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Abstract The geometric mean of positive definite matrices is usually identified
with the Karcher mean, which possesses all properties—generalized from the scalar
case—a geometric mean is expected to satisfy. Unfortunately, the Karcher mean is
typically not structure preserving, and destroys, e.g., Toeplitz and band structures,
which emerge in many applications. For this reason, the Karcher mean is not always
recommended for modeling averages of structured matrices. In this article a new def-
inition of a geometric mean for structured matrices is introduced, its properties are
outlined, algorithms for its computation, and numerical experiments are provided. In
the Toeplitz case an existing mean based on the Kähler metric is analyzed for com-
parison.
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1 Introduction

The wish to generalize the concept of a geometric mean to positive definite (positive
for short) matrices and, on the other hand, the need to average quantities expressed
by positive matrices in certain applications have led to the definition and the study of
the Karcher mean [8, 9, 33].

Without describing all facets, one can consider the set of n × n positive matrices,
denoted by Pn, as a manifold [1], in particular, there is a diffeomorphism from Pn

to R
n2

. In each point of A ∈ Pn one can define the tangent space TAPn, which can
be identified with the space of Hermitian matrices. The Karcher mean can now be
defined in terms of a Riemannian geometry defined on Pn and induced by the inner
product

gA(X,Y ) := tr
(
A−1XA−1Y

)
, X,Y ∈ TAPn (1.1)

on the tangent space TAPn. This inner product gA makes Pn a complete Riemannian
manifold with non-positive curvature and yields the following distance between two
matrices A,B ∈Pn:

δ(A,B) =
(

n∑

k=1

log2 λk

)1/2

, (1.2)

where λ1, . . . , λn, are the eigenvalues of A−1B , which are positive numbers (for
all the proofs see [8, Ch. 6]). The Karcher mean of a set of m positive matrices,
A1, . . . ,Am ∈ Pn, is defined as the unique positive minimizer G(A1, . . . ,Am) of the
function

f (X;A1, . . . ,Am) :=
m∑

j=1

δ2(X,Aj ). (1.3)

Since this mean minimizes the sum of squared intrinsic distances to each of the matri-
ces Aj it is a barycenter of these matrices with respect to the aforementioned metric.

An important feature of the Karcher mean is that it possesses all the properties de-
sired by a geometric mean, like the ten Ando-Li-Mathias (ALM) axioms [2]. For this
reason, it is a viable tool in applications requiring some of these properties [7, 34].
A geometric mean should for instance be: permutation invariant, monotone, joint
concave, and should satisfy the arithmetic-geometric-harmonic inequality (see [2] for
the precise statements of the properties). In particular, one of the most characteristic
properties of a geometric mean is its invariance under inversion:

G
(
A−1

1 , . . . ,A−1
m

) = G(A1, . . . ,Am)−1. (1.4)



Geometric means of structured matrices 57

Prior to having the proofs of all the properties of the Karcher mean, some of which are
very elusive [10, 31], other definitions of a matrix geometric mean had been proposed
[2, 12, 14, 35], even if nowadays there is large agreement in considering the Karcher
mean as the “right” matrix geometric mean.

In certain applications, however, besides the positive definiteness, the data matri-
ces have some further structure in the sense that they belong to some special subset S ,
say a linear space. For instance, in the design and analysis of certain radar systems,
the matrices to be averaged are correlation matrices, which are positive Toeplitz ma-
trices or are positive Toeplitz block matrices with Toeplitz blocks [5, 6, 29, 41]. In
these cases, one would like the geometric mean to belong to the same class S as the
data. Unfortunately, the Karcher mean does not preserve many structures, in partic-
ular the Karcher mean of Toeplitz and/or band matrices is typically not of Toeplitz
and/or band form anymore, as illustrated by the following simple example.

Example 1.1 Let T be the set of tridiagonal Toeplitz matrices and choose A1,A2 ∈ T
where A1 = I , and A2 = tridiag(1,2,1) is the matrix with 2’s on the main, and 1’s
appearing on sub- and superdiagonals. We have A1A2 = A2A1, thus the Karcher
mean equals (A1A2)

1/2. For n = 3 we get

(A1A2)
1/2 =

√
2

4

⎡

⎢⎢
⎣

√
2 + √

2 + 2
√

2
√

2 − √
2

√
2 + √

2 − 2
√

2
√

2 − √
2

√
2 + √

2
√

2
√

2 − √
2

√
2 + √

2 − 2
√

2
√

2 − √
2

√
2 + √

2 + 2

⎤

⎥⎥
⎦ (1.5)

which is neither tridiagonal nor Toeplitz.

In this paper we introduce the concept of a structured geometric mean of positive
matrices in such a way that if A1, . . . ,Am ∈ S also their mean belongs to S . Given
a subset S of Pn and matrices A1, . . . ,Am ∈ S , we say that G ∈ S is a structured
geometric mean with respect to S of A1, . . . ,An if the function f (X;A1, . . . ,Am)

of (1.3) takes its minimum value over S at G. The set of all structured geometric
means of A1, . . . ,Am (all minimizers of f ) with respect to S is denoted by GS =
GS(A1, . . . ,Am).

We show that if S is closed (and nonempty) then GS is nonempty and the matrices
G ∈ GS satisfy most of the ALM axioms in a suitably adjusted form. For instance,
the invariance under inversion property (1.4) turns into

GS(A1, . . . ,Am) = GS−1

(
A−1

1 , . . . ,A−1
m

)−1
,

where for a set U ⊆ Pn we denote U−1 = {X−1 : X ∈ U}. That is, the inverse of
any structured geometric mean of the matrices A1, . . . ,Am ∈ S with respect to S
coincides with a structured mean of the inverses A−1

1 , . . . ,A−1
m with respect to the set

S−1 where these inverses reside.
Moreover, we show that, in many interesting cases, structured geometric means

can be characterized in terms of the positive solutions of a suitable vector equation
and provide algorithms for their computation.
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In the Toeplitz case we also consider a different approach, where the mean is
defined as a barycenter for a suitable metric on the manifold [4]. We analyze this
barycenter and its properties in detail, obtaining an explicit expression in the real
case and a quick algorithm in the complex case.

The article is organized as follows. In Sect. 2 the cost function (1.3) is examined
with special focus on the existence of the minimizer over a closed set. The structured
matrix mean itself is the subject of study in Sect. 3, where the theoretical properties
it should satisfy are examined. Section 4 proposes two algorithms for computing a
structured mean G in a linear space together with their convergence analysis. For
one algorithm, it is shown that the convergence speed is independent of the condi-
tion number of the mean and is faster when the condition numbers of the matrices
A

−1/2
i GA

−1/2
i are smaller, for i = 1, . . . , n. Because of its nature and its convergence

properties, this algorithm can be viewed as the natural extension to the structured case
of the Richardson-like algorithm introduced and analyzed in [11] for the computation
of the Karcher mean of unstructured matrices. In Sect. 5, for Toeplitz matrices, a dif-
ferent structured matrix mean [4] as a barycenter is considered, and an algorithm for
computing it is developed. Section 6 shows numerical experiments related to accu-
racy and speed for computing the structured matrix mean.

Here we recall some basic notation and properties that will be used in the rest of
the paper. Given a matrix A, we define σ(A) the spectrum of A, that is, the set of all
the eigenvalues of A, and ρ(A) = maxλ∈σ(A) |λ| the spectral radius of A. Moreover
we denote by ‖A‖F := (trace(A∗A))1/2 = (

∑
i,j |aij |2)1/2 the Euclidean (Frobenius)

norm of A, and ‖A‖s = ρ(A∗A)1/2 is the spectral norm. By A∗ we denote the trans-
posed conjugate of A. Recall that for a positive matrix A there exists a unique pos-
itive solution to the equation X2 = A. This solution, denoted by A1/2, is called the
square root of A [8]. Given a matrix A ∈ C

n×n, we use the vec-operator to build
vec(A) ∈ C

n2
, a long vector obtained by stacking the columns of A. We will use the

Kronecker product ⊗ such that A ⊗ B is the block matrix whose (i, j)th block is de-
fined as aijB . The vec operator and the Kronecker product interplay in the following
way [23]

vec(ABC) = (
CT ⊗ A

)
vec(B). (1.6)

Finally, we recall a natural partial order in Pn that will be used in the following: let
A and B be positive, we write A ≥ B if the matrix A − B is semidefinite positive.

2 Existence of structured geometric means

In this section the existence of a structured geometric mean and its relation to the
classical Karcher mean is studied. First some necessities are repeated.

2.1 Uniqueness of the Karcher mean for positive matrices

The Riemannian geometry on Pn given by the inner product (1.1) turns out to be
complete and a parametrization of the geodesic joining two positive matrices A and
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B is known to be [8, 30]

A#tB = A1/2(A−1/2BA−1/2)t
A1/2 = A

(
A−1B

)t
, t ∈ [0,1], (2.1)

where the midpoint A#1/2B coincides with the geometric mean of the two matrices
[24, 30].

Given a set of matrices A1, . . . ,Am ∈Pn, the function f (X) = f (X;A1, . . . ,Am)

in (1.3) is strictly geodesically convex, which means that for any two different matri-
ces X,Y ∈Pn, we have

f (X#t Y ) < (1 − t)f (X) + tf (Y ), 0 < t < 1. (2.2)

This property follows from [8, Exercise 6.1.13], where it is stated that for m = 1 the
function f (X) is strictly geodesically convex. The case m > 1 follows by summing
up the m inequalities obtained by applying (2.2) to the functions f (X) = f (X;Ai),
for i = 1, . . . ,m, respectively.

Geodesical convexity is a key ingredient for the proof of the existence of a unique
minimizer of f over Pn given in [8, Ch. 6]. A different proof is obtained using the
fact that Pn, with the inner product (1.1), forms a Cartan–Hadamard manifold [16,
28, 30, 32], which is a Riemannian manifold, complete, simply connected and with
non-positive sectional curvature everywhere. On such a Cartan–Hadamard manifold
the Karcher mean (the so-called center-of-mass) exists and is unique [17, 27, 28].

The notion of geodesical convexity in Pn is different from the customary convexity
in the Euclidean space where one requires that

f
(
(1 − t)X + tY

) ≤ (1 − t)f (X) + tf (Y ), t ∈ [0,1].
In fact, the function f is not convex in the traditional sense as the following example
shows.

Example 2.1 Consider the set made of the unique matrix A = 1, and x, y ∈R
∗+ = P1.

We have f (x) = δ2(x,A) = log2(x) which is not convex. On the other hand the func-
tion log2(x) is strictly geodesically convex and this can be shown by an elementary
argument: in fact, it is continuous and for x 
= y

δ2(
√

xy,1) = log2(
√

xy) = 1

4

(
log2 x + log2 y + 2 logx logy

)

= 1

2

(
log2 x + log2 y

) − 1

4
(logx − logy)2

<
1

2

(
log2 x + log2 y

) = 1

2

(
δ2(x,1) + δ2(y,1)

)
.

Iterative selection of midpoints and a continuity argument completes the proof.

Since f is strictly geodesically convex, it can be proved that it has a unique min-
imizer over any closed, geodesically convex subset S of Pn, where we say that a
subset S ⊆ Pn is geodesically convex if for any X,Y ∈ S , the entire geodesic X#t Y ,
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t ∈ [0,1] belongs to S . Indeed, if X1 and X2 were two different matrices in S where
f takes its minimum, then from (2.2) it would follow that f (X1#tX2) < f (X1) =
f (X2) for any 0 < t < 1 which contradicts the assumption.

2.2 Existence of structured geometric means on a closed set

For a generic closed subset U of Pn, which is not necessarily geodesically convex, we
can prove the existence of a minimum point by using the fact that f (X) is continuous.

Theorem 2.1 Let U ⊆ Pn be a closed subset. Then for any A1, . . . ,Am ∈ Pn the
function f (X) = f (X;A1, . . . ,Am) has a minimum in U .

Proof Consider the distance measures δ(X,Y ), given in (1.2), which can be written
also as δ(X,Y ) = ‖ log(Y−1/2XY−1/2)‖F , and d(X,Y ) (the Thompson metric [39]),
given by

d(X,Y ) = ∥∥log
(
Y−1/2XY−1/2)∥∥

s
.

From the inequality between the Frobenius and the spectral norm, we have

d(X,Y ) ≤ δ(X,Y ) ≤ √
nd(X,Y )

for all X,Y ∈ Pn. We also define the order interval [X,Y ] as

[X,Y ] = {Z ∈Pn : X ≤ Z ≤ Y },
for all X,Y ∈Pn with X ≤ Y [21]. The order interval [e−rX, erX] turns out to be the
closed ball of radius r > 0 around X with respect to the Thompson metric, thus the
order interval [e−r I, erI ] is a compact subset of Pn.

Next, consider the set Qt = {X ∈ Pn : f (X) ≤ t}. Because of the continuity of f ,
each Qt is closed in Pn. The definition of f also guarantees the boundedness of Qt

for each t with respect to the Riemannian metric δ. Since we have the above inequality
of the distance measures, this implies that each Qt is also bounded with respect to
the Thompson metric. Hence it is possible to find some r such that Qt is contained
in the closed ball of radius r around I with respect to the Thompson metric, that is
Qt ⊂ [e−r I, erI ]. Since Qt is now a closed subset of a compact set (in Pn), it is also
compact in Pn.

Finally, define Bt = Qt ∩U , which is a again compact subset in Pn (as the intersec-
tion of a compact and a closed set). The collection of all nonempty Bt is a descending
family of nonempty, compact subsets of Pn, which has a nonempty intersection. The
elements in this intersection are the minimizers of f in U . �

In general, uniqueness of the point where f (X) takes its minimum cannot be guar-
anteed. For instance, if both A and A−1 belong to U while I = A#1/2A

−1 does not,
then the function f1(X) := δ2(X,A) + δ2(X,A−1) reaches its minimum at a point
I 
= G ∈ U . Clearly, f1(G

−1) = f1(G) and if G−1 
= G belongs to U , then we have
at least two distinct points of minimum. A more concrete example is the following.
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Fig. 1 Graph of f (t) = δ2(G(t),A) + δ2(G(t),B) for G(t) = A + t (B − A) with A = I and
B = diag(200,1/200)

Example 2.2 Consider the 2 × 2 matrices A = I and B = [
a 0
0 a−1

]
, where a > 1. De-

fine the segment U = {G(t) = A + t (B − A), t ∈ [0,1]}, which is closed and convex,
but not geodesically convex. The function f (t) = δ2(G(t),A) + δ2(G(t),B) takes
the form f (t) = log2((1 − t)/a + t) + log2(a(1 − t) + t) + log2((1 − t) + t/a) +
log2((1 − t) + at) and is symmetric with respect to t = 1/2. For a = 200 the func-
tion has the graph shown in Fig. 1 with a local maximum at t = 1/2 and two global
minima close to the edges of the segment.

3 A theoretical exploration of the structured geometric mean

In this section we discuss the relation between the structured and generic geometric
mean, together with the adaptation of the generic properties to the structured setting.
We will discuss just the real case, so in this section, the set Pn stands for the manifold
of real positive definite matrices whose tangent space is the set of real and symmetric
matrices.

3.1 The geometric and structured geometric mean relation

The properties shown in Sect. 2 imply that a structured geometric mean with respect
to U , as defined in the introduction, always exists for any closed subset U of Pn. In
particular, this holds in the cases where U = S∩Pn for any linear space S of matrices
and also for U−1 := S−1 ∩ Pn where we define S−1 = {A−1 : A ∈ S,detA 
= 0}.
This captures a wide class of interesting structures emerging in applications, e.g.,
Toeplitz and band matrices, as well as their inverses. For simplicity we will restrict
our analysis in the remainder of the article to the real case.
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More general structures are given in terms of a parametrization σ(t) : V →R
n×n,

with σ a differentiable function defined in the open subset V of Rq , which we will
call the parameter space. The set T = σ(V) is the structure determined by σ . If σ

is linear and V = R
q , then T is a linear space. Examples of sets T of interest which

generally do not form a linear space are the set of matrices with a given displacement
rank [13], the set of semiseparable [40], and quasiseparable matrices [19]. For an
n × n symmetric Toeplitz matrix, a possible parametrization is given by

σ(t) = σ
([t0, t1, . . . , tn−1]

) =

⎡

⎢⎢⎢⎢
⎣

t0 t1 . . . tn−1

t1
. . .

. . .
...

...
. . .

. . . t1
tn−1 . . . t1 t0

⎤

⎥⎥⎥⎥
⎦

. (3.1)

For a band matrix, one can, e.g., just store the nonzero-elements in a long vector and
map them onto their exact locations. In the following, given a closed set T we let
U = T ∩Pn.

In Example 2.2 we illustrated that the minimum of the cost function restricted to
a closed subset U ⊆ Pn is not necessarily unique. For this reason, we consider the
structured geometric mean GU = GU (A1, . . . ,Am) of A1, . . . ,Am ∈ U as the set of
matrices in U where the function f (X) attains its minimum. Formally speaking, for
A1, . . . ,Am ∈ U , let g ∈R

q be such that Ĝ = σ(g) ∈ GU (A1, . . . ,Am), then

f
(
σ(g);A1, . . . ,Am

) = min
t∈Rq

f
(
σ(t);A1, . . . ,Am

)
.

Since U ⊆ Pn, the minimum over Pn is less than or equal to the minimum over U . In
general it will often happen that Ĝ 
= G(A1, . . . ,Am) like in (1.5).

3.2 Properties of the geometric mean conveyed to the structured mean setting

Some desired properties for a matrix geometric mean were stated by Ando, Li and
Mathias in [2], of which the most noticeable are enlisted here. The other properties
include joint concavity, the determinental identity, and continuity from above.

Consistency with scalars If A1, . . . ,Am commute, then

G(A1, . . . ,Am) = (A1 · · ·Am)1/m.

Permutation invariance For any permutation π of {1, . . . ,m},
G(A1, . . . ,Am) = G(Aπ(1), . . . ,Aπ(m)).

Joint homogeneity

G(α1A1, α2A2, . . . , αmAm) = (α1 · · ·αm)1/mG(A1, . . . ,Am).

Monotonicity If Ai ≥ A′
i , for i = 1, . . . ,m, then

G(A1, . . . ,Am) ≥ G
(
A′

1, . . . ,A
′
m

)
.
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Invariance under congruence For any nonsingular M ,

G
(
M∗A1M, . . . ,M∗AmM

) = M∗G(A1, . . . ,Am)M.

Invariance under inversion

G(A1, . . . ,Am)−1 = G
(
A−1

1 , . . . ,A−1
m

)
.

Arithmetic-geometric-harmonic mean inequality

1

m
(A1 + · · · + Am) ≥ G(A1, . . . ,Am) ≥ m

(
A−1

1 + · · · + A−1
m

)−1
.

Yet another property naturally desired of a geometric mean, but not required in
the list of Ando, Li and Mathias, is the repetition invariance, that is, for any set of
positive matrices A1, . . . ,Am ∈ Pn,

G(A1, . . . ,Am,A1, . . . ,Am) = G(A1, . . . ,Am). (3.2)

Now, we consider the properties of the structured geometric mean. Some prop-
erties such as the permutation invariance trivially hold, others should be restated. In
fact, in the generic case the structures we consider are neither invariant under inver-
sion nor under congruence. That is because if A ∈ U then it need not necessarily hold
that A−1 ∈ U or M∗AM ∈ U .

We start with the invariance under inversion as this is one of the most char-
acteristic properties of the geometric mean. To this end we consider the set
T −1 = {T −1 : T ∈ T , detT 
= 0} parametrized with the function σ−1(t) := σ(t)−1.
Clearly, the intersection U of T with Pn yields always invertible matrices, so that
T −1 ∩Pn = U−1.

According to our definition, the structured geometric mean of A−1
1 , . . . ,A−1

m ∈
U−1 is given by the set GU−1(A

−1
1 , . . . ,A−1

m ). For any G̃ ∈ GU−1 , we have G̃ =
σ(g̃)−1 such that

f
(
σ(g̃)−1;A−1

1 , . . . ,A−1
m

) = min
t∈Rq

f
(
σ(t)−1;A−1

1 , . . . ,A−1
m

)
.

Since δ(A,B)= δ(A−1,B−1), one gets f (X;A1, . . . ,Am)=f (X−1;A−1
1 , . . . ,A−1

m )

so that

f
(
σ(g̃);A1, . . . ,Am

) = min
t∈Rq

f
(
σ(t);A1, . . . ,Am

)

and thus G̃−1 ∈ GU (A1, . . . ,Am). Since G̃ was chosen arbitrarily, and since U can
be interchanged with U−1, we have the analogue of the invariance under inversion
for the structured geometric mean:

GU (A1, . . . ,Am)−1 = GU−1

(
A−1

1 , . . . ,A−1
m

)
. (3.3)

In a similar manner we can restate the invariance under congruence in a structured
style by defining, for any nonsingular M , the set UM := M∗UM = {M∗T M : T ∈ U}.
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The invariance under congruence is then understood as

GUM

(
M∗A1M, . . . ,M∗AmM

) = M∗GU (A1, . . . ,Am)M.

Joint homogeneity, in order to be defined, requires that the set T satisfies the
following property:

A ∈ T ⇒ αA ∈ T

for any scalar α > 0. This property clearly holds if T is a linear space or the set
formed by the inverses of the nonsingular matrices of a linear space. For these sets,
the joint homogeneity holds.

Repetition invariance holds true as well by (1.3), since

f (X;A1, . . . ,Am,A1, . . . ,Am) = 2f (X;A1, . . . ,Am),

so the minimizers (over a subset) of the functions f (X;A1, . . . ,Am,A1, . . . ,Am)

and f (X;A1, . . . ,Am) are the same.
Regarding the remaining properties, we observe that the consistency with scalars

is violated, as Example 1.1 shows. Nevertheless, weaker consistency properties hold,
such as idempotency, namely GU (A,A, . . . ,A) = A for each structure U and A ∈ U .
Moreover, if the set U is closed and geodesically convex then

GU (A1, . . . ,Am) = G(A1, . . . ,Am),

so the geometric and structured geometric mean coincide. An interesting case of
geodesically convex set is given by U = T ∩ Pn, when T is an algebra, i.e., a lin-
ear space closed under multiplication and inversion.

Finally, the properties related to the ordering of positive matrices such as mono-
tonicity are not true as shown by the following numerical example.

Example 3.1 We consider the four Toeplitz matrices

T1 =
⎡

⎣
1 1/2 1/2

1/2 1 1/2
1/2 1/2 1

⎤

⎦ , T2 = T1,

T3 =
⎡

⎣
3/4 1/2 0
1/2 3/4 1/2
0 1/2 3/4

⎤

⎦ , S =
⎡

⎣
1 0 1
0 1 0
1 0 1

⎤

⎦ ,

and, using the algorithms presented in the next sections, we compute a structured
geometric mean Gε of the three matrices T1, T2 and T3 + εS for various ε ≥ 0. The
norm of Gε − G0 becomes small as ε tends to 0 and we observe that Gε − G0 is not
positive (semi)definite, while T3 +εS ≥ T3. This gives numerical evidence of the lack
of monotonicity of a structured geometric mean. On the other hand, computing the
arithmetic mean A of T1, T2 and T3, one observes also that the expected inequality
A ≥ G0 does not hold in this case.
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3.3 The structured mean as solution(s) of a vector equation

We start from the Karcher mean, which is obtained as the unique solution in Pn of
the matrix equation

m∑

i=1

log
(
XA−1

i

) = 0. (3.4)

Equation (3.4) is obtained using the fact that f is differentiable and has a minimum
at the Karcher mean. Thus the Karcher mean satisfies the condition ∇fX = 0, where
∇fX = 2X−1 ∑m

i=1 log(XA−1
i ) denotes the (Euclidean) gradient of f with respect

to X (see [26, 33]). We remark already that a different metric will be studied in
Sect. 4.3.

In the general case, the restriction of f to a structure given by σ(t) is investigated.
For any minimum g (with corresponding σ(g)) not located at the boundary of the
parameter space, the gradient ∇(f ◦ σ)t of the function with respect to t must be
zero, so we are interested in the solutions of the vector equation ∇(f ◦ σ)t = 0.

From the chain rule of derivation, one obtains that

∇(f ◦ σ)t =
(∑

i,j

∂f (σ (t))

∂xi,j

dσi,j (t)

dts

)

s=1,...,q

= 0

which leads to the vector equation

∑

i,j

(
Γ

(
σ(t)

))
i,j

dσi,j (t)

dts
= 0, s = 1, . . . , q, (3.5)

where Γ (X) := 1
2∇fX .

In the case where T is a linear space, the function σ(t) is linear and can be written
in matrix form as

vec
(
σ(t)

) = Ut, U ∈ R
n2×q,

so that (3.5) turns into

UT vec
(
Γ

(
σ(t)

)) = 0, Γ (X) = X−1
m∑

i=1

log
(
XA−1

i

)
. (3.6)

If σ(t) is chosen to be orthogonal, i.e. such that UT U = I , then UT coincides
with the Moore–Penrose inverse of U .

When T denotes the set of symmetric Toeplitz matrices, the parametrization (3.1)
leads to a matrix U having orthogonal columns. In fact one has UT U = D =
diag(n,2(n − 1),2(n − 2), . . . ,2). In particular, for n = 3 one has

UT =
⎡

⎣
1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 0

⎤

⎦ .
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For T being the set of symmetric tridiagonal matrices the parametrization

σ(t) =

⎡

⎢⎢⎢⎢
⎢
⎣

t1 tn+1
tn+1 t2 tn+2

. . .
. . .

. . .

t2n−2 tn−1 t2n−1
t2n−1 tn

⎤

⎥⎥⎥⎥
⎥
⎦

also leads to a matrix U having orthogonal columns. Moreover, UT U = diag(In,

2In−1). For n = 3, e.g., one has

UT =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0

⎤

⎥⎥⎥⎥
⎦

.

4 Algorithms for structured geometric means in the linear case

We will give two algorithms for computing structured geometric means when they
are characterized in terms of the solutions g of a vector equation, as, for instance, in
the linear case.

We first provide a general definition of a class of algorithms based on a precondi-
tioned functional iteration, then we specialize to two algorithms given by two differ-
ent preconditioners.

The first, provided in Sect. 4.2 is derived by relying on the projection of the gradi-
ent with respect to the Euclidean scalar product. The second, presented in Sect. 4.3,
is obtained through projection with respect to the Riemannian metric of Pn decribed
in Sect. 1.

4.1 A preconditioned functional iteration and its convergence

Throughout this section we assume that A1, . . . ,Am ∈ U , where U = T ∩Pn and T is
a linear space with a parametrization σ(t) such that vec(σ (t)) = Ut , and D = UT U .

The structured geometric mean GU is defined as the set of minimizers of the func-
tion f (X;A1, . . . ,Am) over U . These minimizers must be sought among the station-
ary points of the function f , that is, among the solutions to the vector equation (3.6).

Therefore, a way to design algorithms for computing structured means GU is to
apply numerical techniques to solve the vector equation (3.6). We consider a precon-
ditioned Richardson-like iteration constructed in the spirit of [11]. Let V (X) be a
nonsingular and sufficiently differentiable matrix function and define

ϕ(t) = t − θS(t), S(t) = V
(
σ(t)

)−1
UT vec

(
Γ

(
σ(t)

))
,

tν+1 = ϕ(tν), ν = 0,1, . . . ,
(4.1)
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where θ is a parameter introduced to enhance convergence, V (σ(t)) is a precondi-
tioner and t0 is a given vector such that σ(t0) is positive. Observe that the fixed points
of ϕ(t) are the solutions of the vector equation (3.6) and if convergent, the sequence
tν converges to a solution of the vector equation (3.6).

In the following, given a matrix function f (X), where X = (xi,j ) and f (X) are
n × n matrices, we denote by Jf (G) the n2 × n2 Jacobian matrix of vec(f (X)) with
respect to the variable vec(X) computed at X = G, similarly we denote Jf ◦σ (tG) the
n2 × q Jacobian of the composed function vec(f (σ (t))) with respect to the variables
(t1, . . . , tq) at t = tG. In this notation, the function in the subscript as well as the vari-
able between parentheses specify if the derivatives are taken w.r.t. the matrix variable
X or the vector variable t .

Observe that if V (σ(t)) is chosen as the Jacobian of UT vec(Γ (σ (t))), then (4.1)
coincides with Newton’s iteration.

If tG is a solution of (3.6) and if tν is sufficiently near to tG, then

tν+1 − tG = Jϕ(tG)(tν − tG) + O
(‖tν − tG‖2),

so that in order to study the local convergence of this sequence it is sufficient to
estimate the spectral radius ρ or any induced norm of Jϕ(tG) and determine θ in
such a way that ρ(Jϕ(tG)) < 1. Notice that the Jacobian of ϕ(t) at t = tG is given
by I − θK where K = JS(tG) is the Jacobian of S(t) at t = tG. Therefore, if we can
find a preconditioner V (t) such that K has real positive eigenvalues with minimum
and maximum eigenvalues κmin and κmax respectively, then the choice θ = 2/(κmin +
κmax) insures local convergence and provides the minimum spectral radius of Jϕ(tG)

given by

ρ
(
Jϕ(tG)

) = κmax − κmin

κmax + κmin
= μ − 1

μ + 1
< 1, μ = κmax/κmin.

Moreover, any values κ̂min ≤ κ̂max such that κ̂min ≤ κmin ≤ κmax ≤ κ̂max can be used
instead of κmin and κmax to determine a value θ̂ = 2/(κ̂min + κ̂max) which insures
convergence. Also notice that the closer μ is to 1 the faster is the convergence of the
iteration.

Therefore our goal is to perform a spectral analysis of K and to find an upper
bound to the ratio μ = κmax/κmin, assuming that all the eigenvalues of K are real
positive. From the composition rule of derivatives one finds that

K = V
(
σ(tG)

)−1
UT JΓ (G)U + JV (σ(tG))−1

(
σ(tG)

)
UT vec

(
Γ

(
σ(tG)

))

and since UT vec(Γ (σ (tG))) = 0, it follows that

K = V
(
σ(tG)

)−1
UT JΓ (G)U. (4.2)

To evaluate JΓ (G), we recall that Γ (X) = ∑m
i=1 X−1 log(XA−1

i ), so that it is suf-
ficient to determine the formal expression of Jψ(G) for ψ(G,A) = G−1 log(GA−1)

for a generic A and then to write JΓ (G) = ∑m
i=1 Jψ(G,Ai)(G). In order to evalu-

ate Jψ(G), we rely on the definition of Fréchet derivative of a matrix function f (X)
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at X in the direction E

DfX[E] = lim
t→0

f (X + tE) − f (X)

t
= d

dt

∣
∣∣∣
t=0

f (X + tE).

In fact, the n2 × n2 Jacobian matrix Jf (X) of the vector function vec◦f ◦ vec−1 at
vec(X) is related to the Fréchet derivative by the equation

vec
(
DfX[E]) = Jf (X)vec(E). (4.3)

We recall also the following properties of the Fréchet derivative [22] where f,g

are given matrix functions and ϕ(X) = X−1:

D(fg)X[E] = DfX[E]g(X) + f (X)DgX[E], product rule,

D(f ◦ g)X[E] = Dfg(X)

[
DgX[E]], chain rule,

DϕX[E] = −X−1EX−1, inversion.

(4.4)

For the derivative of the exponential function we have (see [22, Eq. 10.17a])

Jexp(Y ) = (I ⊗ expY)β
(
YT ⊗ I − I ⊗ Y

)
, β(z) = (

ez − 1
)
/z.

Therefore, since Jlog(X) = Jexp(Y )−1 for Y = logX, we find that

Jlog(X) = γ
(
log

(
XT

) ⊗ I − I ⊗ logX
)(

I ⊗ X−1), γ (z) = z/
(
ez − 1

)
. (4.5)

We are now ready to provide an explicit expression of the Fréchet derivative of the
function ψ(X,A) = X−1 log(XA−1) and of the Jacobian Jψ(X,A)(X).

Lemma 4.1 Let ψ(X) = X−1 log(XA−1). Assume that A,X are positive. For the
matrix Jψ(X) such that vec(DψX[E]) = Jψ(X)vec(E) we have

Jψ(X) = −X−1 log
(
XA−1) ⊗ X−1 + (

A−1 ⊗ X−1)γ (W)
(
I ⊗ AX−1),

W = log
(
XA−1) ⊗ I − I ⊗ log

(
XA−1),

with γ (z) = z/(ez − 1).

Proof Since h(X) := log(XA−1) is the composition of f (X) = log(X) and g(X) =
XA−1, we get by (4.4)

DhX[E] = DlogXA−1

[
EA−1].

As ψ(X) is the product of f (X) = X−1 and h(X), (4.4) gives us

DψX[E] = −X−1EX−1 log
(
XA−1) + X−1DhX[E].

Combining the latter two equations yields

DψX[E] = −X−1EX−1 log
(
XA−1) + X−1DlogXA−1

[
EA−1].
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By using (4.3) and (1.6) we find that the matrix Jψ(X) representing DψX is given by

Jψ(X) = −(
X−1 log

(
XA−1))T ⊗ X−1 + (

I ⊗ X−1)Jlog
(
XA−1)(A−T ⊗ I

)
.

Replacing (4.5) in the equation above and using the fact that A = AT ,X = XT yields

Jψ(X) = − log
(
A−1X

)
X−1 ⊗ X−1

+ (
I ⊗ X−1)γ

(
log

(
A−1X

) ⊗ I − I ⊗ log
(
XA−1))(A−1 ⊗ AX−1).

Using the fact that W log(V )W−1 = log(WV W−1), the first term can be written
as −X−1 log(XA−1) ⊗ X−1. The second term can be written as (I ⊗ X−1)(A−1 ⊗
I )γ (log(XA−1) ⊗ I − I ⊗ log(XA−1))(I ⊗ AX−1), which completes the proof.

�

Recall that Γ (X) = ∑m
i=1 ψ(X,Ai) and G−1 ∑m

i=1 log(GA−1
i ) = 0, for

G = σ(tG). Then by Lemma 4.1, we obtain the following formula for the Jacobian
JΓ (σ (t)):

JΓ (G) = (
I ⊗ G−1)H

(
I ⊗ G−1), H =

m∑

i=1

Hi,

Hi = (
A−1

i ⊗ I
)
γ
(
log

(
GA−1

i

) ⊗ I − I ⊗ log
(
GA−1

i

))
(I ⊗ Ai).

Moreover, by using the properties of the Kronecker product and the following relation
log(GA−1) = A1/2 log(A−1/2GA−1/2)A−1/2, we can write

Hi = (
A

−1/2
i ⊗ A

1/2
i

)
γ (logMi ⊗ I − I ⊗ logMi)

(
A

−1/2
i ⊗ A

1/2
i

)
,

Mi = A
−1/2
i GA

−1/2
i .

From this expression it turns out that Hi is positive, and from (4.2) we find that JS(tG)

is the product of the matrices V (σ(tG))−1 and UT (I ⊗ G−1)
∑m

i=1 Hi(I ⊗ G−1)U ,
which is a positive matrix.

Thus we may conclude with the following

Theorem 4.1 The Jacobian K of the function S(t) in (4.2) at σ(tG) = G is given by

K = V −1UT
(
I ⊗ G−1)H

(
I ⊗ G−1)U,

H =
m∑

i=1

Hi, Hi = (
A

−1/2
i ⊗ A

1/2
i

)
γ (logMi ⊗ I − I ⊗ logMi)

(
A

−1/2
i ⊗ A

1/2
i

)
,

Mi = A
−1/2
i GA

−1/2
i ,

γ (z) = z/
(
ez − 1

)
.

Moreover, the eigenvalues of K are the solutions of the equation

det
(
κV − UT

(
I ⊗ G−1)H

(
I ⊗ G−1)U

) = 0.



70 D.A. Bini et al.

4.2 An elementary preconditioner

The simplest choice for the preconditioner V (t) in (4.1) is V (t) = UT U = D. This
corresponds to projecting the gradient of the function f (X,A1, . . . ,Ap) on the set U
according to the Euclidean scalar product. The problem det(κI − K) = 0 turns into
the generalized q-dimensional symmetric eigenvalue problem

det
(
UT

(
κI − (

I ⊗ G−1)H
(
I ⊗ G−1))U

) = 0.

This problem is the projection on the space spanned by the columns of U of the
problem det(νI − (I ⊗ G−1)H(I ⊗ G−1)) = 0 which has real positive solutions.

Now we recall the following result, valid for general positive matrices A,B , which
relates the generalized eigenvalues of the pair (A,B) to the ones of the projected pair
(UT AU,UT BU).

Lemma 4.2 Let A,B be positive n × n matrices and U an n × m matrix. Then
the generalized eigenvalues of the pair (UT AU,UT BU), which solve the equation
det(UT (A − κB)U) = 0, are real positive and lie in between the maximum and
minimum eigenvalues λ of the pair (A,B), such that det(A − λB) = 0. Moreover,
the extreme eigenvalues λmin, λmax of the pair (A,B) are such that αmin/βmax ≤
λmin ≤ λmax ≤ αmax/βmin, where αmin, αmax, βmin, βmax are the minimum and maxi-
mum eigenvalues of the matrices A and B , respectively.

Proof The condition det(λB − A) = 0 is equivalent to det(λI − B−1/2AB−1/2) = 0,
which has real positive solutions since B−1/2AB−1/2 is positive. The remaining
part of the lemma follows from the fact that maximum and minimum eigenvalues
of the larger and smaller problems coincide with maximum and minimum value of
the Rayleigh quotient xT Ax/xT Bx for x ∈ R

n \ {0}, and for x ∈ span(U), respec-
tively. �

A first consequence of the above lemma is that the extreme eigenvalues κmin
and κmax of K are in between the maximum and the minimum eigenvalue of the
n2-dimensional symmetric matrix Y = (I ⊗ G−1)H(I ⊗ G−1), so that the ratio μ

between the maximum and minimum eigenvalue of K is less than or equal to the
condition number μ(Y ) of the symmetric matrix Y . Moreover since Y = ∑m

i=1 Yi

with

Yi = (
A

−1/2
i ⊗ A

−1/2
i

)(
I ⊗ M−1

i

)
γ (logMi ⊗ I − I ⊗ logMi)

×(
I ⊗ M−1

i

)(
A

−1/2
i ⊗ A

−1/2
i

)
,

one finds that k̂min := ∑m
i=1 λ

(i)
min ≤ κmin and k̂max := ∑m

i=1 λ
(i)
max ≥ κmax, where λ

(i)
min

and λ
(i)
max are the minimum and the maximum eigenvalues of Yi . Moreover, from

Lemma 4.2 and from the expression above for Yi it follows that λ
(i)
min ≥ γ

(i)
min/(α

(i)
max)

2,

λ
(i)
max ≤ γ

(i)
max/(α

(i)
min)

2, where α
(i)
min, α(i)

max are the minimum and the maximum eigenval-

ues of Ai , respectively, while γ
(i)
min and γ

(i)
max are the minimum and maximum eigen-

values of (I ⊗ M−1
i )γ (logMi ⊗ I − I ⊗ logMi)(I ⊗ M−1

i ), respectively.
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From the properties of the matrix function γ (·) and from the properties of the
Kronecker product one finds that the eigenvalues of the latter matrix can be explicitly
given in terms of the eigenvalues ν

(i)
r of the matrix Mi . In fact, they coincide with

1
(ν

(i)
s )2

(log t
(i)
r,s )/(t

(i)
r,s − 1) where t

(i)
r,s = ν

(i)
r

ν
(i)
s

.

Since the function (log t)/(t − 1) is monotonically decreasing, its minimum and
maximum are

η
(i)
min = (

logμ(i)
)
/
(
μ(i) − 1

)
,

η(i)
max = log

(
1/μ(i)

)
/
(
1/μ(i) − 1

) = μ(i)
(
logμ(i)

)
/
(
μ(i) − 1

)
,

for μ(i) = μ(Mi) the spectral condition number of Mi . Additionally, taking the factor
(ν(i))−2 into consideration gives

γ
(i)
min ≥ η

(i)
min

(
ν(i)

max

)−2
,

γ (i)
max ≤ η(i)

max

(
ν

(i)
min

)−2 ≤ μ(i)
(
ν

(i)
min

)−2
,

where ν
(i)
min and ν

(i)
max represent respectively the minimum and maximimum eigenvalue

of Mi .
Therefore, we may conclude that the eigenvalues of K are bounded by κ̃min :=∑m
i=1 η

(i)
min/(ν

(i)
maxα

(i)
max)

2 and κ̃max := ∑m
i=1 η

(i)
max/(ν

(i)
minα

(i)
min)

2.
Observe that this bound gets worse when either some matrix is ill-conditioned

or if some matrix A
−1/2
i GA

−1/2
i is ill-conditioned. The latter case cannot occur if

the matrices Ai do not differ much from G. The dependence of this bound on the
conditioning of Ai makes this algorithm very inefficient as long as some Ai is ill-
conditioned. This drawback is overcome in the next section, where we design a more
effective preconditioner.

4.3 A preconditioner based on a differential geometric viewpoint

The Karcher mean for positive matrices inherits a beautiful interpretation in terms of
differential geometry. It can be considered as the center of mass for a well chosen
inner product on the manifold of positive matrices. In this section and in Sect. 5 we
consider two approaches inspired by this idea. For more information we refer to the
overview in [25], and the articles [15, 20, 36–38].

When considering a manifold optimization approach, the intersection U of a linear
space T with the manifold of positive matrices Pn can be viewed as a Riemannian
submanifold of Pn itself, which in turn is called the enveloping space. This entails
that the inner product from this enveloping space is induced on the submanifold. An
immediate consequence is that the gradient of the cost function for the submanifold is
given by the orthogonal projection (with respect to the inner product) of the gradient
for the enveloping space. Similar to the space of symmetric matrices, being the tan-
gent space to the manifold of positive matrices, the intersection V of the linear space
T with the space of symmetric matrices is the tangent space to U .

First consider the manifold of positive matrices endowed with the Euclidean inner
product gX(A,B) = tr(AB), with A and B symmetric, and X a positive matrix. Note
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Fig. 2 Graphical representation of a retraction and steepest descent flow

that even though this inner product gX is independent of X, the subscript notation is
kept for consistency. In this case, the orthogonal projection of a symmetric matrix A

onto T gives a matrix T , with

vec(T ) = U
(
UT U

)−1
UT vec(A),

or vec(T ) = Ut , with

t = (
UT U

)−1
UT vec(A). (4.6)

The expression for the gradient of the Karcher cost function, corresponding to the
Euclidean inner product, is known for the manifold of positive matrices and is given
by

grade f (X;A1, . . . ,Am) = 2X−1
m∑

i=1

log
(
XA−1

i

)

= 2X−1/2
m∑

i=1

log
(
X1/2A−1

i X1/2)X−1/2. (4.7)

The gradient naturally defines the direction of steepest ascent. Nevertheless, the
gradient lies in the tangent space, and to build an algorithm from this, a practical way
is to follow the gradient and then go back to the manifold through a suitable func-
tion, called retraction. The precise definition of a retraction, together with general
theoretical assumptions it should satisfy, can be found in [1]. Figure 2(a) graphically
illustrates the concept of a retraction, where a vector ξX in the tangent space TXPn of
the positive matrices is retracted to a point RX(ξX) residing on the manifold Pn. On a
manifold, the classical steepest descent algorithm is graphically depicted in Fig. 2(b).
The thin red lines depict the contour lines, the blue arrows the gradients, and the
green curves the retractions to the manifold.

Observe that for Pn immersed in the set of symmetric matrices, the tangent space
at a point is the whole set of symmetric matrices. So one can consider the basic
retraction RX(A) = X + A for a sufficiently small symmetric matrix A.
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Entering now the gradient (4.7) in projection (4.6) and applying a gradient de-
scent method with the basic retraction RX(A) = X + A, we arrive exactly at the
Richardson-like algorithm for finding the fixed points of function (4.1).

However, since the function f to be minimized is defined through the dis-
tance (1.2), it is more natural to consider the manifold of positive matrices endowed
with the inner product gX(A,B) = tr(AX−1BX−1), with A, B and X as before. In
this case, the gradient for the enveloping space is known to be

gradn f (X;A1, . . . ,Am) = 2X

m∑

i=1

log
(
A−1

i X
)

= 2X1/2
m∑

i=1

log
(
X1/2A−1

i X1/2)X1/2.

Note the difference with (4.7).
The orthogonal projection T onto the intersection V (of T and the space of sym-

metric matrices) of this gradient, with respect to the Riemannian scalar product, can
be found as the solution of the equations

gradn f (X) = T + S,

gX(S,K) = tr
(
SX−1KX−1) = 0, for every K ∈ V .

Writing again vec(T ) = Ut , we find in parameter space

t = (
UT

(
X−1 ⊗ X−1)U

)−1
UT

(
X−1 ⊗ X−1)vec

(
gradn f (X)

)
. (4.8)

The factor UT (X−1 ⊗ X−1)U is recurring and is abbreviated as DX , where the sub-
script points to the intrinsic variable X. Observe that this Riemannian orthogonal
projection can be seen as a Euclidean oblique projection where the two bases of the
subspace are the columns of U and (X−1 ⊗ X−1)U , respectively.

Using this expression, it is possible to define another gradient descent method
where we are now searching the fixed points of the function

ϕ(t) = t − θD−1
σ(t)U

T
(
σ(t)−1 ⊗ σ(t)−1)vec

(

σ(t)

m∑

i=1

log
(
A−1

i σ (t)
)
)

. (4.9)

Relying on (1.6) to incorporate the Kronecker product into the vectorization, we
find that (σ−1 ⊗ σ−1)vec(σ

∑m
i=1 log(A−1

i σ )) = vec(
∑m

i=1 log(A−1
i σ )σ−1). Ap-

plying a property of the matrix logarithm we may rewrite the latter expression as
vec(σ−1 ∑m

i=1 log(σA−1
i )). This way, (4.9) takes the form of (4.1) with

V (σ(t)) = UT (σ(t)−1 ⊗ σ(t)−1)U

To analyze the convergence of (4.1) with this choice for V (σ(t)), we have to ana-
lyze the eigenvalues of the Jacobian K = JS(tG) of S(t) in (4.1) where the equation
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det(κI − K) = 0 takes the form of the following generalized eigenvalue problem

det
(
UT

(
κ
(
G−1 ⊗ G−1) − (

I ⊗ G−1)H
(
I ⊗ G−1))U

) = 0. (4.10)

Since the two matrices in (4.10) are positive, in view of Lemma 4.2, the solutions
of this generalized eigenvalue problem are real positive and are located in between
the maximum and the minimum solution of the larger problem

det
(
λ
(
G−1 ⊗ G−1) − (

I ⊗ G−1)H
(
I ⊗ G−1)) = 0,

which in turn can be rewritten as a standard eigenvalue problem

det
(
λI − (

G1/2 ⊗ G1/2)(I ⊗ G−1)H
(
I ⊗ G−1)(G1/2 ⊗ G1/2)) = 0.

Since H = ∑m
i=1 Hi , and the matrices Hi are real symmetric, the eigenvalues of this

problem are located in between the sum of the minimum and the sum of the maximum
eigenvalues of each subproblem

det
(
λI − (

G1/2 ⊗ G1/2)(I ⊗ G−1)Hi

(
I ⊗ G−1)(G1/2 ⊗ G1/2)) = 0, (4.11)

that is det(λ(G−1 ⊗ G) − Hi) = 0, or equivalently det(λI − (G ⊗ I ) ×
Hi(I ⊗G−1)) = 0. The matrix in the latter expression is similar to (A

−1/2
i ⊗A

−1/2
i ) ×

(G ⊗ I )Hi(I ⊗ G−1)(A
1/2
i ⊗ A

1/2
i ), which, using the expression of Hi provided in

Theorem 4.1, can be written as

(Mi ⊗ I )γ (logMi ⊗ I − I ⊗ logMi)
(
I ⊗ M−1

i

)
.

This way, the eigenvalues of (4.11) can be explicitly given in terms of the eigenvalues
ν

(i)
r of the matrix Mi . In fact, they coincide with the t

(i)
r,s (log t

(i)
r,s )/(t

(i)
r,s − 1) where

t
(i)
r,s = ν

(i)
r

ν
(i)
s

.

Since the function t (log t)/(t − 1) is monotone, for the minimum and maximum
solution to (4.11) we have

η
(i)
min = (

1/μ(i)
)

log
(
1/μ(i)

)
/
(
1/μ(i) − 1

) = (
logμ(i)

)
/
(
μ(i) − 1

)
,

η(i)
max = μ(i)

(
logμ(i)

)
/
(
μ(i) − 1

)
,

respectively, for μ(i) = μ(Mi) the spectral condition number of Mi . Therefore, we
may conclude that the eigenvalues of K are in between

∑m
i=1 η

(i)
min and

∑m
i=1 η

(i)
max.

This way, we find for the optimal value of θ and for the optimal spectral radius the
estimates

θ = 2
∑m

i=1
μ(i)+1
μ(i)−1

logμ(i)
,

ρ =
∑m

i=1 logμ(i)

∑m
i=1

μ(i)+1
μ(i)−1

logμ(i)
.
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It is interesting to point out that in this case the convergence speed is related nei-
ther to the condition number of the geometric mean G nor to those of the matrices
Ai but is related only to the relative distances of G from each Ai measured by the
quantities μ(i) = μ(Mi), Mi = A

−1/2
i GA

−1/2
i . The closer they are to 1 the faster is

the convergence. Therefore, if the matrices to average are not too far from each other,
so that the quantities μ(Mi) are close to 1, then the optimal value of θ is close to 1/m

and a very fast convergence is expected. This analysis is confirmed by the numerical
experiments.

4.4 The case of Toeplitz matrices

From the computational point of view, at each step of the iteration (4.1) one has to
compute UT vec(Γ (σ (t))) and then solve a linear system with the matrix V (σ(t)).
The former computation, based on (3.6), requires O(mn3) arithmetic operations
(ops), while the cost of the latter depends on the structure of V (σ(t)).

In this section we examine the case where U is the class of symmetric Toeplitz
matrices and where σ(t) associates t with the Toeplitz matrix having as first column t .
We describe a way to make the algorithm of Sect. 4.3 more efficient.

Indeed, for the iteration analyzed in Sect. 4.2, V is the diagonal matrix with diago-
nal entries (n,2n− 2, . . . ,2) and the cost of solving a system with matrix V amounts
to n divisions.

The iteration examined in Sect. 4.3 has a higher convergence speed but at each
step an n × n system with V = UT (X−1 ⊗ X−1)U must be solved, where X is a
symmetric positive definite Toeplitz matrix.

We split the computation in two steps. In the first, the n2 entries of V are com-
puted, in the second step a standard O(n3) ops linear system solver is used. Concern-
ing the first step we discuss two approaches.

In both approaches the inverse of the Toeplitz matrix X needs to be computed,
which can be done efficiently using the Gohberg Semencul formula [13]. Here, vec-
tors v1, v2, v3, v4 are determined such that X−1 = L(v1)L(v2)

T − L(v3)L(v4)
T ,

where L(v) is the lower triangular Toeplitz matrix whose first column is v. From
these, the n2 entries of X−1 can be found. The overall cost is O(n2) ops.

1. As a first attempt, the entries of V are computed in a straightforward manner using
the entries of X−1:

V =

⎡

⎢⎢⎢
⎣

γ1,1 2γ1,2 · · · 2γ1,n

2γ1,2 2γ2,2 · · · 2γ2,n

...
...

. . .
...

2γ1,n 2γ2,n · · · 2γn,n

⎤

⎥⎥⎥
⎦

,

where

γ1,j =
n∑

i=1

n−j+1∑

k=1

(
X−1)

i,k

(
X−1)

i,k+j−1,
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γj,p =
n−j+1∑

i=1

n−p+1∑

k=1

((
X−1)

i,k

(
X−1)

i+j−1,k+p−1 + (
X−1)

i,k+p−1

(
X−1)

i+j−1,k

)
.

The cost of this approach in terms of arithmetic operations is of the order O(n4).
2. In the second approach, we show that the cost of this computation can be kept at

the level of O(n3 logn) ops by combining the Gohberg Semencul formula and the
FFT. For a given i, the product vector wi = (X−1 ⊗ X−1)Uei , where ei is the ith
vector of the canonical basis, is such that wi = vec(X−1EiX

−1), with Ei being
the symmetric Toeplitz matrix whose first column is ei . Therefore, compute first
the columns of EiX

−1 by performing O(n2) additions, and then multiply X−1 by
these columns, stacking the results to obtain wi . This computation is performed in
O(n2 logn) operations for each i by using the Goghberg Semencul formula, since
the multiplication of a lower triangular Toeplitz matrix and a vector can be per-
formed in O(n logn) operations by means of the FFT [13]. Therefore the overall
computation of this stage for i = 1, . . . , n is O(n3 logn) ops. Finally, compute for
any i the vector UT wi for the cost of O(n2) additions.

The performance of these methods will be compared in Sect. 6.

5 Kähler metric mean for Toeplitz matrices

The Karcher mean of positive definite matrices has the specific interpretation of be-
ing the barycenter of the given matrices for the natural metric (1.2) on this manifold.
Hence there are in a certain sense two possible generalizations. On the one hand, try
to generalize the geometric mean concept, or, on the other hand, try to generalize the
barycenter concept. Previously we focused on an extension of the geometric mean.
Hereafter we focus on the positive definite Toeplitz matrix manifold itself, denoted
by Tn, and consider a barycenter in this case. This mean cannot be called a geomet-
ric mean in the sense of satisfying all required properties, but through its intuitive
definition, many desirable properties could arise.

The concept of a barycenter is not restricted to the specific metric used to de-
fine the Karcher mean. For example, when the set Tn is endowed with the classical
Euclidean inner product, the resulting barycenter is nothing else than the arithmetic
mean. Using a probabilty argument, in [3, 4] a metric on Tn is introduced, called the
Kähler metric. This metric results in a complete, simply connected manifold with
non-positive sectional curvature everywhere, or a Cartan–Hadamard manifold. Thus,
by [17, 27], existence and uniqueness are guaranteed for the barycenter with respect
to this metric.

We will recall some known facts about the Kähler metric, and then we will give
an explicit formula for the barycenter in the real case and a numerical procedure to
compute the barycenter in the complex case.

To construct the Kähler metric, a Toeplitz matrix is first transformed to an n-tuple
(P0,μ1, . . . ,μn−1) in R

∗+ × D
n−1, with R

∗+ the set of strictly positive real numbers
and D the set of complex numbers of modulus less than one. This transformation,
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denoted as ζ(T ) = [PT ,μT,1, . . . ,μT,n−1]T , is performed as follows:

PT = t0, μT,j = (−1)j
det(Sj )

det(Rj )
,

with t0 the main diagonal element of T , Rj the principal submatrix of size j of T (the
upper left j × j submatrix) and Sj obtained by shifting Rj down one row, or equiva-
lently, by removing the first row and last column of Rj+1 (the inverse transformation
can be found in [42]). In what follows, we use this one-to-one relation between the
Toeplitz matrices and the corresponding n-tuple, and when clear by the context, we
will neglect the distinction and identify one with the other.

For X and Y being the transformations of two positive Toeplitz matrices X =
[PX,μX,1, . . . ,μX,n−1]T and Y = [PY ,μY,1, . . . ,μY,n−1]T , the metric is given by

d(X,Y ) =
(

nσ(PX,PY )2 +
n−1∑

j=1

(n − j)τ (μX,j ,μY,j )
2

)1/2

,

σ (PX,PY ) =
∣∣∣∣log

(
PY

PX

)∣∣∣∣, τ (μX,j ,μY,j ) = atanh

(∣∣∣∣
μY,j − μX,j

1 − μX,jμY,j

∣∣∣∣

)
,

where atanh(z) = 1
2 log( 1+z

1−z
).

The barycenter of the positive Toeplitz matrices Ti , for i = 1, . . . ,m, with respect
to the Kähler metric will be denoted by B(T1, . . . , Tm) = [PB,μB,1, . . . ,μB,n−1]T .
It is obtained in this transformed space by minimizing the function

f (X) =
m∑

i=1

d2(X,Ti)

over R∗+ ×D
n−1. Notice that the problem of minimizing f (X) can be decoupled into

the problems of minimizing ϕ0(x) = ∑m
i=1 σ(x,PTi

)2 over R∗+, and the n − 1 scalar
functions

ϕj (z) =
m∑

i=1

τ(z,μTi ,j )
2, j = 1, . . . , n − 1

over D. The minimum of ϕ0(x) is easily obtained as PB = (PT1 · · ·PTm)1/m by solv-
ing the equation ∇ϕ0(x) = 0. The minimum of ϕj (z) is nothing else than the barycen-
ter of μT1,j , . . . ,μTm,j with respect to the customary Poincaré metric on the unit disk
and is the point where the gradient

∇ϕj (z) = 2
(|z|2 − 1

) m∑

i=1

sign(ci,j ) atanh
(|ci,j |

)
, ci,j = μTi,j − z

1 − zμTi,j

, (5.1)

equals zero.
In the real case we are able to find an explicit expression for this barycenter as

well, since sign(c) atanh(|c|) = atanh(c) and after some manipulations we get

μX,j = C
((
C(μT1,j ) · · ·C(μTm,j )

)1/m)
,
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where C(z) = (1 − z)/(1 + z) is the Cayley transform.
In the complex case we were not able to find such an explicit formula but a quick

numerical method can be devised using a gradient descent algorithm. We recall that
the tangent space to the Poincaré disk can be identified with the complex plane and
thus for a sufficiently small tangent vector v ∈ C, one can consider the retraction
Rz(v) = z + v, which captures the fact that the manifold is an open subset of the
complex plane. The resulting algorithm to find the barycenter of μ1, . . . ,μn ∈ C is
given by the iteration

zk+1 = zk + tkvk,

vk = (
1 − |zk|2

) n∑

i=1

sign(ci,k) atanh(|ci,k|),

ci,k = μi − zk

1 − zkμi

,

(5.2)

for a suitable initial value z0 and a sufficiently small steplength tk .
Another possibility is to consider the retraction

Rz(v) = z + eiθ + (z − eiθ )e−s

1 + zeiθ + (1 − zeiθ )e−s
, θ = argv, s = 2|v|

1 − |z|2 ,

which corresponds to moving along the geodesics of the Poincaré disk. The corre-
sponding gradient descent method is

zk+1 = Rzk
(tkvk),

with the same vk as (5.2).

5.1 Properties of the Kähler barycenter

Regarding the properties of this barycenter, it is easily seen that it is permutation
invariant, repetition invariant and idempotent (this holds for any barycenter). More-
over, for any α > 0, the transformed values of αT are [αPT ,μT,1, . . . ,μT,m]T and
from the explicit expression of PB in the real case we get B(αT1, T2, . . . , Tm) =
α1/mB(T1, . . . , Tm), that is, homogeneity holds.

Unfortunately, this new barycenter does not possess other properties as shown by
the following example.

Example 5.1 From the explicit expression for the mean in the real case we get a
simple formula for the Kähler barycenter of two 2 × 2 real matrices

T1 =
[
x1 y1
y1 x1

]
, T2 =

[
x2 y2
y2 x2

]
,

namely

B(T1, T2) = √
x1x2

[
1 a−b

a+b
a−b
a+b

1

]
, with

{
a = √

(x1 + y1)(x2 + y2)

b = √
(x1 − y1)(x2 − y2)

.
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Now consider the following matrices

T1 =
[

2 1
1 2

]
, T̃1 =

[
4 −1

−1 4

]
, T2 =

[
2 −1

−1 2

]
,

with T̃1 ≥ T1. By symbolic computation, one gets that

B(T̃1, T2) =
[

2
√

2
√

2(
√

5 − 3)√
2(

√
5 − 3) 2

√
2

]

≥ B(T1, T2) =

[
2 0
0 2

]
,

in fact one eigenvalue of B(T̃1, T2) − B(T1, T2) is λ = √
10 − 2 − √

2 < 0. Thus, we
have proved that the Kähler barycenter is not monotonic. Moreover,

B(T1, T2) 
= (T1T2)
1/2 =

[√
3 0

0
√

3

]
,

and hence the Kähler barycenter does not coincide with the Karcher mean for circu-
lant matrices. In particular, it is not a structured geometric mean as defined in Sect. 1.

Observe that in the previous example B(T1, T2) surprisingly coincides with the
arithmetic mean of T1 and T2. It is not difficult to construct examples where it is not
true that B(T1, T2) ≤ (T1 + T2)/2 as it should be for a geometric mean.

6 Numerical experiments

In this section, the different algorithms proposed in Sects. 4.2 and 4.3 will be
compared w.r.t. speed and accuracy. The numerical experiments are confined to
Toeplitz matrices, because of applicational interest in computing their structured ma-
trix mean [29]. These matrices are constructed randomly, but with chosen condition
number, using the technique described in [18]. Performance, accuracy and computa-
tional distance are subjects of the forthcoming investigations. For clarity we remind
the reader that the Richardson-iteration corresponds to a projection technique on a
manifold, with the classical Euclidean inner product. For all algorithms, the stopping
criteria is based on checking the relative size of the gradient and on comparing two
consecutive iteration points.

It is worth pointing out that, in spite of the lack of the proof of uniqueness for
structured geometric mean in the Toeplitz case, for any fixed set of data matrices
used in our experiments, any initial value and any algorithm yielded always the same
structured geometric mean. This suggests the conjecture that in the Toeplitz case there
is a unique structured geometric mean.

We have also compared the structured geometric mean obtained by our algorithms
with the Kähler metric mean, getting in most experiments a relative difference of the
order 10−1, which indicates that these two means are relatively far from each other.

6.1 The projection methods

Performance The performance of the projection methods explained in Sect. 4 can
be compared by looking at both the number of iterations the methods require and the
total amount of computational time they need.
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Fig. 3 Comparison of the projection methods for Toeplitz matrices. In the legends, Euclidean indicates
the method of Sect. 4.2, Riemannian indicates the first approach described in Sect. 4.4, and Riem-FFT the
second

In Fig. 3(a), the evolution of the gradient over the iterations is displayed for both
techniques (and hence also the number of iterations). Using the projection method
introduced in Sect. 4.3 gives a faster decrease of the gradient and results in fewer
iteration steps. The number of iterations remains almost constant for this method as
the size of the matrices increases. For the projection technique from Sect. 4.2 on the
other hand, this number starts to increase when the matrix size grows.

However, comparing expression (4.6) and (4.8), it can be seen that the second one
is computationally more expensive and hence the advantage of requiring fewer iter-
ations could be nullified. Therefore, Fig. 3(b) displays the total computational time
of both methods for varying sizes of the matrices (both approaches from Sect. 4.4
are shown). The two methods based on Sect. 4.3 maintain an advantage despite their
larger computational cost per iteration. Note that for the largest matrix size the com-
putational time of the Euclidean based method appears less than one of the other
methods. However, this is caused by the increasing number of iterations required by
this Euclidean method. Consequently, the maximum number of iterations is reached
before convergence and the algorithms is terminated prematurely. Concerning the op-
eration count in Sect. 4.4, the advantage of the method based on FFT starts to appear
when the matrices become sufficiently large.

Accuracy In order to analyze the accuracy of the projection methods, we implement
a high precision version of the first algorithm in Sect. 4.4 using the vpa functionality
of MATLAB. The relative distance, based on the intrinsic distance (1.2), between
this high precision computation and the result of the actual algorithms is shown in
Fig. 4. For small condition numbers, the accuracy of all methods is similar in average,
but as the condition of the matrices becomes worse, the accuracy of the projection
method based on Euclidean geometry deteriorates much faster than that of the method
based on the Riemannian geometry. This first method even fails to converge when
the condition number of the matrices becomes significantly large. The accuracy of
the two approaches in Sect. 4.4 is similar and deteriorates steadily as the condition
numbers of the matrices increase.
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Fig. 4 Accuracy of the projection methods when compared to a high precision version. The mean of the
samples is connected by a line. In the legends, Euclidean indicates the method of Sect. 4.2, Riemannian
indicates the first approach described in Sect. 4.4, and Riem-FFT the second

7 Conclusions

In this article a generalization of the Karcher mean for positive definite matrices to
structured positive definite matrices was proposed. Besides a theoretical investigation
and adaptation of the desired properties of such a mean, algorithms were proposed.
In the design of the algorithms, two trajectories were put forward, one relying mostly
on linear algebra, and one based on differential geometry. A convergence analysis
has been performed showing the superiority of the algorithm based on differential
geometry. Numerical experiments compared the accuracy and speed of the various
techniques and confirmed the theoretical analysis.

In the case of Toeplitz matrices, we have considered also the Kähler metric
mean [4], whose properties have been investigated, providing an explicit expression
in the real case and a quick algorithm in the complex case. For Toeplitz matrices,
both the new structured geometric mean and the Kähler metric mean have not com-
pletely satisfying properties. In fact they are neither monotone, nor do they satisfy the
arithmetic-geometric inequality. We wonder if it is possible to provide a definition of
geometric mean for Toeplitz matrices which behaves well with respect to the ordering
of positive matrices.

Acknowledgements The authors would like to thank the referees for many insightful comments which
improved the presentations of the paper. In particular, they are indebted with a referee which provided the
elegant proof for Theorem 2.1.
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