nd → TXMr,

A �→
(

A
d×

j=1
UT

j

) d×
i=1

Ui +
d∑

i=1

C ×i

(
P⊥

Ui

[
A×

j �=i
UT

j

]

(i)

C
†
(i)

)×
k �=i

Uk. (2.5)

Here, C†
(j) denotes the pseudo-inverse of C(j). Note that C(j) has full row rank and

hence C
†
(j) = CT

(j)(C(j)C
T
(j))

−1 . We use P⊥
Ui

:= Iri − UiU
T
i to denote the orthogonal

projection onto the orthogonal complement of span(Ui).

2.3 Riemannian metric and gradient

As a metric on Mr, we will use the Euclidean metric from the embedded space in-
duced by the inner product (2.1). Together with this metric, Mr becomes a Rieman-
nian manifold. This in turn allows us to define the Riemannian gradient of an objec-
tive function, which can be obtained from the projection of the Euclidean gradient
into the tangent space.

Proposition 2.2 ([2, Chap. 3.6]) Let f : Rn1×···×nd → R be a cost function with Eu-
clidean gradient ∇fX at point X ∈ Mr. Then the Riemannian gradient of f : Mr →
R is given by gradf (X) = PTXMr(∇fX).

By Proposition 2.2, the Riemannian gradient of the objective function f (X) =
‖PΩX − PΩA‖2/2 is given by

gradf (X) = PTXMr(PΩX − PΩA). (2.6)
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2.4 Retraction

Retraction maps an element from the tangent space at X ∈ Mr to the manifold Mr.
The choice of this map is not unique. A popular theoretical choice is the so-called
exponential map, which, however, is usually too expensive to compute. According
to [2] it is often sufficient to approximate this exponential map in first order for the
purpose of optimization algorithms. A graphical depiction of this concept is shown
on the left of Fig. 1. More specifically, a retraction fulfills the following properties.

Definition 2.1 (Retraction, [1, Def. 1]) Let M be a smooth submanifold of
R

n1×···×nd . Let 0x denote the zero element of TxM . A mapping R from the tan-
gent bundle T M into M is said to be a retraction on M around x ∈ M if there
exists a neighborhood U of (x,0x) in T M such that the following properties hold:

(a) We have U ⊆ dom(R) and the restriction R : U → M is smooth.
(b) R(y,0y) = y for all (y,0y) ∈ U.
(c) With the canonical identification T0x TxM � TxM ,R satisfies the local rigidity

condition:

DR(x, ·)(0x) = idTxM for all (x,0x) ∈ U,

where idTxM denotes the identity mapping on TxM .

If M is an embedded submanifold then the orthogonal projection

PM (x + ξ) = argmin
y∈M

‖x + ξ − y‖ (2.7)

induces the so called projective retraction

R : U → M , (x, ξ) �→ PM (x + ξ),

which satisfies the properties of Definition 2.1 [1, Prop. 5].
Since it only satisfies the quasi-best approximation property (2.3), the HOSVD

procedure does not yield a projective retraction. Nevertheless, it still possesses all
necessary properties of a retraction in the sense of Definition 2.1.

Proposition 2.3 (HOSVD as Retraction) The map

R : T Mr → Mr, (X, ξ) �→ PHO
r (X + ξ) (2.8)

is a retraction on Mr around X.

Proof The map R defined in (2.8) can be written as the composition

R : T Mr → Mr, (X, ξ) �→ PHO
r ◦ F(X, ξ),

where the smooth map F : T Mr → R
n1×···×nd is defined as F(X, ξ) := X + ξ . By

Proposition 2.1, PHO
r is smooth for all X ∈ Mr and sufficiently small ξ . Hence, R

defines a locally smooth map in a neighborhood U ⊂ T Mr around (X,0X).
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Fig. 1 Graphical representation of the concept of retraction and vector transport within the framework of
Riemannian optimization techniques

Definition 2.1(b) follows from the fact that the application of the HOSVD to ele-
ments in Mr leaves them unchanged.

It remains to check Definition 2.1(c), the local rigidity condition. Because the
tangent space TXMr is a first order approximation of Mr around ξ , we have that
‖(X + tξ ) − PMr(X + tξ )‖ = O(t2) for t → 0. Thus, using (2.3):

∥∥(X + tξ ) − R(X, tξ)
∥∥ ≤ √

d
∥∥(X + tξ ) − PMr(X + tξ )

∥∥ = O
(
t2).

Hence, R(X, tξ) = (X + tξ ) + O(t2), which gives d
dt

R(X, tξ)|t=0 = ξ . In other
words, DR(X, ·)(0X) = idTXMr , which completes the proof. �

2.5 Vector transport

A vector transport TX→Y, as introduced in [2], allows us to map tangent vectors
from TXMr to TYMr. Because Mr is an embedded submanifold of Rn1×···×nd , the
orthogonal projection PTYMr constitutes a vector transport, see [2, Sect. 8.1.3]:

TX→Y : TXMr → TYMr, ξ �→ PTYMr(ξ).

A visualization of the concept of vector transport is shown on the right of Fig. 1.

3 Nonlinear Riemannian CG

With the concepts introduced in Sect. 2, we have all the necessary geometric in-
gredients for performing Riemannian optimization on the manifold Mr of low-rank
tensors. In particular, the nonlinear CG algorithm discussed in [2, Sect. 8.3], yields
Algorithm 1. This can be seen as an extension of the standard nonlinear CG algo-
rithm [22], with the Euclidean gradient replaced by the Riemannian gradient. Ap-
plying retraction after each optimization step ensures that we stay on the manifold.
Finally, the use of vector transport allows us to calculate conjugate directions using
the Polak-Ribière+ (PR+) update rule. If the search directions become insufficiently
gradient-related during the iteration, the algorithm should revert to steepest descent,
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see [5]. A standard Armijo backtracking scheme is added to control the step sizes,
using the result of a linearized line search procedure as an initial guess.

Algorithm 1 Geometric nonlinear CG for Tensor Completion
Require: Initial guess X0 ∈ Mr.

η0 ← −gradf (X0) % first step is steepest descent
α0 ← argminα f (X0 + αη0) % step size by linearized line search
X1 ← R(X0, α0η0)

for k = 1,2, . . . do
ξk ← gradf (Xk) % compute Riemannian gradient
ηk ← −ξk + βkTXk−1→Xk

ηk−1 % conjugate direction by updating rule
αk ← argminα f (Xk + αηk) % step size by linearized line search
Find smallest integer m ≥ 0 such that

% Armijo backtracking for sufficient decrease
f (Xk) − f (R(Xk,2−mαkηk)) ≥ −10−4 · 〈ξk,2−mαkηk〉

Xk+1 ← R(Xk,2−mαkηk) % obtain next iterate by retraction
end for

In the following sections, we will provide algorithmic details on the individual
steps of Algorithm 1 and discuss their computational complexity. To simplify the
expressions for the complexity, we assume that n := n1 = · · · = nd and r := r1 =
· · · = rd .

3.1 Calculation of the gradient

The calculation of the Riemannian gradient (2.6) requires the explicit computation of
individual entries of a tensor X from its Tucker decomposition:

Xi1i2...id =
r1∑

j1=1

r2∑

j2=1

· · ·
rd∑

jd=1

Cj1j2...jd
(U1)i1j1(U2)i2j2 · · · (Ud)idjd

.

In total, this requires |Ω|(d + 1)rd operations for computing PΩX.
The projection of E := PΩX − PΩA onto the tangent space gives the gradient ξ ,

which will be stored in factorized form as

ξ = G
d×

j=1
Uj +

d∑

i=1

C ×i Vi ×
j �=i

Uj , (3.1)

where

G := E
d×

j=1
UT

j , Vi := P⊥
Ui

[
E×

j �=i
UT

j

]

(i)

C
†
(i),

see (2.5). By exploiting the sparsity of E, the computation of G and Vi , i = 1, . . . , d ,
requires O(rd(|Ω|+n)+rd+1) operations. This makes the calculation of the gradient
the most time consuming part of our optimization scheme.
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3.2 Vector transport and new search direction

To calculate the new search direction, we use the Polak-Ribière+ update formula
adapted to Riemannian optimization, see [2, 22]:

βk = max

{
0,

〈gradf (Xk),gradf (Xk) − TXk−1→Xk
gradf (Xk−1)〉

‖gradf (Xk−1)‖2

}
. (3.2)

The calculation of βk requires the evaluation of the vector transport

TXk−1→Xk
ξ = PTXk

Mr(ξk−1),

where ξk−1 = gradf (Xk−1) is assumed to be in the factorized form (3.1). Moreover,

Xk ∈ Mr is given in terms of a Tucker decomposition Xk = C̃×d

i=1 Ũi . As in the
previous section, we obtain

PTXk
Mr(ξk−1) = G̃

d×
j=1

Ũj +
d∑

i=1

C̃ ×i Ṽi ×
j �=i

Ũj , (3.3)

where

G̃ := ξk−1

d×
j=1

ŨT
j , Ṽi := P⊥̃

Ui

[
ξk−1 ×

j �=i
Ũ T

j

]

(i)

C̃
†
(i).

To compute and G̃ and Ṽi , we make use of the linearity in ξk−1 and process each sum-
mand in the representation (3.1) of ξk−1 separately. By exploiting the tensor product
structure of each summand, we then arrive at a total cost of O(nrd) operations.

Further, the evaluation of (3.2) requires the inner product between the tensor
PTXi

Mr(ξk−1) in (3.3) and ξk = gradf (Xi ) also given in factorized form:

ξk = Ĝ
d×

j=1
Ũj +

d∑

i=1

C̃ ×i V̂i ×
j �=i

Ũj .

Utilizing the orthogonality of Ũi and the uniqueness condition ŨT
i Ṽi = ŨT

i V̂i = 0
for the tangent space, see (2.4), we obtain

〈
ξk,PTXk

Mr(ξk−1)
〉 = 〈Ĝ, G̃〉 +

d∑

i=1

〈
C̃, C̃ ×i V̂ T

i Ṽi

〉
.

The evaluation of the (smaller) inner products requires O(nr2 + rd+1) operations.
The norm of ξk−1 appearing in the denominator of (3.2) is computed analogously.
Hence, the total cost for computing βk is given by O(nrd) operations.

Once βk has been determined, the new conjugate direction is computed by

ηk = −ξk + βkTXk−1→Xk
ηk−1,
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Fig. 2 Structure of the
combined core tensor S for the
case d = 3

where ηk−1 ∈ TXk−1Mr is the previous conjugate direction. The vector transport is
performed exactly in the same way as above. The obtained tensor in TXk

Mr is multi-
plied by βk and added to −ξk ∈ TXk

Mr. Due to linearity, the addition of two tensors
in the same tangent space is performed by simply adding the corresponding coeffi-
cients G and Vi .

3.3 Calculation of the retraction

To obtain the next iterate, Algorithm 1 retracts the updated tensor X +αη back to the
manifold by means of the HOSVD. When performing this retraction, we will exploit
the fact that X ∈ Mr is in Tucker decomposition and η ∈ TXMr is represented in the
factorized form (3.1):

X + αη = C
d×

i=1
Ui + α

(

G
d×

i=1
Ui +

d∑

i=1

C ×i Vi ×
j �=i

Uj

)

= (C + αG)

d×
i=1

Ui + α

d∑

i=1

C ×i Vi ×
j �=i

Uj

= S
d×

i=1
[Ui,Vi]

where S ∈ R
2r1×···×2rd has the special structure depicted in Fig. 2. After orthogonal-

izing the combined basis matrices [Ui,Vi] and a corresponding update of S, we can
then restrict the application of the HOSVD to the smaller tensor S, which requires
only O(rd+1) operations. The retraction is completed by multiplying the basis ma-
trices obtained from the HOSVD of S to the combined basis factors. In total, the
retraction requires O(nr2 + rd+1) operations.

3.4 Line search

Following [30], we obtain an initial guess for the step size α in Algorithm 1 by per-
forming exact line search along the tangent space. This leads to the optimization
problem

α∗ = argmin
α

∥∥PΩ(X + αξ) − PΩA
∥∥2

,
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which can be solved analytically:

α∗ = 〈PΩξ,PΩ(A − X)〉
〈PΩξ,PΩξ 〉 . (3.4)

The computation of the nonzero entries of PΩξ requires 2|Ω|(d +1)rd operations
(see Sect. 3.1), while each of the inner products requires 2|Ω| operations.

This linearized exact line search procedure is combined with an Armijo backtrack-
ing scheme. In our numerical experiments, we have observed that this was almost
never necessary; α∗ is often very close to the optimal step size.

3.5 Summary of computational complexity

By exploiting the low-rank structures of the iterates, we arrive at a total cost of

O
(
rd

(
n + |Ω|) + rd+1) (3.5)

operations. In particular, Algorithm 1 scales linearly with n, when keeping r fixed.
This makes the algorithm suitable for large sizes n and moderate values of d , say
d = 3,4.

3.6 Convergence of Algorithm 1

To investigate the convergence of our proposed algorithm, we proceed similarly to the
matrix case [30, Sect. 4.1] by applying the general convergence theory for Rieman-
nian optimization. In particular [2, Theorem 4.3.1] yields the following proposition,
which shows that any limit point of Algorithm 1 coincides with the prescribed entries
PΩA within the tangent space.

Proposition 3.1 Let Xk be an infinite sequence of iterates generated by Algorithm 1.
Then, every accumulation point X∗ of Xk satisfies PTX∗Mr(PΩX∗) = PTX∗Mr(PΩA).

A more detailed convergence analysis is complicated by the fact that Mr is not
closed; for example a sequence of tensors in Mr may approach a tensor for which the
ith matricization has rank less than ri . To avoid this effect, we first discuss the con-
vergence for a modification of the original cost function f (X) = ‖PΩX − PΩA‖2/2:

g : Mr → R, X �→ f (X) + μ2
d∑

i=1

(‖X(i)‖2 + ∥∥X
†
(i)

∥∥2)
, μ > 0, (3.6)

where ‖ · ‖ denotes the Frobenius norm for matrices.

Proposition 3.2 Let Xk be an infinite sequence of iterates generated by Algorithm 1
but with the modified cost function g defined in (3.6). Then

lim
k→∞

∥∥gradg(Xk)
∥∥ = 0.
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Proof By construction of the line search, all iterates Xk fulfill g(Xk) ≤ g(X0) and
therefore

1

2
‖PΩXk − PΩA‖2 + μ2

d∑

i=1

(‖Xk,(i)‖2 + ∥∥X
†
k,(i)

∥∥2) ≤ g(X0) =: C2
0 ,

where Xk,(i) denotes the ith matricization of Xk . In particular,

μ2
d∑

i=1

‖Xk,(i)‖2 ≤ C2
0 , μ2

d∑

i=1

∥∥X
†
k,(i)

∥∥2 ≤ C2
0 ,

yielding upper and lower bounds for the largest and smallest singular values, respec-
tively:

σmax(Xk,(i)) ≤ ‖Xk,(i)‖ ≤ C0/μ, σ−1
min(Xk,(i)) ≤ ∥∥X

†
k,(i)

∥∥ ≤ C0/μ.

Hence, all iterates Xk stay inside the compact set

B := {
X ∈ Mr | σmax(X(i)) ≤ C0/μ, σmin(X(i)) ≥ μ/C0 for i = 1, . . . , d

}
.

Now suppose, conversely to the statement of the proposition, that ‖gradg(Xk)‖ does
not converge to zero. Then there is δ > 0 and a subsequence of {Xk} such that
‖gradg(Xk)‖ > δ for all elements of the subsequence. Since Xk ∈ B , it follows that
this subsequence has an accumulation point X∗ for which also ‖gradg(X∗)‖ > δ.
However, this contradicts [2, Theorem 4.3.1], which states that every accumulation
point is a critical point of g. �

It is instructive to compare the gradient of g with the gradient of f at X ∈ Mr. For
this purpose, we use the fact that X(i) has full row-rank and thus the derivative of its
pseudo-inverse X

†
(i) = XT

(i)(X(i)X
T
(i))

−1 can be written as

∂X
†
(i) = −X

†
(i)(∂X(i))X

†
(i) + (

I − X
†
(i)X(i)

)
(∂X(i))

T
(
X(i)X

T
(i)

)−1
.

Thus, the Euclidean gradient of g at X is given by

∇g(X) = ∇f (X) + 2μ2
d∑

i=1

[
Ui

(
Σi − (

Σ
†
i

)3)
V T

i

](i)
, (3.7)

in terms of the singular value decomposition X(i) = UiΣiV
T
i . The operation [ · ](i)

reverses matricization, that is, [X(i)](i) = X.
The statement of Proposition 3.2 holds for arbitrarily small μ. If the smallest sin-

gular values of the matricizations stay bounded from below as μ → 0, that is, the
accumulation points X∗ of {Xk} do not approach the boundary of Mr as μ → 0,
then (3.7) shows that gradf (X∗) → 0 as μ → 0. Thus, the regularization term be-
comes negligible in such a situation. For more details, we refer to the discussion
in [30, Sect. 4.1].
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4 Numerical experiments

Algorithm 1 (geomCG) was implemented in MATLAB version 2012a, using the Ten-
sor Toolbox version 2.5 [4] for handling some of the tensor operations. However, to
attain reasonable performance, it was important to implement operations with sparse
tensors in C and call them via mex interfaces. In particular, this was done for the
evaluation of the objective function (1.1), the computation of the Euclidean gradi-
ent and its projection onto the tangent space (3.1), as well as for the linearized line
search (3.4). For simplicity, we restricted the implementation to the case d = 3. The
source code is freely available under a BSD license and can be downloaded from
http://anchp.epfl.ch.

To measure the convergence during the iteration, Algorithm 1 computes the rela-
tive residual

‖PΩX − PΩA‖
‖PΩA‖ .

However, to investigate the reconstruction quality of the algorithm, measuring the
relative residual on the sampling set Ω is not sufficient. For this purpose, we also
measure the relative error ‖PΓ X − PΓ A‖/‖PΓ A‖ on a random test set Γ of the same
cardinality as Ω .

Unless stated otherwise, we assume that the tensor has equal size in all modes,
n := n1 = n2 = n3 and similarly for the ranks, r := r1 = r2 = r3. All tests were
performed on a quad-core Intel Xeon E31225, 3.10 GHz, with 8 GB of RAM running
64-Bit Debian 7.0 Linux. Stated calculation times are wall-clock times, excluding the
set-up time of the problem.

4.1 Computational complexity for synthetic data sets

A synthetic data tensor A of exact multilinear rank r is created by choosing the entries
of the core tensor C and the basis matrices U1,U2,U3 as pseudo-random numbers
from a uniform distribution on [0,1].

As a first test, we check that the implementation of Algorithm 1 exhibits the same
scaling behaviour per iteration as predicted by the theoretical discussion in Sect. 3.5.
To measure the scaling with regard to the tensor size n, we fix the multilinear rank
to r = (10,10,10) and scale the size of the sampling set linearly with the tensor size,
|Ω| = 10n. We perform 10 iterations of our algorithm and repeat the process 10 times
for different randomly chosen datasets. Analogously, we measure the dependence on
the tensor rank by setting the tensor size to n = 300 and fixing the sampling set to
0.1 % of the full tensor.

The results are shown in Fig. 3. We observe that our algorithm scales indeed lin-
early in the tensor size over a large interval n ∈ [100,3000]. Even for such large
tensors, the time per iteration step is very low. Plotting the results for the scaling with
regard to the tensor rank, we observe an O(r3)-dependence, in agreement with (3.5).

4.2 Reconstruction of synthetic data sets

We compare the reconstruction performance of our algorithm with the hard com-
pletion algorithm by Signoretto et al. [26, Alg. 3], based on the so called inexact

http://anchp.epfl.ch
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Fig. 3 Time needed per iteration step for various problem sizes. Left: Runtime with fixed rank
r = (10,10,10) and varying tensor size n = n1 = n2 = n3 ∈ {100,150, . . . ,3000}. The size of the sam-
pling set scales linearly with n, |Ω| = 10n. Right: Runtime with fixed tensor size n = (300,300,300) and
varying tensor rank r = r1 = r2 = r3 ∈ {20,25, . . . ,100}. Size of sampling set: 0.1 % of the full tensor.
The dashed line shows a scaling behaviour O(r3)

splitting method applied to (1.2). We selected this algorithm because it is publicly
available on the authors’ website. The algorithm depends on certain parameters dis-
cussed in [26]. We have chosen the proximity parameter τ = 10 and the nuclear norm
weights λ1 = λ2 = λ3 = 1, which corresponds to the settings used in the supplied test
routine.

In Fig. 4 we present the convergence behaviour of the algorithms for varying sizes
of the sampling set, in terms of the error on the test set Γ . The sampling set sizes are
denoted by a percentage p of the full tensor, |Ω| = pN3. We use a relative residual
of 10−12 and a maximum number of 300 iterations as stopping criterions. Both algo-
rithm need more iterations if the number of missing entries increases, but the effect is
more strongly pronounced for hard completion. Our algorithm performs better both
when measuring the performance with respect to time or the number of iterations.

4.2.1 Reconstruction of noisy data

In this part, we investigate the convergence properties of Algorithm 1 in the presence
of noise. The known entries of A are perturbed by rescaled Gaussian noise E, such
that ‖PΩE‖ = ε0‖PΩA‖ for a prescribed noise level ε0. Ideally, Algorithm 1 should
return an approximation X∗ at the level of ε0, that is,

∥∥PΩX∗ − PΩ(A + E)
∥∥/‖PΩA‖ ≈ ∥∥PΩA − PΩ(A + E)

∥∥/‖PΩA‖ = ε0.

To test that the noise does not lead to a misidentification of the rank of the underlying
problem, we compare the case where we take the initial guess on the correct manifold
to an uninformed rank-(1,1,1) guess. There, we employ a heuristic rank adaptation
strategy discussed in Sect. 4.3. We show in Fig. 5 that in both cases we can indeed
recover the original data up to the given noise level.
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Fig. 4 Convergence curves for different sampling set sizes as functions of iterations and time for our
proposed algorithm (geomCG) and the hard completion algorithm by Signoretto et al. [26]. Tensor size
and multilinear rank fixed to n = 100 and r = (5,5,5), respectively (Color figure online)

Fig. 5 Tensor completion from noisy measurements with n = 100, r = (6,6,6). The relative size of the
sampling set was fixed to 10 %. The black line corresponds to the noise-free case. The different colors
correspond to the noise levels ε0 ∈ {10−4,10−6, . . . ,10−12}. Left: Results when the underlying rank r is
known. Right: Results for the case of unknown rank of the underlying problem. Due to the rank adaptation
procedure, more iterations are necessary

4.2.2 Size of the sampling set

It is well known that in the matrix case, the number of random samples needed to
exactly recover the original matrix is at least O(nr logn) under standard assump-
tions; see e.g. [6, 13]. In the left plot of Fig. 6, we present numerical experiments
suggesting that a similar statement may hold for the three-dimensional tensor case.
The algorithm is declared converged (and hence yields perfect reconstruction) if the
relative residual drops below 10−6 within 100 iterations.
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Fig. 6 Scaling of the sampling set size needed to reconstruct the original tensor of fixed multilin-
ear rank (10,10,10). Left: Minimum size of sampling set needed to attain convergence vs. tensor size
n = n1 = n2 = n3. Right: Phase transition of the convergence speed (4.1). White means fast convergence,
black means no convergence. The line corresponds to O(n log(n))

The right plot of Fig. 6 displays a phase transition of the measured convergence
speed of Algorithm 1, computed from

ρ =
( ‖PΓ Xkend − PΓ A‖

‖PΓ Xkend−10 − PΓ A‖
) 1

10 ∈ [0,1], (4.1)

where kend is the final iteration.

4.3 Applications

In the following, we assess the performance of our algorithm on tensors derived from
applications. In contrast to synthetic data sets, tensors from applications usually do
not posses a clear, well-defined multilinear rank. Often, they exhibit a rather smooth
decay of the singular values in each matricization. In such a setting, Algorithm 1 re-
quires a good initial guess, as directly applying it with a (large) fixed rank r usually
results in severe overfitting. We propose the following heuristic to address this prob-
lem: Starting from a multilinear rank-(1,1,1)-approximation, we iteratively increase
the multilinear rank in each mode and rerun our algorithm with the previous result as
initial guess. This procedure is repeated until the prescribed final multilinear rank r
is reached. We increase the multilinear rank every time the current relative change in
the square root of the cost function is smaller than a tolerance δ:

∣∣
√

f (Xi−1) − √
f (Xi )

∣∣ < δ
√

f (Xi ). (4.2)

Initially, we use a large value for δ, say δ = 1. We observed this approach to be
effective at steering the algorithm into the direction of the optimal solution. Once we
arrive at the final rank r, we can also use (4.2) as a stopping criterion with a much
smaller value for δ, say δ = 0.001. In cases of convergence problems, the initial value



Low-rank tensor completion by Riemannian optimization 463

Table 1 Reconstruction results for “Ribeira” hyperspectral image. The results for frame, mode-3 and
tensor are taken from [27]. geomCG(r1, r2, r3) denotes the result of Algorithm 1 using a prescribed final
multilinear rank (r1, r2, r3)

Full Ribeira data set—sampling percentage

10 % 30 % 50 %

NRMSE time [103 s] NRMSE time [103 s] NRMSE time [103 s]

frame [27] 0.092 3.78 0.061 3.72 0.046 2.30

mode-3 [27] 0.068 0.27 0.018 0.31 0.012 0.33

tensor [27] 0.072 26.3 0.031 25.8 0.020 42.0

geomCG(15,15,6) 0.047 0.06 0.046 0.11 0.046 0.19

geomCG(65,65,7) 0.025 1.67 0.017 4.33 0.017 6.86

First 5 frames of Ribeira data set—sampling percentage

10 % 30 % 50 %

NRMSE time [103 s] NRMSE time [103 s] NRMSE time [103 s]

frame [27] 0.071 0.15 0.046 0.14 0.034 0.14

mode-3 [27] 0.191 0.02 0.119 0.02 0.070 0.02

tensor [27] 0.067 3.14 0.034 4.48 0.023 4.06

geomCG(15,15,5) 0.058 0.01 0.033 0.02 0.032 0.03

geomCG(55,55,5) 0.075* 0.15 0.026 0.36 0.016 0.42

for δ should be chosen smaller, at the cost of additional iterations. In the following
numerical experiments, we always include this initialization procedure in the reported
computation times.

4.3.1 Hyperspectral image

As a first application of our algorithm to real-world data, we consider the hyperspec-
tral image “Ribeira” [10] discussed in [27].

This results in a tensor of size 1017 × 1340 × 33, where each slice corresponds to
an image of the same scene measured at a different wavelength. To provide a faithful
comparison, we proceed in the same way as in [27] and resize the tensor to 203 ×
268 × 33 by bilinear interpolation before applying our algorithm. The results are
shown in Table 1. The reconstruction quality is assessed in terms of the normalized
root mean squared error:

NRMSE(X,A) := ‖PΩcA − PΩcX‖
(max(PΩc A) − min(PΩcA))

√|Ωc| ,

where Ωc is the complement of the sampling set, that is, the unknown entries. We
compare with the results reported in [27] for the tensor completion algorithm tensor,
the frame-wise matrix completion approach frame, and matrix completion applied to
the mode-3 matricization only. As shown in Fig. 7, the singular values of the ma-
tricizations decay at a different rate. We take this into account in our algorithm, by
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Fig. 7 Full hyperspectral image data set “Ribeira” scaled to size (203,268,33). Top left: Singular value
decay of each matricization. Top right: The sampled tensor PΩA with 10 % known entries. Unknown
entries are marked in black. Bottom left: Result of our algorithm with iterative increase of ranks up to a
final rank of r = (15,15,6), corresponding to entry geomCG(15,15,6) in Table 1. Bottom right: Result of
our algorithm with iterative increase of ranks up to a final rank of r = (65,65,7), corresponding to entry
geomCG(65,65,7) in Table 1

choosing the final mode-1 and mode-2 ranks of the approximation significantly larger
than the mode-3 rank. It can be observed that our algorithm (geomCG) yields very
competitive results, especially in the case where the sampling set is small. There is
one case of overfitting for geomCG(55,55,5), marked by a star.

4.3.2 Reconstruction of function data

To investigate the applicability of our algorithm to compress tensors related to func-
tions with singularities, we consider

f : [−1,1]3 →R, x �→ e−‖x‖2 (4.3)

discretized on a uniform tensor grid with mesh width h = 1/100. The function values
are collected in a tensor A ∈R

201×201×201. In this setting, we assume that the location
of the singularity is known a priori. As f has a cusp at the origin, the information
in A is strongly localized at this point and tensor completion applied naively to A
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Fig. 8 Convergence of the
algorithm for the discretization
of a function with cusp (4.3).
The final rank of the
approximation is
r = (10,10,10). The part
corresponding to [−0.1,0.1]3 is
excluded from the sampling set
Ω and the test set Γ

would not lead to reasonable compression. To avoid this effect, we therefore cut out
a small hypercube [−0.1,0.1]3, corresponding to the 21 × 21 × 21 central part of the
discretized tensor. The idea is to not include this region in the sampling set Ω . The
entries corresponding to this region are stored separately and reconstructed exactly
after performing low-rank tensor completion on the remaining region. We therefore
do also not include the central part in the test set Γ when verifying the accuracy of the
completed tensor. The obtained results are shown in Fig. 8. Already sampling 5 % of
the entries gives an accuracy of 10−5. This would yield a compression ratio of 5.1 %
if we stored the involved entries. However, storing the rank-(5,5,5) approximation
along with the central part yields the significantly lower compression ratio of 0.15 %.

4.3.3 Stochastic elliptic PDE with Karhunen-Loève expansion

Finally, we consider an elliptic PDE with stochastic coefficients:

−∇(
a(x, y)∇u(x, y)

) = f (x), (x, y) ∈ D × Θ,

u(x, y) = 0 (x, y) ∈ ∂D × Θ,

where y ∈ Θ is a random variable and D = [−1,1] is the computational domain. We
represent the stochastic variable y by an infinite number of parameters α ∈ [−1,1]∞
and write a(x,α) in terms of its Karhunen-Loève expansion

a(x,α) = a0 +
∞∑

μ=1

√
λμaμ(x)αμ,

where aμ(x), μ = 1,2, . . . are normalized L2(D)-functions and the so called
Karhunen-Loève eigenvalues λμ ≥ 0 decrease monotonically. We truncate the
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Fig. 9 Convergence for the solution tensor of size n = 100 of a parametrized linear system obtained from
a discretized stochastic PDE. Left: Result for Karhunen-Loève eigenvalues

√
λμ = 5 exp(−2μ). Right:

Result for Karhunen-Loève eigenvalues
√

λμ = (1 + μ)−2. The final rank of the solution is r = (4,4,4)

Karhunen-Loève expansion after μ = 3 and employ a standard piecewise linear fi-
nite element (FE) discretization. This yields a parameter-dependent linear system of
equations,

(A0 + α1A1 + α2A2 + α3A3)x = f, (4.4)

where each Aμ ∈R
m×m is the FE stiffness matrix corresponding to the coefficient aμ.

We refer to, e.g., [24] for a detailed discussion of this procedure. In our examples, we
choose

a0(x) = 1, aμ(x) = sin(μx).

The parameters α are then sampled uniformly on a tensor grid on [−1,1]× [−1,1]×
[−1,1]. Assuming that we are only interested in the mean of the solution for a specific
set of parameters, this results in the solution tensor X ∈ R

n×n×n, where each entry
of this tensor requires the solution of a discretized PDE (4.4) for one combination
of the discretized (α1, α2, α3). Hence, evaluating the full tensor is fairly expensive.
Using tensor completion, we sample X at (few) randomly chosen points and try to
approximate the missing entries.

In Fig. 9 we show the results of this approach for m = 50, n = 100, and two differ-
ent choices of αμ. We used the Karhunen-Loève eigenvalues

√
λμ = 5 exp(−2μ) and√

λμ = (1 +μ)−2, respectively. As the second choice results in slower singular value
decays, our algorithm requires more iterations to attain the same accuracy. Using 5 %
of the tensor as a sampling set is in both cases sufficient to recover the original tensor
to good precision. As the sampling set gets smaller, overfitting of the sampling data
is more likely to occur, especially for the second choice of λμ.
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5 Conclusions

We have shown that the framework of Riemannian optimization yields a very effec-
tive nonlinear CG method for performing tensor completion. Such a method has also
been suggested in [8]. One of the main contributions in this paper consists of a care-
ful discussion of the algorithmic and implementation details, showing that the method
scales well for large data sets and is competitive to existing methods for tensor com-
pletion. On the theoretical side, we have proven that HOSVD satisfies the properties
of a retraction and discussed the convergence properties of the nonlinear CG method.

The numerical experiments indicate the usefulness of tensor completion not only
for data-related but also for function-related tensors. We feel that this aspect merits
further exploration. To handle high-dimensional applications, the approach consid-
ered in this paper needs to be extended to other SVD-based low-rank tensor formats,
such as the tensor train and the hierarchical Tucker formats, see also [8].
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