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Abstract The hierarchical Tucker format is a way to decompose a high-dimensional
tensor recursively into sums of products of lower-dimensional tensors. The number
of degrees of freedom in such a representation is typically many orders of magnitude
lower than the number of entries of the original tensor. This makes the hierarchi-
cal Tucker format a promising approach to solve ordinary differential equations for
high-dimensional tensors. In order to propagate the approximation in time, differen-
tial equations for the parameters of the hierarchical Tucker format are derived from
the Dirac-Frenkel variational principle. We prove an error bound for the dynami-
cal approximation in the hierarchical Tucker format by extending previous results of
Koch and Lubich for the non-hierarchical Tucker format.

Keywords High-dimensional differential equations · Tensor approximation ·
Hierarchical Tucker format · Dirac-Frenkel variational principle · Error bounds
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1 Introduction

Differential equations on high-dimensional state spaces arise in many different fields
and applications. Typical examples are the Black-Scholes equation for basket options
in mathematical finance, the chemical master equation used in systems biology to
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model the stochastic dynamics of a gene regulatory network, or the Schrödinger equa-
tion which describes the dynamics of the particles within a molecule according to the
laws of quantum mechanics. Solving such problems numerically is notoriously diffi-
cult due to the fact that for standard discretizations the number of unknowns grows
exponentially with respect to the dimension (“curse of dimensionality”). Hence, in
high-dimensional approximations the main challenge is to compress the problem in
such a way that the reduced equation can be solved numerically and nevertheless
provides an acceptable approximation to the solution of the full problem.

If a multivariate function on a hyper-rectangle is discretized by an equidistant
grid, the function values at the grid points can be regarded as the entries of a
high-dimensional tensor. Hence, the approximation of high-dimensional functions
and tensors is closely related, and for N1, . . . ,Nd ∈ N we will consider tensors
Y ∈ R

N1×···×Nd as functions Y = Y(i1, . . . , id ) with ik ∈ {1, . . . ,Nk}. For a straight-
forward, entry-wise representation of Y , all

∏d
k=1 Nk values have to be stored. This

number can be significantly reduced if Y can be approximated by a sum of prod-
ucts of univariate functions. Many such representations have been proposed, and an
overview over the literature is given in [3, 9]. A particularly useful and popular rep-
resentation is the orthogonal Tucker format

Y(i1, . . . , id ) ≈ Ỹ (i1, . . . , id ) =
r1∑

j1=1

. . .

rd∑

jd=1

a(j1, . . . , jd)

d∏

k=1

Uk
jk

(ik), (1.1)

see, e.g., [9, Sect. 4]. Here, a ∈ R
r1×···×rd is the core tensor of coefficients, and for

every direction k ∈ {1, . . . , d}, Uk
1 , . . . ,Uk

rk
is a set of univariate basis functions which

satisfy the orthonormality conditions

Nk∑

ik=1

Uk
j (ik)U

k
m(ik) = δj,m :=

{
1 if j = m

0 else

for all j,m ∈ {1, . . . , rk}. From the perspective of linear algebra, every

Uk
j : {1, . . . ,Nk} →R

can be interpreted as a vector. Hence, (1.1) is a high-dimensional generalization of

the well-known singular value decomposition, and Ỹ is a low-rank-approximation of
Y(i1, . . . , id ), cf. [1]. For the representation (1.1) of Ỹ only

d∏

k=1

rk +
d∑

k=1

rkNk

degrees of freedom have to be stored, which is a significant improvement if rk � Nk

for all k. Unfortunately, the fact that all possible combinations appear in the right-
hand side of (1.1) causes again an exponential growth of the data (unless rk de-
creases to 1 when k → ∞). For example, if r1 = · · · = rd = r , then the core tensor
a(j1, . . . , jd) has rd entries.
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The hierarchical Tucker format avoids the disadvantageous growth of degrees of
freedom by using the approach (1.1) in a recursive way. For example, with univari-
ate functions U

{k}
jk

: {1, . . . ,Nk} → R and coefficients B{1,2}
m,j1,j2

,B{3,4}
l,j3,j4

∈ R, one can

define bivariate functions

U {1,2}
m (i1, i2) =

r1∑

j1=1

r2∑

j2=1

B{1,2}
m,j1,j2

U
{1}
j1

(i1)U
{2}
j2

(i2)

U
{3,4}
l (i3, i4) =

r3∑

j3=1

r4∑

j4=1

B{3,4}
l,j3,j4

U
{3}
j3

(i3)U
{4}
j4

(i4),

and then construct a four-dimensional tensor via

Y(i1, i2, i3, i4) =
r{1,2}∑

m=1

r{3,4}∑

l=1

B{1,2,3,4}
m,l U {1,2}

m (i1, i2)U
{3,4}
l (i3, i4)

for some B{1,2,3,4}
m,l ∈ R. This idea has first been used in quantum chemistry to solve

high-dimensional Schrödinger equations [13, 15, 16] and later been investigated from
a mathematical point of view in [2, 4, 12, 14]; see also [10] for a useful MATLAB

toolbox. A formal definition of the hierarchical Tucker format will be given in Sect. 2.
Due to the recursive definition, the hierarchical version is technically more involved
than the standard Tucker format, but as we will discuss in Sect. 2, this avoids the
exponential growth of the degrees of freedom.

The problem how a given tensor can be approximated in the hierarchical Tucker
format up to a prescribed error tolerance has been studied in [2]. In the context of
high-dimensional differential equations, however, an approximation for the unknown
solution is sought after, and for time-dependent differential equations the question
arises how an approximation in the hierarchical Tucker format can be propagated in
time. For the non-hierarchical Tucker format, equations of motion for the core tensor
and the basis functions have been derived in [8, 11] from the Dirac-Frenkel varia-
tional principle, and error bounds for the dynamical low-rank approximation in the
non-hierarchical Tucker format have been proven in [8]. The main contribution of our
article is to extend these results to the hierarchical Tucker format. We remark, how-
ever, that very similar results have independently and simultaneously been obtained
in [12].

In Sect. 2 we introduce our notation, define the hierarchical Tucker format and
discuss some of its properties. In Sect. 3, the hierarchical Tucker format is applied to
approximate high-dimensional initial-value problems. In particular, differential equa-
tions for the parts of the representation are derived from the Dirac-Frenkel variational
principle. The last three sections are devoted to the analysis of the accuracy of this
approximation. The analysis is based on matricizations of tensors which enable a
compact representation of certain projections defined in Sect. 4. The second impor-
tant ingredient for the error analysis are curvature bounds which are proven in Sect. 5.
Finally, an error bound for the approximation of high-dimensional differential equa-
tions in the hierarchical Tucker format is proven in Sect. 6.
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2 Hierarchical low-rank representation of tensors: the H-Tucker format

A tensor T ∈ R
N1×···×Nd is a d-dimensional array with

∏d
j=1 Nj entries. Defining

the index sets

Ij = {1, . . . ,Nj }, j ∈ {1, . . . , d}
leads to the natural interpretation of tensors as multivariate functions

T : I1 × · · · × Id → R, T = T (i1, . . . , id ).

This interpretation is advantageous as it simplifies the construction of high-dimension-
al tensors as products of low-dimensional ones which are considered as functions that
only depend on a subset μ = {μ1, . . . ,μm} ⊆ {1, . . . , d} of directions, i.e.

T : Iμ → R with Iμ = Iμ1 × · · · × Iμm.

In order to define the multiplication of two tensors U : Iμ → R and V : Iν → R for
μ,ν ⊆ {1, . . . , d}, both tensors are interpreted as functions Ũ and Ṽ in all variables
κ = {κ1, . . . , κk} = μ ∪ ν. For example, if U = U(i2, i4, i7) and V = V (i2, i5), then
we let Ũ (i2, i4, i5, i7) = U(i2, i4, i7) for all i5 ∈ I5 and Ṽ (i2, i4, i5, i7) = V (i2, i5) for
all i4 ∈ I4 and i7 ∈ I7. Then, the product U · V is to be understood as the pointwise
product of Ũ and Ṽ , i.e.

(U · V ) : Iκ →R, (U · V )(iκ1 , . . . , iκk
) = Ũ (iκ1 , . . . , iκk

)Ṽ (iκ1 , . . . , iκk
).

Besides multiplication of tensors, a second operation will be important in this article.
Let μ = {μ1, . . . ,μm} and ν = {ν1, . . . , νn} be subsets of {1, . . . , d}, let again κ =
{κ1, . . . , κk} = μ ∪ ν, and let λ = {λ1, . . . , λm} = (μ ∪ ν) \ (μ ∩ ν) be the indices
which occur either in μ or in ν. Then, with the convention that R∅ = R, we define

〈·, ·〉 :RNμ1×···×Nμm ×R
Nν1×···×Nνn →R

Nλ1×···×Nλl

〈U,V 〉(iλ1 , . . . , iλl
) =

(κ1∈μ∩ν)∑

iκ1 ∈Iκ1

. . .

(κk∈μ∩ν)∑

iκk ∈Iκk

(U · V )(iκ1 , . . . , iκk
)

(2.1)

where the symbol
∑(κj ∈μ∩ν)

iκj ∈Iκj
means that the sum is taken only if κj ∈ μ ∩ ν. Hence,

after multiplying the two tensors we take the sum over all common directions of
the two tensors. For example, in case of the tensors U = U(i2, i3, i5, i9) and V =
V (i2, i4, i5), (2.1) simply reduces to

〈U,V 〉(i3, i4, i9) =
∑

i2∈Iκ2

∑

i5∈Iκ5

U(i2, i3, i5, i9)V (i2, i4, i5)

=
Nκ2∑

i2=1

Nκ5∑

i5=1

U(i2, i3, i5, i9)V (i2, i4, i5).
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The result is a tensor which depends on all directions which are not common direc-
tions of U and V . Hence, if U and V depend on exactly the same directions (i.e.
μ ∩ ν = μ = ν), then 〈U,V 〉 ∈ R

∅ = R is a real number, and it can be verified that
〈·, ·〉 defines a scalar product in this case. If both U = U(ij ) and V = V (ij ) are
one-dimensional tensors with respect to the same direction, then this scalar product
coincides with the Euclidean scalar product of the two vectors (U(1), . . . ,U(Nj ))

and (V (1), . . . , V (Nj )). This is why we have chosen the symbol 〈·, ·〉.
The numerical evaluation of 〈U,V 〉 can be simplified if U and V are products

of tensors. If, for example, U = U(i2, i5) = U {2}(i2)U {5}(i5) and V = V (i2, i5) =
V {2}(i2)V {5}(i5), then

〈U,V 〉 =
∑

i2∈Iκ2

∑

i5∈Iκ5

U {2}(i2)V {2}(i2)U {5}(i5)V {5}(i5)

= 〈
U {2},V {2}〉 · 〈U {5},V {5}〉. (2.2)

This will be frequently used in the proofs below.
The following definitions provide the framework of a hierarchical tensor structure.

Definition 2.1 (dimension tree) A dimension tree T is a binary tree which represents
a recursive decomposition of the set {1, . . . , d}. Every node N ∈ T is a selection of
directions, N ⊆ {1, . . . , d}, where N0 = root(T ) = {1, . . . , d} is called the root of the
tree. Apart from the root, every node N ∈ T is linked by an edge with exactly one
father N̂ ⊃ N . Conversely, every node is either linked with two successors (child
nodes) (N1,N2) = succ(N ), or it does not have any successors at all. The successors
of N have the properties that

N1 ∪N2 = N and N1 ∩N2 = ∅.

N is an interior node if

N ∈ I(T ) := {Ñ ∈ T : Ñ has successors},
and N is called a leaf of the dimension tree T if

N ∈ L(T ) := {Ñ ∈ T : Ñ has no successors} = {{1}, . . . , {d}} = T \ I(T ).

Figure 1 shows an example of a dimension tree with inner nodes N0, N1 and
leaves N2, N11, N12.

Definition 2.2 (hierarchical Tucker format) Let T be a dimension tree with root N0
and let (rN )N∈T be a family of positive integers with rN0 = 1. Y is a tensor in the
hierarchical Tucker format if and only if there exist transfer tensors

BN ∈ R
rN ×rN1×rN2 for all N ∈ I(T ) with (N1,N2) = succ(N )

and univariate functions

U�
i : Iω → R for all � = {ω} ∈ L(T ), ω ∈ {1, . . . , d}, i = 1, . . . , r�
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Fig. 1 Dimension tree T

such that Y can be represented by

Y =
rN01∑

j=1

rN02∑

l=1

BN0
1,j,lU

N01
j · UN02

l , (N01,N02) = succ(N0)

with N -frames

UN
i : IN → R for all N ∈ T \ {N0}, i = 1, . . . , rN

defined by the recursion

UN
i =

rN1∑

j=1

rN2∑

l=1

BN
i,j,lU

N1
j · UN2

l for all N ∈ I(T ), (N1,N2) = succ(N ).

The family (rN )N∈T is called the hierarchical representation rank of Y . The set
of all tensors in the hierarchical Tucker format with hierarchical representation rank
(rN )N∈T is denoted by H-Tucker((rN )N∈T ).

Remark

1. Since the transfer tensors in Definition 2.2 are always three-dimensional objects,
we do not interpret these particular tensors as multivariate functions.

2. Every tensor Y ∈H-Tucker((rN )N∈T ) can be reconstructed from the transfer ten-
sors (BN )N∈I(T ) and the functions (U�)�∈L(T ) via the above recursion. The N -
frames at the interior nodes can be considered as auxiliary variables which are
only used to reconstruct the full tensor Y if necessary.

3. Definitions 2.1 and 2.2 have been adapted from Definitions 3.3 and 3.6 in [2]. At
this point, it is not yet assumed that the N -frames are linearly independent. For
the approximation of time-dependent problems, however, we will later have to
assume that the N -frames at every node N ∈ T \ {N0} are an orthonormal basis,
and that the above representation is not redundant, cf. Assumptions 1 and 2 below.

4. A special case of the hierarchical Tucker format is the so-called tensor train format
which has been investigated, e.g., in [5].

At this point, a comparison with the standard (non-hierarchical) Tucker format
is helpful. For the hierarchical Tucker format, an equation similar to (1.1) can be
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obtained, but due to the recursive definition of the N -frames, the corresponding for-
mula is much more complicated. The crucial difference is the fact that the number of
terms in the linear combination can be considerably lower. In fact, the total number
of degrees of freedom in the hierarchical Tucker format is at most

∑

N∈I(T )
(N1,N2)=succ(N )

rN rN1rN2 +
d∑

k=1

r{k}Nk

because every Y ∈ H-Tucker((rN )N∈T ) is defined by the r� basis functions at
the leaves � = {k} with k = 1, . . . , d and by the entries of all transfer tensors,
cf. Lemma 3.7 in [2].

Lemma 1 (orthonormality of transfer tensors) Let Y ∈ H-Tucker((rN )N∈T ) be a
tensor represented by ((BN )N∈I(T ), (U

�)�∈L(T )). Then, the following statements are
equivalent:

(a) The N -frames (UN )N∈T \{N0} are orthonormal with respect to mapping (2.1),
i.e.

〈
UN

i ,UN
j

〉 = δi,j

holds for all N ∈ T \ {N0} and i, j ∈ {1, . . . , rN }.
(b) For all N ∈ I(T )\{N0}, (N1,N2) = succ(N ) and i1, i2 ∈ {1, . . . , rN } the equa-

tion
rN1∑

j=1

rN2∑

l=1

BN
i1,j,l

BN
i2,j,l

= δi1,i2 (2.3)

holds and the �-frames (U�)�∈L(T ) are orthonormal with respect to mapping
(2.1), i.e.

〈
U�

i ,U�
j

〉 = δi,j

holds for all � ∈ L(T ), i, j ∈ {1, . . . , r�}.

Proof Let N ∈ I(T ) be a node in the interior of the dimension tree, (N1,N2) =
succ(N ) and i1, i2 ∈ {1, . . . , rN }. If (a) holds, then it follows from Definition 2.2 that

〈
UN

i1
,UN

i2

〉 =
rN1∑

j1=1

rN2∑

l1=1

rN1∑

j2=1

rN2∑

l2=1

BN
i1,j1,l1

BN
i2,j2,l2

〈
U

N1
j1

· UN2
l1

,U
N1
j2

· UN2
l2

〉

=
rN1∑

j1=1

rN2∑

l1=1

rN1∑

j2=1

rN2∑

l2=1

BN
i1,j1,l1

BN
i2,j2,l2

〈
U

N1
j1

,U
N1
j2

〉〈
U

N2
l1

,U
N2
l2

〉

=
rN1∑

j=1

rN2∑

l=1

BN
i1,j,l

BN
i2,j,l

(2.4)



312 A. Arnold, T. Jahnke

which proves (a) ⇒ (b). Now assume that (b) holds, and that N1,N2 ∈ L(T ). Then,
Eq. (2.4) yields that

〈
UN

i1
,UN

i2

〉 = δi1,i2

for the father N of N1 and N2, and by induction over the levels of the tree we obtain
(b) ⇒ (a). �

Assumption 1 For every tensor Y in the hierarchical Tucker format we assume the
N -frames (UN )N∈T \{N0} to be orthonormal with respect to mapping (2.1), i.e.

〈
UN

i ,UN
j

〉 = δi,j for all N ∈ I(T ) \ {N0}, i, j ∈ {1, . . . , rN }.

Since for any Y ∈ H-Tucker((rN )N∈T ) we can find a representation with or-
thonormal N -frames, Assumption 1 is not a restriction; see [2, Algorithm 3] for an
orthonormalization algorithm. It will be shown in Lemma 4 that when the tensor Y

approximates the time-dependent solution of a high-dimensional differential equa-
tion, the differential equations for the N -frames preserve the orthonormality for all
times.

An important consequence of Assumption 1 is that for N ∈ I(T ) with (N1,N2) =
succ(N ), we have

〈
U

N1
k ,UN

i

〉 =
rN1∑

j=1

rN2∑

l=1

BN
i,j,l

〈
U

N1
k ,U

N1
j

〉
U

N2
l =

rN2∑

l=1

BN
i,k,lU

N2
l

for any k ∈ {1, . . . , rN1} and hence

rN1∑

k=1

U
N1
k

〈
U

N1
k ,UN

i

〉 =
rN1∑

k=1

rN2∑

l=1

BN
i,k,lU

N1
k · UN2

l = UN
i .

Substituting this into the recursive representation of Y yields

rN1∑

k=1

U
N1
k

〈
U

N1
k , Y

〉 = Y (2.5)

for all N1 ∈ T \ {N0}. These and similar formulas will be frequently used henceforth.

Lemma 2 (minimal representation rank) Let Y ∈ H-Tucker((rN )N∈T ) be a tensor
in the hierarchical Tucker format represented by ((BN )N∈I(T ), (U

�)�∈L(T )). Assume
that the tensors

〈
Y,UN

1

〉
, . . . ,

〈
Y,UN

rN

〉

are linearly independent for all N ∈ T \ {N0}. Then, Y has minimal representation
rank, which means that there exists no other family of positive integers (r∗

N )N∈T and
no node N ∗ ∈ T with
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r∗
N ≤ rN for all N ∈ T and r∗

N ∗ < rN ∗ , (2.6)

such that Y ∈H-Tucker((r∗
N )N∈T ).

Proof Suppose that Y can also be represented by ((B̃N )N∈I(T ), (Ũ
N )N∈L(T )) and

that the hierarchical representation rank (r∗
N )N∈T of this representation has the prop-

erties (2.6). According to (2.5) we have

Y =
r∗
N∗∑

i∗=1

ŨN ∗
i∗

〈
Y, ŨN ∗

i∗
〉 =

rN∗∑

i=1

UN ∗
i

〈
Y,UN ∗

i

〉
.

Substituting the first representation into the second yields

Y =
rN∗∑

i=1

UN ∗
i

r∗
N∗∑

i∗=1

〈
UN ∗

i , ŨN ∗
i∗

〉〈
Y, ŨN ∗

i∗
〉

and hence

〈
Y,UN ∗

i

〉 =
r∗
N∗∑

i∗=1

〈
UN ∗

i , ŨN ∗
i∗

〉〈
Y, ŨN ∗

i∗
〉
.

This is a contradiction to the assumption that 〈Y,UN ∗
1 〉, . . . , 〈Y,UN ∗

rN∗ 〉 are linearly
independent. �

Remark It can be shown that the converse assertion is also true.

Assumption 2 For every tensor Y in the hierarchical Tucker format and for every
N ∈ T \ {N0} we assume

〈
Y,UN

1

〉
, . . . ,

〈
Y,UN

rN

〉

to be linearly independent.

As shown in Sect. 4, under Assumption 2 the set H-Tucker((rN )N∈T ) is a smooth
manifold, which is essential in our approach. Furthermore we will use the term ‘hier-
archical rank’ instead of ‘hierarchical representation rank’ and denote the N -frames
as basis functions. Assumption 2 and Lemma 2 motivate the following definition.

Definition 2.3 (Single-hole operator) Let Y ∈ H-Tucker((rN )N∈T ) be a tensor in
the hierarchical Tucker format, which is represented by the tuple ((BN )N∈I(T ),

(U�)�∈L(T )), N ∈ T \ {N0} and i ∈ {1, . . . , rN }. The single-hole operator S is de-
fined as

S(Y,N , i) := 〈
Y,UN

i

〉
.

This is a generalization of the single-hole functions defined in Sect. II.3.3 in [11].
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Remark With the single-hole operator (2.5) reads

Y =
rN∑

i=1

S(Y,N , i) · UN
i (2.7)

for all Y ∈ H-Tucker((rN )N∈T ),N ∈ T \ {N0}.

Definition 2.4 For Y ∈H-Tucker((rN )N∈T ),N ∈ T \ {N0} and X ∈R
N1×···×Nd the

orthogonal projection of X onto the space spanned by UN
1 , . . . ,UN

rN is denoted by

PNX =
rN∑

i=1

〈
X,UN

i

〉
UN

i .

The orthogonal projection onto the orthogonal complement is given by P⊥
NX =

X −PNX.

3 Solving high-dimensional initial value problems via hierarchical tensor
approximation

In this section we show how the hierarchical Tucker format can be used to approx-
imate the time-dependent solution Yex(t) ∈ R

N1×···×Nd of a high-dimensional ordi-
nary differential equation

Ẏex = F(Yex), t ≥ 0, F :RN1×···×Nd →R
N1×···×Nd (3.1)

with a given initial value Yex(0) ∈ R
N1×···×Nd and a function F mapping tensors to

tensors. Such problems arise, e.g., when the method of lines is applied to a high-
dimensional partial differential equation. If the partial differential equation is lin-
ear, then the function F is linear, too. The exact solution Yex(t) of (3.1) is a time-
dependent, d-dimensional tensor with

∏d
μ=1 Nμ entries. Hence, classical numerical

schemes for ordinary differential equations cannot be applied if d � 3 due to the
huge number of unknowns. Therefore, we are looking for an approximation Y ≈ Yex

which lies on the manifold

M := H-Tucker
(
(rN )N∈T

)

at any time. For this purpose, the variational principle of Dirac-Frenkel is applied
(cf. [11]): Starting with an approximation of the initial value on the manifold, the
right-hand side F(Y ) is projected onto TYM, the tangent space of M at Y(t), for
every t ≥ 0; see Fig. 2 for an illustration.

With P(Y ) denoting the orthogonal projector on the tangent space TYM the dif-
ferential equation for Y(t) ∈ M takes the form

Ẏ = P(Y )F (Y ) ∈ TYM, t ≥ 0, Y (0) ∈ M (3.2)
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Fig. 2 Orthogonal projection
on the tangent space

or equivalently
〈
F(Y ) − Ẏ , δY

〉 = 0 ∀δY ∈ TYM.

Even in applications where the original problem (3.1) is linear, the new differential
equation (3.2) is nonlinear. The great advantage of (3.2) is the fact that for the prop-
agation of Y(t) only the transfer tensors BN (t), N ∈ I(T ) and the basis functions
U�

i (t), � ∈ L(T ) for the time-dependent representation of Y(t) have to be computed.
In order to make use of this advantage, however, (3.2) has to be replaced by differen-
tial equations for BN (t) and U�

i (t) instead of Y(t). This is the goal of this section.
Since every point Y on the manifold is determined by

((
BN )

N∈I(T )
,
(
U�

)
�∈L(T )

)
,

the transfer tensors and the basis functions on the leaves of the dimension tree can
be considered as the parameters of the representation. Let Ψ be the mapping which
maps the parameters to the corresponding tensor, i.e.

Ψ : ×
N∈I(T )

(N1,N2)=succ(N )

R
rN ×rN1×rN2 × ×

{j}∈L(T )

R
Nj ×r{j } → R

N1×···×Nd

Ψ
((
B̃N )

N∈I(T )
,
(
Ũ �

)
�∈L(T )

) = Ỹ .

Ỹ is constructed according to Definition 2.2. Then, each element δY of the tangent
space TYM can be written as

δY =
rN1∑

j=1

rN2∑

l=1

∂Ψ

∂B̃N0
1,j,l

∣
∣
∣
∣
∣ B̃N =BN ∀N∈I(T )

Ũ�=U�∀�∈L(T )

δBN0
1,j,l

+
∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

rN∑

i=1

rN1∑

j=1

rN2∑

l=1

∂Ψ

∂B̃N
i,j,l

∣
∣
∣
∣
∣ B̃N =BN ∀N∈I(T )

Ũ�=U�∀�∈L(T )

δBN
i,j,l

+
∑

�∈L(T )

r�∑

i=1

∂Ψ

∂Ũ�
i

∣
∣
∣
∣
∣ B̃N =BN ∀N∈I(T )

Ũ�=U�∀�∈L(T )

δU�
i , (3.3)
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where the tuple ((δBN )N∈I(T ), (δU
�)�∈L(T )) represents all possible variations of the

transfer tensors and the basis functions on the leaves of the dimension tree. Since Ψ

is linear in each argument, we find with

∂Ψ

∂B̃N0
1,j,l

∣
∣
∣
∣ B̃N =BN ∀N∈I(T )

Ũ�=U�∀�∈L(T )

= U
N1
j · UN2

l , (N1,N2) = succ(N0), (3.4)

∂Ψ

∂B̃N
i,j,l

∣
∣
∣
∣ B̃N =BN ∀N∈I(T )

Ũ�=U�∀�∈L(T )

= S(Y,N , i) · UN1
j · UN2

l , (N1,N2) = succ(N ) (3.5)

and

∂Ψ

∂Ũ�
i

∣
∣
∣
∣ B̃N =BN ∀N∈I(T )

Ũ�=U�∀�∈L(T )

= S(Y, �, i) (3.6)

expressions for every partial derivative in (3.3). Therefore, the tangent space can be
written as

TYM = {
δY ∈ R

N1×···×Nd : there exists a tuple
((

δBN )
N∈I(T )

,
(
δU�

)
�∈L(T )

)

such that (3.3), (3.4), (3.5) and (3.6) hold
}
.

Remark Since Assumption 1 means no restriction for the set H-Tucker((rN )N∈T ),
the orthogonality conditions means no restriction for the tangent space as well. Even
the restriction of mapping Ψ to transfer tensors and basis functions which fulfill As-
sumptions 2 does not influence the tangent space since the restricted set is a dense
and open subset of the domain, cf. Sect. 3.2 in [14].

We are now ready to formulate the differential equations for the transfer ten-
sors and the basis functions at the leaves. In view of the recursive definition of
H-Tucker((rN )N∈T ), it does not come at a surprise that these differential equations
are defined recursively, too. The same result has also been obtained with other tech-
niques in [12] and [14].

Theorem 3 (equations of motion) Let Y ∈ H-Tucker((rN )N∈T ) be a tensor in the
hierarchical Tucker format, let (BN )N∈I(T ) the corresponding transfer tensors, and
let (U�)�∈L(T ) the corresponding basis functions on the leaves of the dimension tree.
Furthermore we define for every N ∈ T \ {N0} the symmetric stiffness matrix

MN = (
mN

ij

)rN
i,j=1 ∈R

rN ×rN with entries mN
ij = 〈

S(Y,N , i),S(Y,N , j)
〉

(3.7)
and its inverse

WN = (
wN

ij

)rN
i,j=1 = (

MN )−1
. (3.8)

Then, the differential equation

Ẏ = P(Y )F (Y ), t ≥ 0
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is equivalent to

Ẏ =
rN01∑

j=1

rN02∑

l=1

ḂN0
1,j,lU

N01
j · UN02

l

+
rN01∑

j=1

rN02∑

l=1

BN0
1,j,lU̇

N01
j · UN02

l +
rN01∑

j=1

rN02∑

l=1

BN0
1,j,lU

N01
j · U̇N02

l (3.9)

with (N01,N02) = succ(N0). The time derivatives of the basis functions on an inte-
rior node of the dimension tree satisfy the recursion

U̇N
i =

rN1∑

j=1

rN2∑

l=1

ḂN
i,j,lU

N1
j · UN2

l

+
rN1∑

j=1

rN2∑

l=1

BN
i,j,lU̇

N1
j · UN2

l +
rN1∑

j=1

rN2∑

l=1

BN
i,j,lU

N1
j · U̇N2

l (3.10)

for all N ∈ I(T ) \ {N0} with (N1,N2) = succ(N ). On the leaves of the dimension
tree we have

U̇ �
i =

r�∑

i′=1

w�
i′,iP

⊥
�

〈
F(Y ),S

(
Y, �, i′

)〉
, � ∈ L(T ), i = 1, . . . , r�. (3.11)

The transfer tensors evolve according to the differential equations

ḂN0
1,j,l = 〈

F(Y ),U
N01
j · UN02

l

〉

and

ḂN
i,j,l =

rN∑

i′=1

wN
i,i′

〈
F(Y ),S

(
Y,N , i′

) ·P⊥
N

(
U

N1
j · UN2

l

)〉
.

We remark that the crucial terms are U̇ �
i for � ∈ L(T ) and ḂN

i,j,l for N ∈ I(T ). If

these objects are known, all U̇N
i with N ∈ I(T ) \ {N0} can be computed recursively

via (3.10). Hence, the time derivatives of the N -frames at the interior nodes can be
considered as auxiliary variables.

Before the proof of Theorem 3, we show that the solution of the equations of
motion preserve the orthonormality of the basis functions.

Lemma 4 (Gauge-conditions) Let ((BN (t))N∈I(T ), (U
�(t))�∈L(T )) be the solution

of the equations of motion of Theorem 3, and let ((ḂN (t))N∈I(T ), (U̇
�(t))�∈L(T )) be

the corresponding time derivatives. Then the Gauge-condition

〈
U̇N

i (t),UN
j (t)

〉 = 0
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is satisfied for all N ∈ T \ {N0}, i, j ∈ {1, . . . , rN } and t ≥ 0. Furthermore, the or-
thonormality of the basis functions

〈
UN

i (t),UN
j (t)

〉 = δi,j (3.12)

is preserved for all t ≥ 0 if (3.12) holds for t = 0.

Proof of Lemma 4 For all N ∈ I(T ) \ {N0}, (N1,N2) = succ(N ) and i1, i2 ∈
{1, . . . , rN } the equations

rN1∑

j=1

rN2∑

l=1

ḂN
i1,j,l

BN
i2,j,l

=
rN1∑

j=1

rN2∑

l=1

BN
i2,j,l

rN∑

i=1

wN
i1,i

〈
F(Y ),S(Y,N , i) ·P⊥

N
(
U

N1
j · UN2

l

)〉

=
rN∑

i=1

wN
i1,i

〈

F(Y ),S(Y,N , i) ·P⊥
N

(rN1∑

j=1

rN2∑

l=1

BN
i2,j,l

U
N1
j · UN2

l

)〉

= 0 (3.13)

hold. Furthermore, we have

〈
U̇ �

i1
,U�

i2

〉 =
〈

r�∑

i=1

w�
i,i1

P⊥
�

〈
F(Y ),S(Y, �, i)

〉
,U�

i2

〉

= 0

for all � ∈ L(T ), i1, i2 ∈ {1, . . . , r�}. Now suppose that

〈
U̇

N1
j1

,U
N1
j2

〉 = 0 and
〈
U̇

N2
l1

,U
N2
l2

〉 = 0

for an interior node N ∈ I(T ) \ {N0}, (N1,N2) = succ(N ) for all j1, j2 ∈
{1, . . . , rN1} and l1, l2 ∈ {1, . . . , rN2}. Then with (3.13) we deduce

〈
U̇N

i1
,UN

i2

〉

=
rN1∑

j1=1

rN2∑

l1=1

rN1∑

j2=1

rN2∑

l2=1

ḂN
i1,j1,l1

BN
i2,j2,l2

〈
U

N1
j1

· UN2
l1

,U
N1
j2

· UN2
l2

〉

+
rN1∑

j1=1

rN2∑

l1=1

rN1∑

j2=1

rN2∑

l2=1

BN
i1,j1,l1

BN
i2,j2,l2

〈
U̇

N1
j1

· UN2
l1

,U
N1
j2

· UN2
l2

〉

+
rN1∑

j1=1

rN2∑

l1=1

rN1∑

j2=1

rN2∑

l2=1

BN
i1,j1,l1

BN
i2,j2,l2

〈
U

N1
j1

· U̇N2
l1

,U
N1
j2

· UN2
l2

〉

= 0
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for all i1, i2 ∈ {1, . . . , rN }. Hence, the Gauge-conditions are satisfied, and the equa-
tions

〈
UN

i (t),UN
j (t)

〉 = 〈
UN

i (0),UN
j (0)

〉 +
∫ t

0

〈
U̇N

i (s),UN
j (s)

〉 + 〈
UN

i (s), U̇N
j (s)

〉
ds

= δi,j

show the preservation of the orthonormality. �

Proof of Theorem 3 In order to prove the theorem it has to be shown that the varia-
tional equation

〈
F(Y ) − Ẏ , δY

〉 = 0

is satisfied for every variation δY ∈ TYM.
(i) We start with the variation

δY = δBN0
1,j,lU

N1
j · UN2

l , (N1,N2) = succ(N0) (3.14)

for an arbitrary δBN0 ∈ R
rN1×rN2 , j ∈ {1, . . . , rN1}, l ∈ {1, . . . , rN2}. Together with

(3.9) this yields

〈Ẏ , δY 〉 =
〈 rN1∑

j ′=1

rN2∑

l′=1

ḂN0
1,j ′,l′U

N1
j ′ · UN2

l′ , δBN0
1,j,lU

N1
j · UN2

l

〉

+
〈 rN1∑

j ′=1

rN2∑

l′=1

BN0
1,j ′,l′U̇

N1
j ′ · UN2

l′ , δBN0
1,j,lU

N1
j · UN2

l

〉

+
〈 rN1∑

j ′=1

rN2∑

l′=1

BN0
1,j ′,l′U

N1
j ′ · U̇N2

l′ , δBN0
1,j,lU

N1
j · UN2

l

〉

= δBN0
1,j,lḂ

N0
1,j,l

= δBN0
1,j,l

〈
P(Y )F (Y ),U

N1
j · UN2

l

〉

= 〈
F(Y ), δBN0

1,j,lU
N1
j · UN2

l

〉

= 〈
F(Y ), δY

〉
.

This proves that

〈
F(Y ) − Ẏ , δY

〉 = 0 for all δY = δBN0
1,j,lU

N1
j · UN2

l .

(ii) Next, we assume N ∈ I(T ) \ {N0}, (N1,N2) = succ(N ) and choose the vari-
ation

δY = δBN
i,j,lS(Y,N , i) · UN1

j · UN2
l (3.15)
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for an arbitrary δBN ∈ R
rN ×rN1×rN2 , i ∈ {1, . . . , rN }, j ∈ {1, . . . , rN1}, l ∈

{1, . . . , rN2}. Deriving both sides of (2.7) with respect to t gives that

〈Ẏ , δY 〉 =
〈

rN∑

i′=1

Ṡ
(
Y,N , i′

) · UN
i′ , δBN

i,j,lS(Y,N , i) · UN1
j · UN2

l

〉

+
〈

rN∑

i′=1

S
(
Y,N , i′

) · U̇N
i′ , δBN

i,j,lS(Y,N , i) · UN1
j · UN2

l

〉

=
rN∑

i′=1

δBN
i,j,l

〈
Ṡ

(
Y,N , i′

)
,S(Y,N , i)

〉〈
UN

i′ ,U
N1
j · UN2

l

〉

+
rN∑

i′=1

δBN
i,j,l

〈
S

(
Y,N , i′

)
,S(Y,N , i)

〉〈
U̇N

i′ ,U
N1
j · UN2

l

〉

=
rN∑

i′=1

δBN
i,j,l

〈
P(Y )F (Y ),S(Y,N , i) · UN

i′
〉
BN

i′,j,l

+
rN∑

i′=1

δBN
i,j,lm

N
i′,iḂ

N
i′,j,l

=
rN∑

i′=1

δBN
i,j,l

〈
P(Y )F (Y ),S(Y,N , i) · UN

i′
〉
BN

i′,j,l

+
rN∑

i′′=1

δBN
i,j,l

〈
F(Y ),S

(
Y,N , i′′

) ·P⊥
N

(
U

N1
j · UN2

l

)〉
(

rN∑

i′=1

mN
i′,iw

N
i′,i′′

)

and since S(Y,N , i) · UN
i′ ∈ TYM we obtain

〈Ẏ , δY 〉 =
rN∑

i′=1

δBN
i,j,l

〈
F(Y ),S(Y,N , i) · UN

i′
〉
BN

i′,j,l

+ δBN
i,j,l

〈
F(Y ),S(Y,N , i) ·P⊥

N
(
U

N1
j · UN2

l

)〉
. (3.16)

On the other hand
〈
F(Y ), δY

〉 = 〈
F(Y ), δBN

i,j,lS(Y,N , i) · UN1
j · UN2

l

〉

= δBN
i,j,l

〈
F(Y ),S(Y,N , i) ·PN

(
U

N1
j · UN2

l

)〉

+ δBN
i,j,l

〈
F(Y ),S(Y,N , i) ·P⊥

N
(
U

N1
j · UN2

l

)〉

=
rN∑

i′=1

δBN
i,j,l

〈
F(Y ),S(Y,N , i) · UN

i′
〉
BN

i′,j,l

+ δBN
i,j,l

〈
F(Y ),S(Y,N , i) ·P⊥

N
(
U

N1
j · UN2

l

)〉
(3.17)
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holds. Since (3.16) is equal to (3.17), it follows that

〈
F(Y ) − Ẏ , δY

〉 = 0 for all δY = δBN
i,j,lS(Y,N , i) · UN1

j · UN2
j .

(iii) Finally, let � ∈ L(T ) and consider the variation

δY = S(Y, �, i) · δU�
i (3.18)

for an arbitrary δU�
i : I� → R, i ∈ {1, . . . , r�}. Similar as before, the time derivative

of (2.7) yields

〈Ẏ , δY 〉 =
〈

r�∑

i′=1

Ṡ
(
Y, �, i′

) · U�
i′ ,S(Y, �, i) · δU�

i

〉

+
〈

r�∑

i′=1

S
(
Y, �, i′

) · U̇ �
i′ ,S(Y, �, i) · δU�

i

〉

=
r�∑

i′=1

〈
Ṡ

(
Y, �, i′

)
,S(Y, �, i)

〉〈
U�

i′ , δU
�
i

〉

+
r�∑

i′=1

〈
S

(
Y, �, i′

)
,S(Y, �, i)

〉〈
U̇ �

i′ , δU
�
i

〉

=
r�∑

i′=1

〈
P(Y )F (Y ),S(Y, �, i) · U�

i′
〉〈
U�

i′ , δU
�
i

〉

+
r�∑

i′=1

m�
i′,i

〈
r�∑

i′′=1

w�
i′,i′′P

⊥
�

〈
F(Y ),S

(
Y, �, i′′

)〉
, δU�

i

〉

=
r�∑

i′=1

〈
P(Y )F (Y ),S(Y, �, i) · U�

i′
〉〈
U�

i′ , δU
�
i

〉

+
r�∑

i′′=1

〈
P⊥

� F (Y ),S
(
Y, �, i′′

) · δU�
i

〉
(

r�∑

i′=1

m�
i′,iw

�
i′,i′′

)

and with S(Y, �, i) · U�
i′ ∈ TYM we get

〈Ẏ , δY 〉 =
r�∑

i′=1

〈
F(Y ),S(Y, �, i) · U�

i′
〉〈
U�

i′ , δU
�
i

〉

+ 〈
F(Y ),S(Y, �, i) ·P⊥

� δU�
i

〉
. (3.19)

On the other hand
〈
F(Y ), δY

〉 = 〈
F(Y ),S(Y, �, i) · δU�

i

〉

= 〈
F(Y ),S(Y, �, i) ·P�δU

�
i

〉
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+ 〈
F(Y ),S(Y, �, i) ·P⊥

� δU�
i

〉

=
r�∑

i′=1

〈
F(Y ),S(Y, �, i) · U�

i′
〉〈
U�

i′ , δU
�
i

〉

+ 〈
F(Y ),S(Y, �, i) ·P⊥

� δU�
i

〉
(3.20)

holds. Since (3.19) is equal to (3.20), it follows that
〈
F(Y ) − Ẏ , δY

〉 = 0 for all δY = S(Y, �, i) · δU�
i .

The superposition of the variations (3.14), (3.15) and (3.18) span the whole tangent
space and therefore

〈
F(Y ) − Ẏ , δY

〉 = 0 for all variations δY ∈ TYM. �

Corollary 5 Let B ∈ R
N1×···×Nd be an arbitrary tensor, let Y ∈ M and let P(Y )B

be the orthogonal projection of B onto the tangent space TYM defined by
〈
P(Y )B − B,δY

〉 = 0 for all δY ∈ TYM.

Then, formally replacing Ẏ by P(Y )B and F(Y ) by B in Theorem 3 yields a recursive
representation of P(Y )B .

4 Matrix representation of tensors

Since the solution Yex of the original differential equation (3.1) does, in general,
not evolve on the approximation manifold M = H-Tucker((rN )N∈T ), the solution
Y of the projected problem only yields an approximation Y ≈ Yex . For the error
analysis of this approximation, the matricization of a tensor is a useful concept. Such
a matricization turns a tensor into a matrix with the same entries, just as the command
reshape(...) in MATLAB. For any N ∈ T the set NC := {1, . . . , d} \N is called
the complement node of N . Then, the matricization

Y (N ,NC) ∈ R
π(N )×π(NC), π(N ) =

∏

k∈N
Nk, π(NC) =

∏

k∈NC

Nk

of a tensor Y ∈ R
N1×···×Nd rearranges the elements of the tensor in such a way that

all the different directions in N range over the rows whereas all the directions in NC

range over the columns of the matricization. There are many different ways to do this,
but it does not really matter which mapping is used. The only condition we impose is
that Y (N ,NC) = (Y (NC,N ))T . For the inverse mapping the notation

Y = (
Y (N ,NC)

)
(N ,NC)

will be used. A special case of a matricization is the vectorization

Y (N0,{}) ∈R
N1···Nd
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which reshapes a tensor to a vector. The corresponding inverse mapping is denoted
by

Y = (
Y (N0,{}))

(N0,{}).

For Y ∈H-Tucker((rN )N∈T ) and N ∈ I(T )\{N0}, let the single-hole matrix

S
N := (

(S(Y,N ,1))(NC,{})∣∣ . . .
∣
∣(S(Y,N , rN ))(NC,{})) ∈ R

π(NC)×rN

be the matrix whose j -th column is the vectorization of S(Y,N , j). Similarly, the
orthonormal basis matrix is defined by

U
N := (

(UN
1 )(N ,{})∣∣ . . .

∣
∣(UN

rN )(N ,{})) ∈R
π(N )×rN .

Assumptions 1 implies that (UN )T UN = I , and it follows from (2.7) that

Y (N ,NC) = U
N (

S
N )T

, S
N = (

Y (N ,NC)
)T

U
N .

Hence, the singular values of the matricization Y (N ,NC) coincide with the singular
values of the single-hole matrix S

N . The projection onto the space spanned by the
columns of UN and on the orthogonal complement will be denoted by

PN := U
N (

U
N )T and

(
PN )⊥ := I −U

N (
U
N )T

,

respectively. In addition we define for (N1,N2) = succ(N ) the binary matrix opera-
tor

U
N1 �U

N2 → R
π(N )×(rN1 rN2 )

U
N1 �U

N2 = (v11|v12| . . . |v1rN2
|v21| . . . |v2rN2

| . . . | . . . |vrN1 rN2
)

vjk = (
U

N1
j · UN2

k

)(N ,{})
.

After these preparations, the results of [14] can now be adapted to show that
H-Tucker((rN )N∈T ) is indeed a manifold.

Lemma 6 The set

H-Tucker
(
(rN )N∈T

) = {
X ∈ R

N1×···×Nd : rank
(
X(N ,NC)

) = rN ∀N ∈ T \ {N0}
}

is a smooth submanifold of RN1×···×Nd .

Proof In [14, Theorem 4.11] it has been shown that

M̂ := {
X ∈R

N1×···×Nd : rank
(
X(N ,NC)

) = rN for all N ∈ T \ {N0}
}

is a smooth submanifold of R
N1×···×Nd . Hence, it only has to be shown that

H-Tucker((rN )N∈T ) = M̂. Let Y ∈ H-Tucker((rN )N∈T ) be represented by
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((BN )N∈I(T ), (U
�)�∈L(T )). By Assumption 2, the sequence 〈Y,UN

1 〉, . . . , 〈Y,UN
rN 〉

is linearly independent for all T \ {N0} , which means that

rank
(
S
N ) = rank

(
Y (N ,NC)

) = rN for all N ∈ T \ {N0}

and therefore H-Tucker((rN )N∈T ) ⊆ M̂. Conversely, for every Ŷ ∈ M̂ Proposi-
tion 3.6 in [14] and orthogonalization with Algorithm 3 in [2] ensures the existence
of ((BN )N∈I(T ), (U

�)�∈L(T )) such that the equation

Ŷ =
rN1∑

j=1

rN2∑

l=1

BN0
1,j,lU

N1
j · UN2

l , (N1,N2) = succ(N0)

and the recursion

UN
i =

rN1∑

j=1

rN2∑

l=1

BN
i,j,lU

N1
j · UN2

l

hold for all N ∈ I(T ), i ∈ {1, . . . , rN } and (N1,N2) = succ(N ). The rank of the
single-hole matrix S

N = (X(N ,NC))T UN equals rN for all N ∈ T \ {N0}, which
means that the sequence 〈X,UN

1 〉, . . . , 〈X,UN
rN 〉 is linearly independent for all

N ∈ T \ {N0} and therefore M̂ ⊆ H-Tucker((rN )N∈T ). �

One of the main ingredients for the error analysis is a compact representation of
the projection of a tensor on the tangent space of the manifold, i.e. an explicit rep-
resentation which is not based on a recursion. Such a compact representation can be
obtained in matrix-vector notation. As a preparatory step, we reformulate the results
of Corollary 5 in matrix-vector notation.

Corollary 7 Let Y ∈ H-Tucker((rN )N∈T ) be a tensor in the hierarchical Tucker
format represented by the transfer tensors (BN )N∈I(T ) and by the basis func-
tions (U�)�∈L(T ) on the leaves of the dimension tree. If B ∈ R

N1×···×Nd is an
arbitrary tensor, then under the conditions of Corollary 5 there exists a tuple
((δBN )N∈I(T ), (δU

�)�∈L(T )) such that for (N01,N02) = succ(N0)

P (Y )B =
rN01∑

j=1

rN02∑

l=1

δBN0
1,j,lU

N01
j · UN02

l

+
rN01∑

j=1

rN02∑

l=1

BN0
1,j,lδU

N01
j · UN02

l +
rN01∑

j=1

rN02∑

l=1

BN0
1,j,lU

N01
j · δUN02

l

with

δBN0
1,j,l = ((

U
N01
j · UN02

l

)(N0,{}))T
B(N0,{}).
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For all N ∈ I(T )\{N0} with (N1,N2) = succ(N ), δUN is defined by the recursion

δUN
i =

rN1∑

j=1

rN2∑

l=1

δBN
i,j,lU

N1
j · UN2

l

+
rN1∑

j=1

rN2∑

l=1

BN
i,j,l

(
δUN1

)
j
· UN2

l +
rN1∑

j=1

rN2∑

l=1

BN
i,j,lU

N1
j · δUN2

l

with

(
δBN

1,j,l · · · δBN
rN ,j,l

) = ((
U

N1
j · UN2

l

)(N ,{}))T (
PN )⊥

B(N ,NC)
(
S
N+)T

δU� = (
P �

)⊥
B(�,�C)

(
S

�+)T
.

Here and below, M+ is the pseudoinverse of a matrix M , i.e. M+ = (MT M)−1MT

if M has full column rank.

Proof The equation for δBN0 can be deduced directly from Corollary 5. For
N ∈ I(T )\{N0} and (N1,N2) = succ(N ), Corollary 5 states that

δBN
i,j,l =

rN∑

i′=1

〈
B,S

(
Y,N , i′

) ·P⊥
N

(
U

N1
j · UN2

l

)〉
wN

i,i′

=
rN∑

i′=1

〈
P⊥
N

(
U

N1
j · UN2

l

)
,
〈
B,S

(
Y,N , i′

)〉〉
wN

i,i′

=
rN∑

i′=1

〈
U

N1
j · UN2

l ,P⊥
N

〈
B,S

(
Y,N , i′

)〉〉
wN

i,i′

for all j ∈ {1, . . . , rN1}, l ∈ {1, . . . , rN2}. Since WN defined in (3.8) satisfies

(
S
N )

WN = (
S
N )((

S
N )T

S
N )−1 = (

S
N+)T (4.1)

we obtain

(
δBN

1,j,l · · · δBN
rN ,j,l

) = ((
U

N1
j · UN2

l

)(N ,{}))T (
PN )⊥

B(N ,NC)
(
S
N+)T

.

Last, for � ∈ L(T ) and i = 1, . . . , r� we recall from Corollary 5 that

δU�
i =

r�∑

i′=1

P⊥
�

〈
B,S

(
Y, �, i′

)〉
w�

i′,i ,

and substituting (4.1) with N = � yields

δU� = (
P �

)⊥
B(�,�C)

(
S

�+)T
. �
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With Corollary 7 we are now able to derive a compact representation for the pro-
jection of a tensor on the tangent space of the manifold.

Corollary 8 Under the assumptions of Corollary 7, the projection of a tensor B ∈
R

N1×···×Nd on the tangent space TYM can be written as

P(Y )B

= ((
U
N01 �U

N02
)(
U
N01 �U

N02
)T

B(N0,{}))
(N0,{})

+
∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

((
U
N1 �U

N2
)(
U
N1 �U

N2
)T

× (
PN )⊥

B(N ,NC)
(
S
N
S
N +)T )

(N ,NC)

+
∑

�∈L(T )

((
P �

)⊥
B(�,�C)

(
S

�
S

�+)T )
(�,�C)

,

where (N01,N02) = succ(N0).

Proof By resolving the recursion in Corollary 5 and 7, respectively, we obtain the
equation

P(Y )B =
rN01∑

j=1

rN02∑

l=1

U
N01
j · UN02

l δBN0
1,j,l (4.2)

+
∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

rN1∑

j=1

rN2∑

l=1

U
N1
j · UN2

l ·
rN∑

i=1

δBN
i,j,lS(Y,N , i) (4.3)

+
∑

�∈L(T )

r�∑

i=1

δU�
i · S(Y, �, i), (4.4)

see also Eqs. 3.3), (3.4), (3.5) and (3.6) in Sect. 3. A closer inspection of the first term
(4.2) shows that

rN1∑

j=1

rN2∑

l=1

U
N1
j · UN2

l δBN0
1,j,l

=
rN1∑

j=1

rN2∑

l=1

U
N1
j · UN2

l

((
U

N1
j · UN2

l

)(N0,{}))T
B(N0,{})

=
(rN1∑

j=1

rN2∑

l=1

(
U

N1
j · UN2

l

)(N0,{})((UN1
j · UN2

l

)(N0,{}))T
B(N0,{})

)

(N0,{})
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= ((
U
N1 �U

N2
)(
U
N1 �U

N2
)T

B(N0,{}))
(N0,{}).

For the second term (4.3), we obtain

∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

rN1∑

j=1

rN2∑

l=1

U
N1
j · UN2

l ·
rN∑

i=1

δBN
i,j,lS(Y,N , i)

=
∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

(rN1∑

j=1

rN2∑

l=1

(
U

N1
j · UN2

l

)(N ,{})

×
rN∑

i=1

δBN
i,j,l

(
S(Y,N , i)(NC,{}))T

)

(N ,NC)

=
∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

(rN1∑

j=1

rN2∑

l=1

((
U

N1
j · UN2

l

)(N ,{}))

× (
δBN

1,j,l . . . δBN
rN ,j,l

)(
S
N )T

)

(N ,NC)

and together with

(
δBN

1,j,l . . . δBN
rN ,j,l

) = ((
U

N1
j · UN2

l

)(N ,{}))T (
PN )⊥

B(N ,NC)
(
S
N +)T

we obtain

∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

rN1∑

j=1

rN2∑

l=1

U
N1
j · UN2

l ·
rN∑

i=1

δBN
i,j,lS(Y,N , i)

=
∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

((
U
N1 �U

N2
)(
U
N1 �U

N2
)T (

PN )⊥
B(N ,NC)

× (
S
N
S
N +)T )

(N ,NC)
.

Finally, the last term (4.4) can be reformulated as

∑

�∈L(T )

r�∑

i=1

δU�
i · S(Y, �, i) =

∑

�∈L(T )

(
r�∑

i=1

(
δU�

i

)(�,{})(S(Y, �, i)(�C,{}))T

)

(�,�C)

=
∑

�∈L(T )

(
δU�

(
S

�
)T )

(�,�C)
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=
∑

�∈L(T )

((
P �

)⊥
B(�,�C)

(
S

�+)T (
S

�
)T )

(�,�C)

=
∑

�∈L(T )

((
P �

)⊥
B(�,�C)

(
S

�
S

�+)T )
(�,�C)

.

This proves the assertion. �

5 Curvature bounds

In this section estimates for the curvature of the manifold are proven. These esti-
mates, formulated in Lemma 10 below, will play a crucial role in the error analysis
of the variational approximation in Sect. 6. Similar results have been obtained for the
dynamical low-rank approximation of matrices or tensors, respectively, in [7, 8]. Our
general strategy follows the ideas developed there, but extending the results of [7, 8]
to the hierarchical Tucker format is a considerable challenge due to the recursive
definition of the equations of motion.

In the following σi(M) denotes the i-th singular value (in descending order)
of a matrix M ∈ R

n×m with n,m ≥ i. Moreover, we will use the Frobenius norm
‖Y‖F = √〈Y,Y 〉 of tensors Y ∈ R

N1×···×Nd . By construction the Frobenius norm
of a tensor equals the matrix Frobenius norm of a corresponding matricization, i.e.
‖Y‖F = ‖Y (N ,NC)‖F for all N ∈ T \ {N0}.
Lemma 9 If Y, Ỹ ∈ H-Tucker((rN )N∈T ) are tensors in the hierarchical Tucker for-
mat fulfilling

σrN

(
Y (N ,NC)

) ≥ ρ > 0 and ‖Y − Ỹ‖F = δ

for some N ∈ T \ {N0}, then

σrN

(
Ỹ (N ,NC)

) ≥ ρ − δ.

If in addition ρ > δ, then the pseudoinverse S̃
N+

of the single-hole-matrix S̃
N of Ỹ

is bounded by

∥
∥̃SN

+∥
∥

2 ≤ 1

ρ − δ
.

Proof The estimates

δ = ‖Ỹ − Y‖F = ∥
∥Ỹ (N ,NC) − Y (N ,NC)

∥
∥

F

≥ ∥
∥Ỹ (N ,NC) − Y (N ,NC)

∥
∥

2

≥ ∣
∣σrN

(
Ỹ (N ,NC)

) − σrN

(
Y (N ,NC)

)∣
∣ (5.1)

hold for all N ∈ T \ {N0}. The inequality (5.1) is shown with Theorem 7.4.51 in [6].
Then

σrN

(
Ỹ (N ,NC)

) ≥ σrN

(
Y (N ,NC)

) − ∣
∣σrN

(
Ỹ (N ,NC)

) − σrN

(
Y (N ,NC)

)∣
∣ ≥ ρ − δ.
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For ρ > δ the pseudoinverse can be bounded by

∥
∥̃SN

+∥
∥

2 = (
σrN

(
S̃
N ))−1 = (

σrN

(
Ỹ (N ,NC)

))−1 ≤ (ρ − δ)−1. �

Definition 5.1 An ordered tuple (Y, Ỹ ) ∈ (H-Tucker((rN )N∈T ))2 is called path-
connected with respect to ODE (5.2), if there exists a solution for the boundary value
problem

Ẋ(τ ) =
∞∑

k=0

(
P

(
X(τ)

) − P(Y )
)k

P (Y )(Ỹ − Y)

X(0) = Y, X(1) = Ỹ

(5.2)

on the interval [0,1].

Lemma 10 (curvature bounds) Let (Y, Ỹ ) ∈ (H-Tucker((rN )N∈T ))2 tensors in the
hierarchical Tucker format, which are path-connected with respect to ODE (5.2). Let
(ρN )N∈T \{N0} and (cN )N∈T \{N0} be families of positive real values such that

σrN

(
Y (N ,NC)

) ≥ ρN > 0 and δ := ‖Y − Ỹ‖F ≤ cN ρN (5.3)

for all N ∈ T \ {N0}. Furthermore let c̃ > 0 be a constant fulfilling the inequalities

∑

N∈T \{N0}
8cN

(
c̃(1 − c̃ − cN )

)−1 ≤ 1 and c̃ + cN < 1

and define

CY,Ỹ :=
∑

N∈T \{N0}
8
(
ρN (1 − c̃ − cN )

)−1
.

Then the bounds
∥
∥
(
P(Y ) − P(Ỹ )

)
B

∥
∥

F
≤ CY,Ỹ ‖Y − Ỹ‖F ‖B‖F , (5.4)

∥
∥P ⊥(Y )(Ỹ − Y)

∥
∥

F
≤ CY,Ỹ

1 − c̃
‖Y − Ỹ‖2

F (5.5)

hold for every tensor B ∈R
N1×···×Nd .

A similar result has been proven independently in [12].

Proof Since the proof is rather long and technical, it is divided into several parts.
Part 1: For the moment we assume that there are

X(τ) ∈H-Tucker
(
(rN )N∈T

)
and Z(τ)⊥TYM

such that

Y + τ(Ỹ − Y) = X(τ) + Z(τ) (5.6)
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for all 0 ≤ τ ≤ 1. Below we will prove that this assumption is indeed true. In the
following Δ denotes the projection of the difference from Y to Ỹ on the tangent
space TYM:

Δ := P(Y )(Ỹ − Y) ∈ TYM.

Obviously ‖Δ‖F ≤ ‖Ỹ −Y‖F = δ holds. The projection of (5.6) on the tangent space
leads to the equation

P(Y )
(
X(τ) − Y

) = τΔ, (5.7)

and differentiating with respect to τ gives

P(Y )
(
Ẋ(τ )

) = Δ.

The derivative Ẋ(τ ) belongs to the tangent space of X(τ), therefore

P
(
X(τ)

)
Ẋ(τ ) = Ẋ(τ )

is satisfied, which leads to

Ẋ(τ ) = P
(
X(τ)

)
Ẋ(τ ) + Δ − P(Y )Ẋ(τ )

︸ ︷︷ ︸
=0

= Δ + (
P

(
X(τ)

) − P(Y )
)
Ẋ(τ ). (5.8)

In part 6 of the proof it will be shown that

∥
∥P

(
X(τ)

) − P(Y )
∥
∥

F
≤ c̃ < 1 (5.9)

for all 0 ≤ τ ≤ 1. Together with (5.8) this yields

∥
∥Ẋ(τ )

∥
∥

F
≤ ‖Δ‖F + ∥

∥P
(
X(τ)

) − P(Y )
∥
∥

F

∥
∥Ẋ(τ )

∥
∥

F
≤ δ + c̃

∥
∥Ẋ(τ )

∥
∥

F

and hence

∥
∥Ẋ(τ )

∥
∥

F
≤ δ(1 − c̃)−1. (5.10)

Estimate (5.9) guarantees for all τ ∈ [0,1] the convergence of the Neumann series for
P(X(τ)) − P(Y ). Hence, the operator I − [P(X(τ)) − P(Y )] is invertible. Defining
the function

G
(
X(τ)

) :=
∞∑

k=0

(
P

(
X(τ)

) − P(Y )
)k

Δ = [
I − (

P
(
X(τ)

) − P(Y )
)]−1

Δ

leads to the equations

Ẋ(τ ) = Δ + (
P

(
X(τ)

) − P(Y )
)
Ẋ(τ ) = G

(
X(τ)

)
. (5.11)
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Then, the existence of a solution X(τ) of (5.11), (5.8) respectively, with initial value
X(0) = Y follows from the theory of ordinary differential equations and (5.10). To-
gether with c̃ < 1 the estimates

∥
∥P ⊥(

X(τ)
)(

P(Y )Ẋ(τ ) − P(Y )Δ
)∥
∥

F

= ∥
∥
[
I − P

(
X(τ)

)]
P(Y )

(
Ẋ(τ ) − Δ

)∥
∥

F

= ∥
∥
[
P(Y ) − P

(
X(τ)

)](
P(Y )Ẋ(τ ) − Δ

)∥
∥

F

= ∥
∥
[
P(Y ) − P

(
X(τ)

)][
P

(
X(τ)

) + P ⊥(
X(τ)

)](
P(Y )Ẋ(τ ) − Δ

)∥
∥

F

= ∥
∥
[
P(Y ) − P

(
X(τ)

)]
P ⊥(

X(τ)
)(

P(Y )Ẋ(τ ) − Δ
)∥
∥

F

≤ ∥
∥P

(
X(τ)

) − P(Y )
∥
∥

F

∥
∥P ⊥(

X(τ)
)(

P(Y )Ẋ(τ ) − Δ
)∥
∥

F

≤ c̃
∥
∥P ⊥(

X(τ)
)(

P(Y )Ẋ(τ ) − Δ
)∥
∥

F

show

P ⊥(
X(τ)

)(
P(Y )Ẋ(τ ) − Δ

) = 0.

Moreover the projection of (5.8) on the tangent space of X(τ) leads to

P
(
X(τ)

)(
P(Y )Ẋ(τ ) − Δ

) = 0

and hence

P(Y )Ẋ(τ ) = Δ. (5.12)

Since integrating (5.12) leads to (5.7), setting

Z(τ) = τP ⊥(Y )(Ỹ − Y) − P ⊥(Y )X(τ)

shows the existence of the decomposition stated above.
Part 2: In this part of the proof, we prove a number of auxiliary inequalities for

later use. Since X(0) = Y by construction, the fundamental theorem of calculus and
(5.10) reveal the estimate

∥
∥X(τ) − Y

∥
∥

F
≤ τ sup

s∈[0,τ ]
∥
∥Ẋ(s)

∥
∥

F
≤ δ(1 − c̃)−1

because τ ≤ 1. Let UN (τ ) and S
N (τ ) be the orthonormal basis matrix and the single-

hole-matrix of X(τ), i.e. (X(τ))(N ,NC) = U
N (τ )SN (τ )T . Under Assumption (5.3),

Lemma 9 can be applied and provides the bound

∥
∥SN (τ )+

∥
∥

2 ≤ 1

ρN − (1 − c̃)−1δ
≤ 1

ρN − (1 − c̃)−1cN ρN

= 1 − c̃

ρN (1 − c̃ − cN )
(5.13)
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for all 0 ≤ τ ≤ 1 for the pseudoinverse S
N (τ ). Next, a bound for ‖U̇N

S
N (τ )T ‖F is

shown. Since PN (τ )⊥ = I −U
N (τ )UN (τ )T by definition, it follows from

U
N (τ )T UN (τ ) = I and U

N (τ )T U̇N (τ ) = 0 (5.14)

that

U̇
N (τ )SN (τ )T = PN (τ )⊥

(
U̇
N (τ )SN (τ )T +U

N (τ )ṠN (τ )T
)

= PN (τ )⊥Ẋ(N ,NC)(τ ).

With ‖PN (τ )⊥‖2 ≤ 1 and (5.10), we thus obtain

∥
∥U̇N

S
N (τ )T

∥
∥

F
≤ ∥

∥PN (τ )⊥
∥
∥

2 · ∥∥Ẋ(N ,NC)(τ )
∥
∥

F
≤ δ(1 − c̃)−1.

Combining this with (5.13) yields

∥
∥U̇N (τ )

∥
∥

F
≤ ∥

∥U̇N (τ )SN (τ )T
∥
∥

F

∥
∥SN (τ )+

∥
∥

2 ≤ δ(1 − c̃)−1 1 − c̃

ρN (1 − c̃ − cN )

= δ

ρN (1 − c̃ − cN )
.

With this inequality, the derivative of PN (τ )⊥ = I −U
N (τ )UN (τ )T can be bounded

by

∥
∥ṖN (τ )⊥

∥
∥

F
≤ 2δ

ρN (1 − c̃ − cN )
.

A bound for the derivative of the single-hole-matrix S
N (τ ) of X(τ) can be derived

from the orthonormality (5.14) and (5.10) via

∥
∥ṠN (τ )T

∥
∥

F
= ∥

∥UN (τ )T U̇N (τ )SN (τ )T +U
N (τ )T UN (τ )ṠN (τ )T

∥
∥

F

= ∥
∥UN (τ )T Ẋ(N ,NC)(τ )

∥
∥

F

≤ δ(1 − c̃)−1. (5.15)

Next, we want to estimate the derivative of SN (τ )SN (τ )+, which can be written as

d

dτ

[
S
N (τ )SN (τ )+

] = d

dτ

[
S
N (τ )

(
S
N (τ )T SN (τ )

)−1
S
N (τ )T

]

= T1(τ ) + T2(τ ) + T T
1 (τ )

with

T1(τ ) = Ṡ
N (τ )SN (τ )+

T2(τ ) = S
N (τ )

d

dτ

[(
S
N (τ )T SN (τ )

)−1]
S
N (τ )T .
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It follows from (5.13) and (5.15) that

‖T1‖F ≤ ∥
∥SN (τ )+

∥
∥

2 · ∥∥ṠN (τ )
∥
∥

F
≤ 1 − c̃

ρN (1 − c̃ − cN )
δ(1 − c̃)−1

= δ

ρN (1 − c̃ − cN )
.

In order to bound T2 we substitute

d

dτ

[(
S
N (τ )T SN (τ )

)−1]

= −(
S
N (τ )T SN (τ )

)−1 d

dτ

[
S
N (τ )T SN (τ )

](
S
N (τ )T SN (τ )

)−1

and obtain

T2(τ ) = −(
S
N (τ )+

)T d

dτ

[
S
N (τ )T SN (τ )

]
S
N (τ )+

= −T T
1 (τ )SN (τ )SN (τ )+ − (

S
N (τ )+

)T
S
N (τ )T T1(τ ).

Since ‖SN (τ )SN (τ )+‖2 = 1, this gives the bound ‖T2(τ )‖F ≤ 2‖T1(τ )‖F and in
total

∥
∥
∥
∥

d

dτ

[(
S
N (τ )SN (τ )+

)T ]
∥
∥
∥
∥

F

≤ 4
∥
∥T1(τ )

∥
∥

F
≤ 4δ

ρN (1 − c̃ − cN )
.

Part 3: Since (Y, Ỹ ) ∈ (H-Tucker((rN )N∈T ))2 is path-connected with respect to
ODE (5.2), we have X(1) = Ỹ . As a first step towards an error bound for ‖(P (Ỹ ) −
P(Y ))B‖F we use

[
P(Ỹ ) − P(Y )

]
B = [

P
(
X(1)

) − P
(
X(0)

)]
B =

∫ 1

0

d

dτ

[
P

(
X(τ)

)
B

]
dτ (5.16)

and replace P(X(τ))B by the representation from Corollary 8. This yields
∥
∥
(
P(Ỹ ) − P(Y )

)
B

∥
∥

F

≤ max
τ∈[0,1]

∥
∥
∥
∥

d

dτ

[(
U
N01(τ ) �U

N02(τ )
)(
U
N01(τ ) �U

N02(τ )
)T

B(N0,{})]
∥
∥
∥
∥

F

(5.17)

+
∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

max
τ∈[0,1]

∥
∥
∥
∥

d

dτ

[
W

(N1,N2)(τ )PN (τ )⊥B(N ,NC)

× (
S
N (τ )SN

+
(τ )

)T ]
∥
∥
∥
∥

F

(5.18)

+
∑

�∈L(T )

max
τ∈[0,1]

∥
∥
∥
∥

d

dτ

[
P �(τ)⊥B(�,�C)

(
S

�(τ )S�+
(τ )

)T ]
∥
∥
∥
∥

F

, (5.19)
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where

W
(N1,N2)(τ ) := (

U
N1(τ ) �U

N2(τ )
)(
U
N1(τ ) �U

N2(τ )
)T

and (N01,N02) = succ(N0).
Part 4: Now for each of the three terms (5.17), (5.18), (5.19), a suitable bound

has to be derived. Assuming N to be an interior node with successors (N1,N2) =
succ(N ) allows us to bound

∥
∥
∥
∥

d

dτ
W

(N1,N2)(τ )

∥
∥
∥
∥

2
=

∥
∥
∥
∥

d

dτ

[(
U
N1(τ ) �U

N2(τ )
)(
U
N1(τ ) �U

N2(τ )
)T ]

∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥

d

dτ

[
U
N1(τ ) �U

N2(τ )
]
∥
∥
∥
∥

2

≤ 2
∥
∥U̇N1(τ ) �U

N2(τ )
∥
∥

2 + 2
∥
∥UN1(τ ) � U̇

N2(τ )
∥
∥

2

≤ 2
∥
∥U̇N1(τ )

∥
∥

2 + 2
∥
∥U̇N2(τ )

∥
∥

2

≤ 2δ

ρN1(1 − c̃ − cN1)
+ 2δ

ρN2(1 − c̃ − cN2)
.

Hence, the inequality

∥
∥
∥
∥

d

dτ

[(
U
N01(τ ) �U

N02(τ )
)(
U
N01(τ ) �U

N02(τ )
)T

B(N0,{})]
∥
∥
∥
∥

F

≤ 2δ

ρN01(1 − c̃ − cN01)
‖B‖F + 2δ

ρN02(1 − c̃ − cN02)
‖B‖F (5.20)

holds for all tensors B ∈R
N1×···×Nd .

Next, we consider (5.18). Assuming N �= N0 allows us to deduce the estimate

∥
∥
∥
∥

d

dτ

[
W

(N1,N2)(τ )PN (τ )⊥B(N ,NC)
(
S
N (τ )SN (τ )+

)T ]
∥
∥
∥
∥

F

≤
∥
∥
∥
∥

d

dτ

[
W

(N1,N2)(τ )
]
∥
∥
∥
∥

2
‖B‖F

∥
∥
(
S
N (τ )SN (τ )+

)T ∥
∥

2

+ ∥
∥W(N1,N2)(τ )

∥
∥

2

∥
∥
∥
∥

d

dτ

[
PN (τ )⊥

]
∥
∥
∥
∥

F

‖B‖F

∥
∥
(
S
N (τ )SN (τ )+

)T ∥
∥

2

+ ∥
∥W(N1,N2)(τ )

∥
∥

2‖B‖F

∥
∥
∥
∥

d

dτ

[(
S
N (τ )SN (τ )+

)T ]
∥
∥
∥
∥

2

≤
(

2δ

ρN1(1 − c̃ − cN1)
+ 2δ

ρN2(1 − c̃ − cN2)
+ 6δ

ρN (1 − c̃ − cN )

)

‖B‖F .

(5.21)
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Finally, let � be a leaf of the dimension tree. Then, for the term in (5.19) we obtain
the estimate

∥
∥
∥
∥

d

dτ

[
P �(τ)⊥B(�,�C)

(
S

�(τ )S�(τ )+
)]

∥
∥
∥
∥

F

≤
∥
∥
∥
∥

d

dτ

[
P �(τ)⊥

]
∥
∥
∥
∥

F

‖B‖F

∥
∥
(
S

�(τ )S�(τ )+
)T ∥

∥
2

+ ‖B‖F

∥
∥
∥
∥

d

dτ

[(
S

�(τ )S�(τ )+
)T ]

∥
∥
∥
∥

2

≤ 6δ

ρ�(1 − c̃ − c�)
‖B‖F . (5.22)

Part 5: Substituting (5.20), (5.21), (5.22) into (5.17), (5.18), (5.19) yields the first
assertion (5.4):

∥
∥
(
P(Ỹ ) − P(Y )

)
B

∥
∥

F

≤ 2δ

ρN01(1 − c̃ − cN01)
‖B‖F + 2δ

ρN02(1 − c̃ − cN02)
‖B‖F

+
∑

N∈I(T )\{N0}
(N1,N2)=succ(N )

(
2δ

ρN1(1 − c̃ − cN1)
+ 2δ

ρN2(1 − c̃ − cN2)

+ 6δ

ρN (1 − c̃ − cN )

)

‖B‖F

+
∑

�∈L(T )

6δ

ρ�(1 − c̃ − c�)
‖B‖F

=
∑

N∈T \{N0}

8δ

ρN (1 − c̃ − cN )
‖B‖F ,

where (N01,N02) = succ(N0). The proof of the second assertion (5.5) is much
shorter. With P(X(τ))Ẋ(τ ) = Ẋ(τ ) we obtain

P ⊥(Y )(Ỹ − Y) =
∫ 1

0

(
I − P(Y )

)
Ẋ(τ ) dτ =

∫ 1

0

(
P

(
X(τ)

) − P(Y )
)
Ẋ(τ ) dτ,

and with (5.4) and (5.10) the error bound

∥
∥P ⊥(Y )(Ỹ − Y)

∥
∥

F
≤ max

τ∈[0,1]
∥
∥P

(
X(τ)

) − P(Y )
∥
∥

F
· ∥∥Ẋ(τ )

∥
∥

F

≤
∑

N∈T \{N0}

8δ

ρN (1 − c̃ − cN )
δ(1 − c̃)−1
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=
∑

N∈T \{N0}

8δ2

ρN (1 − c̃ − cN )(1 − c̃)

follows.
Part 6: Finally, we can prove inequality (5.9) which had been used in part 1 of

the proof. Assume (5.9) does not hold. Since M is a smooth manifold, there exist
0 < τ ∗ < 1 and a tensor B∗ ∈R

N1×···×Nd such that
∥
∥P

(
X(s)

) − P(Y )
∥
∥

F
≤ c̃ < 1 and

∥
∥
(
P

(
X

(
τ ∗)) − P(Y )

)
B∗∥∥

F
= c̃

∥
∥B∗∥∥

F
(5.23)

hold for all s ∈ [0, τ ∗]. Under these conditions all the estimates of the proof remain
valid for τ ∈ [0, τ ∗]. However, in (5.16) we take the integral over the interval [0, τ ∗]
instead of [0,1] and obtain with similar arguments the estimate

∥
∥
(
P

(
X

(
τ ∗)) − P(Y )

)
B

∥
∥

F
≤ τ ∗ ∑

N∈T \{N0}

8δ

ρN (1 − c̃ − cN )
‖B‖F

for any tensor B ∈ R
N1×···×Nd . This results in a contradiction to (5.23) since

∥
∥
(
P

(
X

(
τ ∗)) − P(Y )

)
B∗∥∥

F

≤ τ ∗ ∑

N∈T \{N0}

8δ

ρN (1 − c̃ − cN )

∥
∥B∗∥∥

F
≤ τ ∗c̃

∥
∥B∗∥∥

F
< c̃

∥
∥B∗∥∥

F
.

�

In order to simplify the previous theorem, we assume cN = c for all N ∈ T \ {N0}
and maximize this constant under the constraints of Lemma 10, i.e.

∑

N∈T \{N0}
8cN

(
c̃(1 − c̃ − cN )

)−1 ≤ 1 and c̃ + cN < 1.

Since the number of nodes in the dimension tree is always 2d − 1, the maximum will
be attained for

c̃ = −8(2d − 2) +
√

82(2d − 2)2 + 8(2d − 2) and c = −c̃2 + c̃

8(2d − 2) + c̃
.

As c̃ → 1
2 for d → ∞, we let

c̃ = 1

2
and c = (64d − 62)−1

and obtain the next corollary.

Corollary 11 (curvature bounds) Let (Y, Ỹ ) ∈ (H-Tucker((rN )N∈T ))2 tensors,
which are path-connected with respect to ODE (5.2). Let ρ > 0 such that

σrN

(
Y (N ,NC)

) ≥ ρ > 0 and ‖Y − Ỹ‖F ≤ (64d − 62)−1ρ
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is satisfied for all N ∈ T \ {N0} and β := (32d − 31)ρ−1. Then

∥
∥
(
P(Y ) − P(Ỹ )

)
B

∥
∥

F
≤ β‖Y − Ỹ‖F ‖B‖F (5.24)

∥
∥P ⊥(Y )(Ỹ − Y)

∥
∥

F
≤ 2β‖Y − Ỹ‖2

F (5.25)

for any tensor B ∈R
N1×···×Nd .

Proof Inserting c = cN = (64d −62)−1 for all N ∈ T \{N0} and c̃ = 1
2 in the bounds

(5.4) and (5.5) of Lemma 10 proves the assertion. �

6 Error analysis

We are finally ready to analyze the accuracy of the variational approximation Y(t) ∈
H-Tucker((rN )N∈T ) to the solution of (3.1). The error bound presented in Theo-
rem 12 is the main result of this article. Very similar results have independently and
simultaneously been obtained in [12].

Let Yex(t) ∈ R
N1×···×Nd be the solution of the differential equation (3.1), i.e.

Ẏex = F(Yex) for all t ∈ [0, tend] with initial value Yex(0) ∈ R
N1×···×Nd . Let Y(t) ∈

M = H-Tucker((rN )N∈T ) be the variational approximation defined by (3.2), i.e.
Ẏ = P(Y )F (Y ). For simplicity, it is assumed that Yex(0) ∈ M and that Y(0) =
Yex(0). (Otherwise, an additional error term for the initial error has to be included
in Theorem 12.) Moreover, let X(t) ∈M be the best approximation of Yex(t) on M,
i.e. for every t ∈ [0, T ] we have

∥
∥X(t) − Yex(t)

∥
∥

F
≤ ∥

∥X̂ − Yex(t)
∥
∥

F
∀X̂ ∈M.

Since by definition and by the triangle inequality we have

∥
∥X(t) − Yex(t)

∥
∥

F
≤ ∥

∥Y(t) − Yex(t)
∥
∥

F
≤ ∥

∥Y(t) − X(t)
∥
∥

F
+ ∥

∥X(t) − Yex(t)
∥
∥

F
,

it makes sense to prove a result which bounds the error ‖Y(t) − X(t)‖F in terms of
‖X(t) − Yex(t)‖F . The following assumptions are made for all t ∈ [0, tend].
(A1) X(t) is continuously differentiable.
(A2) There is a constant μ > 0 such that

∥
∥F

(
Yex(t)

)∥
∥

F
≤ μ,

∥
∥F

(
X(t)

)∥
∥

F
≤ μ and

∥
∥F

(
Y(t)

)∥
∥

F
≤ μ.

(A3) There exist constants L > 0 and λ ∈ R such that the Lipschitz conditions

∥
∥F

(
Yex(t)

) − F
(
X(t)

)∥
∥

F
≤ L

∥
∥Yex(t) − X(t)

∥
∥

F
and

〈
F

(
Y(t)

) − F
(
X(t)

)
, Y (t) − X(t)

〉 ≤ λ
∥
∥Y(t) − X(t)

∥
∥2

F

are fulfilled.
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(A4) The singular values of the matricizations of the best approximation are bounded
from below by

σrN

(
X(N ,NC)(t)

) ≥ ρ > 0 for all N ∈ T \ {N0}.
(A5) The distance from the best approximation X(t) to the exact solution Yex(t) is

bounded by

∥
∥X(t) − Yex(t)

∥
∥

F
≤ 1

2β
,

where β = (32d − 31)ρ−1.
(A6) The tuple (Y (t),X(t)) is path-connected with respect to ODE (5.2).

Similar assumptions have been made in [8] where the approximation error of the
non-hierarchical Tucker format has been analyzed.

Theorem 12 Under the above assumptions the difference between the variational
approximation and the best approximation is bounded by

∥
∥Y(t) − X(t)

∥
∥

F
≤ (L + 2μβ)

∫ t

0

∥
∥Yex(s) − X(s)

∥
∥

F
e(5μβ+λ)(t−s) ds (6.1)

as long as the right-hand side of (6.1) is bounded by 1
2β

.

Proof Because of X(t) being the best approximation, the deviation Yex(t) − X(t) is
orthogonal to the tangent space TXM,

P
(
X(t)

)(
Yex(t) − X(t)

) = 0

and differentiating yields

0 = d

dt

[
P

(
X(t)

)(
Yex(t) − X(t)

)]

= [
P ′(X(t)

) · (Yex(t) − X(t)
)]

Ẋ(t) + P
(
X(t)

)(
Ẏex(t) − Ẋ(t)

)
.

With Ẋ(t) = P(X(t))Ẋ(t) we obtain

Ẋ(t) = P
(
X(t)

)
Ẏex(t) + D(t)

with D(t) = P ′(X(t)
) · (Yex(t) − X(t)

)
Ẋ(t). (6.2)

Next, we derive an estimate for D(t). For an arbitrary tensor B ∈ R
N1×···×Nd the

bound (5.24) yields

∥
∥
(
P ′(X(t)

) · B)
Ẋ(t)

∥
∥

F
=

∥
∥
∥
∥

d

dt

[
P

(
X(t)

)
B

]
∥
∥
∥
∥

F

= lim
h→0

1

h

∥
∥
[
P

(
X(t + h)

) − P(X(t)
]
B

∥
∥

F
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≤ lim
h→0

1

h
β
∥
∥X(t + h) − X(t)

∥
∥

F
‖B‖F

= β
∥
∥Ẋ(t)

∥
∥

F
‖B‖F ,

and for B := Yex(t) − X(t) this yields
∥
∥D(t)

∥
∥

F
≤ β

∥
∥Ẋ(t)

∥
∥

F

∥
∥Yex(t) − X(t)

∥
∥

F
. (6.3)

In the following we let δ(t) := ‖Yex(t) − X(t)‖F and ε(t) := ‖Y(t) − X(t)‖F . In-
serting (6.2) into (6.3) leads to

∥
∥D(t)

∥
∥

F
≤ βδ(t)

(∥
∥P

(
X(t)

)
Ẏex(t)

∥
∥

F
+ ∥

∥D(t)
∥
∥

F

)
.

With Assumption (A5), i.e. ‖δ(t)‖F ≤ 1
2β

, we obtain the estimate

∥
∥D(t)

∥
∥

F
≤ βδ(t)

∥
∥P

(
X(t)

)
Ẏex(t)

∥
∥

F
+ 1

2

∥
∥D(t)

∥
∥

F
,

and with Assumption (A2)
∥
∥D(t)

∥
∥

F
≤ 2βδ(t)

∥
∥P

(
X(t)

)
Ẏex(t)

∥
∥

F
≤ 2βδ(t)μ.

Subtracting (6.2) from Ẏ (t) = P(Y (t))F (Y (t)) gives

Ẏ (t) − Ẋ(t) = P
(
Y(t)

)
F

(
Y(t)

) − P
(
X(t)

)
F

(
Yex(t)

) − D(t)

= [
P

(
Y(t)

) − P
(
X(t)

)]
F

(
X(t)

)

+ P
(
X(t)

)[
F

(
X(t)

) − F
(
Yex(t)

)] + [
F

(
Y(t)

) − F
(
X(t)

)]

− P ⊥(
Y(t)

)[
F

(
Y(t)

) − F
(
X(t)

)] − D(t). (6.4)

Next, we want to find an estimate for the inner product 〈Ẏ (t) − Ẋ(t), Y (t) − X(t)〉.
For this purpose we consider the single terms on the right hand side of (6.4) and, via
Corollary 11, obtain the following estimates:

1.
〈[
P

(
Y(t)

) − P
(
X(t)

)]
F

(
X(t)

)
, Y (t) − X(t)

〉

≤ ∥
∥
[
P

(
Y(t)

) − P
(
X(t)

)]
F

(
X(t)

)∥
∥

F

∥
∥Y(t) − X(t)

∥
∥

F

≤ β
∥
∥Y(t) − X(t)

∥
∥2

F

∥
∥F

(
X(t)

)∥
∥

F

≤ μβε2(t),

2.
〈
P

(
X(t)

)[
F

(
X(t)

) − F
(
Yex(t)

)]
, Y (t) − X(t)

〉

≤ ∥
∥F

(
X(t)

) − F
(
Yex(t)

)∥
∥

F

∥
∥Y(t) − X(t)

∥
∥

F

≤ L
∥
∥X(t) − Yex(t)

∥
∥

F

∥
∥Y(t) − X(t)

∥
∥

F

= Lδ(t)ε(t),
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3.
〈
F

(
Y(t)

) − F
(
X(t)

)
, Y (t) − X(t)

〉 ≤ λ
∥
∥Y(t) − X(t)

∥
∥2

F
= λε2(t),

4.
〈
P ⊥(

Y(t)
)[

F
(
Y(t)

) − F
(
X(t)

)]
, Y (t) − X(t)

〉

= 〈
F

(
Y(t)

) − F
(
X(t)

)
,P ⊥(

Y(t)
)(

Y(t) − X(t)
)〉

≤ ∥
∥F

(
Y(t)

) − F
(
X(t)

)∥
∥

F

∥
∥P ⊥(

Y(t)
)(

Y(t) − X(t)
)∥
∥

F

≤ (∥
∥F

(
Y(t)

)∥
∥

F
+ ∥

∥F
(
X(t)

)∥
∥

F

)
2β

∥
∥Y(t) − X(t)

∥
∥2

F

≤ 4μβε2(t),

5.
〈
D(t), Y (t) − X(t)

〉 ≤ ∥
∥D(t)

∥
∥

F

∥
∥Y(t) − X(t)

∥
∥

F
≤ 2βμδ(t)ε(t).

With these inequalities, we obtain

ε(t)ε̇(t) = ∥
∥Y(t) − X(t)

∥
∥

F

d

dt

∥
∥Y(t) − X(t)

∥
∥

F

= 1

2

d

dt

∥
∥Y(t) − X(t)

∥
∥2

F

= 〈
Ẏ (t) − Ẋ(t), Y (t) − X(t)

〉

≤ μβε2(t) + Lδ(t)ε(t) + λε2(t) + 4μβε2(t) + 2βδ(t)με(t)

and hence

ε̇(t) ≤ (5μβ + λ)ε(t) + (L + 2μβ)δ(t).

Finally Gronwall’s inequality leads to the assertion

ε(t) ≤ (L + 2μβ)

∫ t

0
δ(t)e(5μβ+λ)(t−s) ds. �
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