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Abstract In this paper we consider the finite element approximation of the Stokes
eigenvalue problems based on projection method, and derive some superconvergence
results and the related recovery type a posteriori error estimators. The projection
method is a postprocessing procedure that constructs a new approximation by us-
ing the least squares strategy. The results are based on some regularity assumptions
for the Stokes equations, and are applicable to the finite element approximations of
the Stokes eigenvalue problems with general quasi-regular partitions. Numerical re-
sults are presented to verify the superconvergence results and the efficiency of the
recovery type a posteriori error estimators.

Keywords Stokes eigenvalue problems · Superconvergence · A posteriori error
estimates

Mathematics Subject Classification (2010) 65N15 · 65N30

Communicated by Rolf Stenberg.

H. Liu (�)
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
e-mail: liuhuipo@amss.ac.cn

W. Gong
LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of
Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
e-mail: wgong@lsec.cc.ac.cn

S. Wang
LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
e-mail: wang_shuanghu@iapcm.ac.cn

N. Yan
LSEC, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing 100190, China
e-mail: ynn@amss.ac.cn

mailto:liuhuipo@amss.ac.cn
mailto:wgong@lsec.cc.ac.cn
mailto:wang_shuanghu@iapcm.ac.cn
mailto:ynn@amss.ac.cn


666 H. Liu et al.

1 Introduction

In recent years the finite element approximations of eigenvalue problems have been
extensively studied in the literature, especially the elliptic eigenvalue problems.
The convergence and superconvergence for finite element approximations of ellip-
tic eigenvalue problems have been provided in [2, 3, 5, 19, 23, 39]. A posteriori error
estimates for the finite element approximations of elliptic eigenvalue problems have
been extensively studied in [4, 11, 13, 14, 17, 21, 24, 27, 30, 36]. On the contrary,
only few results are reported on the error analysis of finite element methods for the
Stokes eigenvalue problems. Lovadina, Lyly and Stenberg [26] have proposed a suit-
able residual type a posteriori error analysis for the Stokes eigenvalue problems. Chen
and Lin [7], Jia, Xie, Yin and Gao [20] have analyzed the Richardson extrapolation
for the Stokes eigenvalue problems. In [9] Chen, Jia and Xie have proposed a postpro-
cessing method that improved the convergence rate for the numerical approximations
of the Stokes eigenvalue problems.

Recovery techniques such as the projection method have been widely used in the
finite element superconvergence analysis and recovery type a posteriori error esti-
mates for PDEs. The projection method is a postprocessing procedure that constructs
a new approximation by using the method of least squares surface fitting, beginning
with the pioneering work in [33]. The superconvergence based on least squares fit-
ting is discussed for elliptic equation in [8, 16, 33] and for Stokes equation in [22, 34,
41]. The asymptotically exact a posteriori error estimators for the pointwise gradient
error are provided in [8, 18, 32] using the similar technique. The estimators of this
kind have been proved to be efficient and reliable both theoretically and numerically
for solving above boundary value problems not only for structured meshes but also
for irregular meshes. Superconvergence analysis and recovery type a posteriori error
estimates for elliptic eigenvalue problem have been derived by Liu and Sun [24], Liu
and Yan [25]. There has been a lack of superconvergence analysis and asymptotically
exact a posteriori error estimates using projection method for finite element approx-
imation of the Stokes eigenvalue problems, which is especially suitable for irregular
meshes. To our best knowledge, the work here represents a first attempt to super-
convergence analysis and recovery type a posteriori error estimates for the Stokes
eigenvalue problems.

In this paper, we report superconvergence results and recovery type a posteriori er-
ror estimators for the finite element approximation of the Stokes eigenvalue problems
by using the projection method. The results are based on some regularity assumptions
for the Stokes problems and are applicable to the mixed finite element approxima-
tions of the Stokes eigenvalue problems with quasi-regular partitions. Therefore, the
results of this paper can be employed to provide useful a posteriori error estimators in
practical computing under unstructured meshes. Based on superconvergence results
of the eigenfunctions, we derive a posteriori error estimators for the Stokes eigenval-
ues and design an adaptive algorithms for the finite element computation of Stokes
eigenvalue problems.

This paper is organized as follows. In Sect. 2, some notations and the finite element
methods for Stokes eigenvalue problems are introduced, some well known properties
are also presented. In Sect. 3, we provide the theoretical analysis of the eigenfunctions
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for finite element approximation of the Stokes eigenvalue problems by projection
methods, some superconvergence results on the eigenfunctions and eigenvalues are
obtained. In Sect. 4, based on the superconvergence results provided in Sect. 3, the
recovery type a posteriori error estimators of Stokes eigenvalue approximation are
derived. In Sect. 5, some numerical examples are reported to support our theory.
Finally, some conclusions are given at the end of the paper.

2 Mixed finite element discretization

In this paper, we shall use the standard notation for Sobolev spaces Wm,p(Ω) and
their associated norms and seminorms in [1]. For p = 2, we denote Hm(Ω) =
Wm,p(Ω) and H 1

0 (Ω) = {v ∈ H 1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is understood
in the sense of trace, ‖ · ‖m = ‖ · ‖m,2,Ω , and (·, ·) is the standard L2 inner product.
We shall use the letter C to denote a positive constant which may stand for different
value at its different occurrence and is independent of the mesh parameters.

We consider, as a model problem, the eigenvalue problem for the Stokes system
with homogeneous Dirichlet boundary conditions, i.e.: find (u,p;λ), with u �= 0 and
λ ∈ R, such that

⎧
⎪⎪⎨

⎪⎪⎩

−Δu + ∇p = λu in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,

‖u‖0 = 1,

(2.1)

where Ω ⊂ R
2 is a bounded domain with Lipschitz boundary Γ and, Δ, ∇ , ∇· denote

the Laplacian, gradient and divergence operators, respectively.
The variational problem associated with (2.1) is given by: find (u,p;λ) ∈ V ×

W × R such that
⎧
⎨

⎩

a(u,v) − b(v,p) = λ(u,v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ W,

‖u‖0 = 1,

(2.2)

where

V = (
H 1

0 (Ω)
)2

, W =
{

q ∈ L2(Ω) :
∫

Ω

qdx = 0

}

,

a(u,v) = (∇u,∇v) =
∫

Ω

∇u : ∇vdxdy,

b(v,p) = (∇ · v,p) =
∫

Ω

∇ · vpdxdy.

For the above problem we know that the following Babuška-Brezzi condition holds
(see [15]):

sup
v∈V

b(v, q)

‖v‖1
≥ C‖q‖0, ∀q ∈ W,
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where C is a constant independent of v and q . It is known (see, e.g., [3]) that (2.2)
has a countable sequence of real eigenvalues

0 < λ1 ≤ λ2 ≤ · · ·
and corresponding eigenfunctions

(u1,p1), (u2,p2), . . . ,

which can be assumed to satisfy

(ui ,uj ) = δij , i, j = 1,2,3, . . . .

The superconvergence analysis to be presented in next section requires a certain
regularity assumption for the Stokes problem. We consider a more general Stokes
problem which seeks (y, s) ∈ V × W satisfying

{
a(y,v) − b(v, s) = (f,v), ∀v ∈ V,

b(y, q) = (g, q), ∀q ∈ W,
(2.3)

where g ∈ W and f ∈ (L2(Ω))2 are given functions. Assume that the domain Ω is
regular enough to ensure a H 2-regularity for the solution of (2.3). In other words, for
any f ∈ (L2(Ω))2 and g ∈ H 1(Ω)∩W the problem (2.3) admits a unique solution y ∈
(H 1

0 (Ω) ∩ H 2(Ω))2 and s ∈ H 1(Ω) ∩ W satisfying the following a priori estimate:

‖y‖2 + ‖s‖1 ≤ C
(‖f‖0 + ‖g‖1

)
, (2.4)

where C is a constant independent of the data f and g.
Let Th be a regular decomposition of the domain Ω into elements T which are

allowed to be triangles or convex quadrilaterals. There exists a constant γ such that

hT

ρT

≤ γ, ∀T ∈ Th,

where, for each T ∈ Th, hT is the diameter of T and ρT is the diameter of the biggest
ball contained in T , h = max{hT : T ∈ Th}.

Now, let’s define the mixed finite element approximations of problem (2.2). Let
Vh ⊂ V and Wh ⊂ W be two finite element spaces for velocity and pressure, re-
spectively, associated with the partition Th. Let Pr be the set of polynomials of de-
gree no more than r with r ≥ 0 and Qr be the set of polynomials with the form∑r

i,j=0 ai,j x
iyj . Assume that the polynomial space in the construction of Vh con-

tains Pk , k ≥ 1 for triangular element and Qk for quadrilateral element, and that of
Wh contain Pk−1. The two finite element spaces Vh and Wh are assumed to satisfy
the following approximation properties:

Property P1 (Approximation property of Vh) For any u ∈ (Hm+1(Ω))2 there holds

inf
vh∈Vh

(‖u − vh‖0 + h‖u − vh‖1
) ≤ Chm+1‖u‖m+1, 0 ≤ m ≤ k. (2.5)

Property P2 (Approximation property of Wh) For any p ∈ Hm(Ω) there holds

inf
qh∈Wh

‖p − qh‖0 ≤ Chm‖p‖m, 0 ≤ m ≤ k. (2.6)
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Property P3 (Uniform Babuška-Brezzi condition)

sup
vh∈Vh

b(vh, qh)

‖vh‖1
≥ C‖qh‖0, ∀qh ∈ Wh. (2.7)

The above assumptions are satisfied by several mixed finite elements, see, e.g.,
[15] for more details.

The mixed finite element discretization for (2.2) reads: find (uh,ph;λh) ∈ Vh ×
Wh × R such that

⎧
⎨

⎩

a(uh,vh) − b(vh,ph) = λh(uh,vh), ∀vh ∈ Vh,

b(uh, qh) = 0, ∀qh ∈ Wh,

‖uh‖0 = 1.

(2.8)

It is well known (see [3]) that (2.5) has a finite sequence of eigenvalues

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λN,h

and corresponding eigenfunctions

(u1,h,p1,h), (u2,h,p2,h), . . . , (uN,h,pN,h),

where

(ui,h,uj,h) = δij , 1 ≤ i ≤ j ≤ N.

The eigenvalue approximation λh and the corresponding eigenfunction approxi-
mation (uh,ph) have the following bound (see, e.g., [2, 3, 6, 9, 28]):

|λ − λh| ≤ C
(

inf
v∈Vh

‖u − v‖1 + inf
q∈Wh

‖p − q‖0

)2
,

‖u − uh‖1 ≤ C
(

inf
v∈Vh

‖u − v‖1 + inf
q∈Wh

‖p − q‖0

)
,

‖p − ph‖0 ≤ C
(

inf
v∈Vh

‖u − v‖1 + inf
q∈Wh

‖p − q‖0

)
.

In particular, if (u,p) ∈ (Hk+1(Ω))2 × Hk(Ω), it follows from (2.5) and (2.6) that

|λ − λh| ≤ Ch2k
(‖u‖k+1 + ‖p‖k

)2
, (2.9)

‖u − uh‖1 + ‖p − ph‖0 ≤ Chk
(‖u‖k+1 + ‖p‖k

)
. (2.10)

Moreover, if the problem (2.3) has H 2-regularity (2.4), then

‖u − uh‖0 ≤ Chk+1(‖u‖k+1 + ‖p‖k

)
. (2.11)

In the following we need to introduce the error expansions of the eigenvalues by
the Rayleigh quotient formula. The identity of eigenvalue and eigenfunction approx-
imation is crucial for our method.

Lemma 1 Let (u,p;λ) be the exact solution of the Stokes eigenvalue problem (2.2).
Then for any w ∈ V \ {0} and φ ∈ W , there holds

a(w,w) − 2b(w, φ)

‖w‖2
0

− λ = ‖w − u‖2
a − λ‖w − u‖2

0 + 2b(w − u, φ − p)

‖w‖2
0

, (2.12)

where ‖w − u‖a = a(w − u,w − u)1/2.
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Proof Recalling (2.2), we obtain

a(u,w) = b(w,p) + λ(u,w), (2.13)

a(u,u) = λ. (2.14)

It follows from (2.13) and (2.14) that

‖w − u‖2
a − λ‖w − u‖2

0

= a(w,w) − 2a(u,w) + a(u,u) − λ(w,w) + 2λ(u,w) − λ

= a(w,w) − λ(w,w) − 2b(w,p)

= a(w,w) − λ(w,w) + 2b(w − u, φ − p) − 2b(w, φ). (2.15)

From (2.15), we have

a(w,w) − 2b(w, φ) − λ(w,w)

= ‖w − u‖2
a − λ‖w − u‖2

0 + 2b(w − u, φ − p). (2.16)

Dividing both sides of (2.16) by ‖w‖2
0 gives (2.12). �

Especially, when we set w = uh and φ = ph in (2.12) we can conclude from the
discrete Stokes eigenvalue problem (2.8) that

λh − λ = ‖uh − u‖2
a − λ‖uh − u‖2

0 + 2b(uh − u,ph − p). (2.17)

3 Superconvergence analysis

In the following we will construct the recovery approximation on coarse meshes for
the eigenfunction (u,p). To begin with, let Tτ be an another finite element partition
of the domain Ω with mesh size τ > h. It will be essential to our argument to allow τ

to be sufficiently large compared to h. In this paper, we construct the partition Tτ such
that they are quasi-uniform, i.e., they are regular and satisfy the inverse assumption
(see [10]). Assume that τ is related to the original mesh size h by

τ = hα, (3.1)

where α ∈ (0,1) is a parameter to be determined later. Let Vτ ⊂ (H 1
0 (Ω))2 and

Wτ ∈ L2(Ω) be two new finite element spaces consisting of piecewise polynomi-
als of degree r and r − 1 associated with the partition Tτ , respectively. Define Qτ

and Rτ to be the L2-projection operators from L2(Ω) onto the finite element spaces
Vτ and Wτ , respectively.

In the following, we will provide two important lemmas, which will be useful for
establishing the superconvergence and the recovery type a posteriori error estimates
in this and following sections. The following lemmas can be considered as a general-
ization of the results of Wang and Ye ([34]) from the Stokes problems to the Stokes
eigenvalue problems.
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Lemma 2 Assume that Vτ ⊂ (H 1
0 (Ω))2 be a finite element space of order r , r > k ≥

1, τ = hα . Let (u,p) ∈ (Hr+1(Ω) ∩ H 1
0 (Ω))2 × (Hk(Ω) ∩ W) and (uh,ph) ∈ Vh ×

Wh be the solutions of (2.2) and (2.8) such that (2.10) and (2.11) hold true. Assume
that the related problem (2.3) has H 2-regularity (2.4). Then, for α = (k + 1)/(r + 1)

we have

‖u − Qτ uh‖0 ≤ Chk+1(‖u‖r+1 + ‖p‖k

)
, (3.2)

‖u − Qτ uh‖a ≤ Chk+ρ
(‖u‖r+1 + ‖p‖k

)
, (3.3)

where ρ = (r − k)/(r + 1).

Proof Using the triangle inequality we obtain

‖u − Qτ uh‖0 ≤ ‖u − Qτ u‖0 + ‖Qτ u − Qτ uh‖0. (3.4)

From the approximation property of L2-projection operator we get

‖u − Qτ u‖0 ≤ Cτr+1‖u‖r+1 ≤ Chα(r+1)‖u‖r+1. (3.5)

Moreover, the stability property of L2-projection yields

‖Qτ u − Qτ uh‖0 ≤ ‖u − uh‖0. (3.6)

Thus, we derive from (2.11) and (3.6) that

‖Qτ u − Qτ uh‖0 ≤ Chk+1(‖u‖k+1 + ‖p‖k

)
. (3.7)

It follows from (3.4), (3.5) and (3.7) that

‖u − Qτ uh‖0,Ω ≤ Chα(r+1)‖u‖r+1 + Chk+1(‖u‖k+1 + ‖p‖k

)
.

Then the error estimate (3.2) can be obtained by choosing α such that α(r + 1) =
k + 1, i.e.,

α = k + 1

r + 1
.

In the following we prove (3.3). It is easy to see that

‖u − Qτ uh‖a ≤ ‖u − Qτ u‖a + ‖Qτ u − Qτ uh‖a. (3.8)

It is well known that

‖u − Qτ u‖a ≤ Cτr‖u‖r+1,Ω = Chαr‖u‖r+1. (3.9)

Using the inverse inequality (see, e.g., [10]) and (3.7) we arrive at

‖Qτ u − Qτ uh‖a

= ∥
∥∇(Qτ u − Qτ uh)

∥
∥

0

≤ Cτ−1‖Qτ u − Qτ uh‖0 ≤ Cτ−1hk+1(‖u‖k+1 + ‖p‖k

)

= Chk+1−α
(‖u‖k+1 + ‖p‖k

)
. (3.10)

Combining (3.8)–(3.10), we have

‖u − Qτ uh‖a ≤ Chαr‖u‖r+1 + Chk+1−α
(‖u‖k+1 + ‖p‖k

)
. (3.11)
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Again, we choose

α = k + 1

r + 1
,

which optimizes the two terms in (3.11) such that αr = k + 1 − α. Then the corre-
sponding error estimate is given by

‖u − Qτ uh‖a ≤ Ch
(k+1)r
r+1

(‖u‖r+1 + ‖p‖k

)

= Chk+ρ
(‖u‖r+1 + ‖p‖k

)
,

where ρ = (r − k)/(r + 1). This completes the proof of the lemma. �

Lemma 3 Assume that Wτ ⊂ L2(Ω) be a finite element space of order r −1, τ = hα .
Let (u,p) ∈ (Hk+1(Ω) ∩ H 1

0 (Ω))2 × (Hr(Ω) ∩ W) and (uh,ph) ∈ Vh × Wh be the
solutions of (2.2) and (2.8) such that (2.10) and (2.11) hold true. Assume that the
related problem (2.3) has H 2-regularity (2.4). Then, for α = (k + 1)/(r + 1) we have

‖p − Rτph‖0 ≤ Chk+ρ
(‖u‖k+1 + ‖p‖r

)
, (3.12)

where ρ = (r − k)/(r + 1).

Proof Using the triangle inequality it is not difficult to get

‖p − Rτph‖0 ≤ ‖p − Rτp‖0 + ‖Rτp − Rτph‖0. (3.13)

Based on the property of L2-projection operator, we have

‖p − Rτp‖0 ≤ Cτr‖p‖r ≤ Chαr‖p‖r . (3.14)

In the following, we estimate the second term of the right side hand in (3.13). The
definitions of ‖ · ‖0 and Rτ give

‖Rτp − Rτph‖0 = sup
ψ∈L2(Ω),‖ψ‖0=1

∣
∣(Rτp − Rτph,ψ)

∣
∣

and

(Rτp − Rτph,ψ) = (p − ph,Rτψ).

Then

‖Rτp − Rτph‖0 = sup
ψ∈L2(Ω),‖ψ‖0=1

∣
∣(p − ph,Rτψ)

∣
∣.

Consider the following problem that seeks (y, s) ∈ V × W such that

a(y,v) − b(v, s) = 0 ∀v ∈ V, (3.15)

b(y, q) = (Rτψ,q) ∀q ∈ W. (3.16)

Replacing q in (3.16) by p − ph and using (2.2), (2.8) and (3.15) we can obtain
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(p − ph,Rτψ)

= b(y,p − ph) = b(y − yI ,p − ph) + b(yI ,p − ph)

= b(y − yI ,p − ph) + a(u − uh,yI ) − (λu − λhuh,yI )

= b(y − yI ,p − ph) + a(u − uh,yI − y) + a(u − uh,y)

− (
λ(u − uh),yI

) − (
(λ − λh)uh,yI

)

= b(y − yI ,p − ph) + a(u − uh,yI − y) + b(u − uh, s − sI )

− (
λ(u − uh),yI

) − (
(λ − λh)uh,yI

)
,

where yI := Qhy ∈ Vh is the L2 projection of y onto Vh and sI := Qhs ∈ Wh is
the L2 projection of s onto Wh. Using Schwarz inequality and the approximation
properties (2.5), (2.6), (2.9), (2.10) and (2.11), we obtain

(p − ph,Rτψ) ≤ ‖y − yI‖1‖p − ph‖0 + ‖u − uh‖1‖yI − y‖1

+ ‖u − uh‖1‖s − sI‖0 + λ‖u − uh‖0‖yI‖0 + |λ − λh|‖uh‖0‖yI‖0

≤ Chk+1(‖y‖2 + ‖s‖1
)(‖u‖k+1 + ‖p‖k

)

≤ Chk+1‖Rτψ‖1
(‖u‖k+1 + ‖p‖k

)

≤ Chk+1τ−1‖ψ‖0,Ω .

Therefore

‖Rτp − Rτph‖0,Ω ≤ Chk+1τ−1. (3.17)

Combining (3.13), (3.14) and (3.17), we have

‖p − Rτph‖0 ≤ Chαr‖p‖r + Chk+1−α
(‖u‖k+1 + ‖p‖k

)
. (3.18)

Again, we choose

α = k + 1

r + 1
,

which optimizes the two terms in (3.18) such that αr = k + 1 − α. Then the corre-
sponding error estimate is given by

‖p − Rτph‖0 ≤ Ch
(k+1)r
r+1

(‖u‖k+1 + ‖p‖r

)

= Chk+ρ
(‖u‖k+1 + ‖p‖r

)
, (3.19)

where ρ = (r − k)/(r + 1), this proves (3.12). �

Lemmas 2 and 3 show that the convergence order of ‖u−Qτ uh‖a +‖p−Rτph‖0
is better than the optimal error O(hk). With k = 1 and r = 2, we have the following
error estimate for the eigenfunction approximation:

‖u − Qτ uh‖a + ‖p − Rτph‖0 ≤ Ch4/3.

Assume that the exact eigenfunction is sufficiently smooth, then it is not difficult to
see that

‖u − Qτ uh‖a + ‖p − Rτph‖0 � O
(
h2), as r → ∞.
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Moreover, comparing with the local recovery techniques such as SPR (see [31,
43]) or PPR (see [29, 36, 42]), the projection method can be viewed as a semi-local
method. It requires a global projection of the finite element solution onto a much
coarser mesh. Thus, its computational cost is higher than the local recovery tech-
niques such as SPR or PPR. However, it should be pointed out that we can obtain
superconvergence using projection method on arbitrary meshes instead of the almost
uniform meshes as for general superconvergence analysis.

For problems with reentrant corners in the domain, the H 2 regularity for the Stokes
problem (2.3) is not satisfied. Instead, the Stokes problem (2.3) has the H 1+σ (Ω)

regularity for some σ ∈ (0,1). For sufficiently smooth eigenfunction (u,p) and for
any ε > 0, it can be proven that

‖u − uh‖0 + hσ−ε‖u − uh‖a ≤ Chk+σ−ε.

One is able to determine a value of α in τ = hα such that

α = k + σ − ε

r + 1
.

Then similar to Lemmas 2 and 3, we can obtain

‖u − Qτ uh‖0 ≤ Chk+σ−ε,

‖u − Qτ uh‖a ≤ Chk+ρ̂ ,

‖p − Rτph‖a ≤ Chk+ρ̂ ,

where ρ̂ = r(σ−ε)−k
r+1 .

Using above results, we propose two enhanced eigenvalue approximations based
on projection method. The first one is

λ• = ‖Qτ uh‖2
a − 2b(Qτ uh,Rτph)

‖Qτ uh‖2
0

,

which uses the standard Rayleigh quotient acceleration technique and the improved
eigenfunction by means of the projection method based on Lemmas 2 and 3. The
Rayleigh quotient acceleration technique has been widely used for the superconver-
gence of the eigenvalue problems based on the interpolation postprocessing approach
or the two-grid discretization scheme in [9, 23, 37, 38, 40]. The another one is the
new scheme:

λ∗ = ‖Qτ uh‖2
a − 2b(Qτ uh,Rτph),

where we again apply the improved eigenfunction (Qτ uh,Rτph) based on the pro-
jection method, but the Rayleigh quotient technique is not used anymore. It is easy to
see from the definitions of λ∗ and λ• that the cost of computation for λ∗ is cheaper
than the one for λ•.

Theorem 1 Suppose that all conditions of Lemmas 2 and 3 are valid. Let λ• and λ∗
are defined as above. Then, we have

|λ• − λ| ≤ Ch2k+2ρ (3.20)

and

|λ∗ − λ| ≤ Ch2k+2ρ. (3.21)
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Proof Recalling the identity (2.12), setting w = Qτ uh and φ = Rτph in (2.12) yields

λ• − λ = ‖Qτ uh‖2
a − 2b(Qτ uh,Rτph)

‖Qτ uh‖2
0

− λ

= ‖Qτ uh − u‖2
a − λ‖Qτ uh − u‖2

0 + 2b(Qτ uh − u,Rτph − p)

‖Qτ uh‖2
0

. (3.22)

Using the definition of L2 projection we have

‖Qτ uh‖2
0 ≤ ‖uh‖2

0 = 1.

Therefore, it follows from (3.22), Lemmas 2 and 3 that

|λ• − λ| ≤ ∣
∣‖Qτ uh − u‖2

a − λ‖Qτ uh − u‖2
0 + 2b(Qτ uh − u,Rτph − p)

∣
∣

≤ Ch2k+2ρ
(‖u‖r+1 + ‖p‖k

)2 + Ch2k+2(‖u‖r+1 + ‖p‖k

)2

+ Ch2k+2ρ
(‖u‖r+1 + ‖p‖k

)(‖u‖k+1 + ‖p‖r

)

≤ Ch2k+2ρ
(‖u‖r+1 + ‖p‖r

)2
.

This completes the proof of estimate (3.20). In the following we prove (3.21). It is
easy to see that

|λ∗ − λ| = ∣
∣λ• − λ − (λ• − λ∗)

∣
∣

≤ |λ• − λ| + |λ• − λ∗|
≤ Ch2k+2ρ +

∣
∣
∣
∣
‖Qτ uh‖2

a − 2b(Qτ uh,Rτph)

‖Qτ uh‖2
0

(
1 − ‖Qτ uh‖2

0

)
∣
∣
∣
∣. (3.23)

We estimate the second term in the right side hand of (3.23). Using ‖uh‖0 = 1 and
the definition of L2 projection, we have

1 − ‖Qτ uh‖2
0 = ‖uh‖2

0 − ‖Qτ uh‖2
0

= (uh + Qτ uh,uh − Qτ uh)

= (uh,uh − Qτ uh)

= (uh − Qτ uh,uh − Qτ uh)

= ‖uh − Qτ uh‖2
0. (3.24)

We can conclude from the error estimates (2.11) and (3.2) that

‖uh − Qτ uh‖0 ≤ ‖uh − u‖0 + ‖u − Qτ uh‖0 ≤ Chk+1. (3.25)

Then we can derive from (3.24) and (3.25) that

1 − ‖Qτ uh‖2
0 = ‖uh − Qτ uh‖2

0 ≤ Ch2k+2. (3.26)

It follows that
∣
∣
∣
∣
‖Qτ uh‖2

a − 2b(Qτ uh,Rτph)

‖Qτ uh‖2
0

(
1 − ‖Qτ uh‖2

0

)
∣
∣
∣
∣ ≤ Ch2k+2. (3.27)
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Summing up, (3.23) and (3.27) imply that

|λ∗ − λ| ≤ Ch2k+2ρ + Ch2k+2 ≤ Ch2k+2ρ.

This completes the proof. �

4 Recovery type a posteriori error estimates

Using the superconvergence results obtained in the third section we are now able to
derive the recovery type a posteriori error estimates.

In order to derive a posteriori error estimates for eigenfunctions we require that
the exact solution (u,p) satisfies the following nondegeneracy property: There exists
a constant c1 > 0 independent of h such that

‖uh − u‖a + ‖ph − p‖0 ≥ c1h
k. (4.1)

As argued by Dörfler and Nochetto [12], this is not a very restrictive condition in
practice; it is guaranteed, for instance, if |Dku(x)| + |Dk−1p(x)| ≥ c > 0 for all x in
a fixed region of Ω . This is also a basic assumption in recovery type a posteriori error
estimates method (see, e.g., [18, 27, 30]).

Based on the recovery operators Qτ and Rτ defined above, we can define the
recovery type a posteriori error estimator for eigenfunctions:

ηf := ‖uh − Qτ uh‖a + ‖ph − Rτph‖0. (4.2)

Then the following a posteriori error estimates for eigenfunctions can be proved.

Theorem 2 Suppose that all conditions of Lemmas 2 and 3 are valid. Under the
nondegeneracy condition (4.1), we have

∣
∣
∣
∣

ηf

‖uh − u‖a + ‖ph − p‖0
− 1

∣
∣
∣
∣ ≤ Chρ. (4.3)

Proof We can conclude from Theorem 1 and the assumption in (4.1) that

ηf

‖uh − u‖a + ‖ph − p‖0

= ‖uh − u + u − Qτ uh‖a + ‖ph − p + p − Rτph‖0

‖uh − u‖a + ‖ph − p‖0

≤ ‖uh − u‖a + ‖ph − p‖0 + ‖u − Qτ uh‖a + ‖p − Rτph‖0

‖uh − u‖a + ‖ph − p‖0

≤ 1 + Chk+ρ

c1hk
= 1 + Chρ.

On the other hand,
ηf

‖uh − u‖a + ‖ph − p‖0

= ‖uh − u + u − Qτ uh‖a + ‖ph − p + p − Rτph‖0

‖uh − u‖a + ‖ph − p‖0
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≥ ‖uh − u‖a + ‖ph − p‖0 − ‖u − Qτ uh‖a − ‖p − Rτph‖0

‖uh − u‖a + ‖ph − p‖0

≥ 1 − Chk+ρ

c1hk
= 1 − Chρ.

This completes the proof. �

Similarly, in order to derive a posteriori error estimates for eigenvalues we require
that the exact solution λ satisfies the following nondegeneracy property: There exists
a constant c2 > 0 independent of h such that

|λh − λ| ≥ c2h
2k. (4.4)

Based on the recovery operators Qτ and Rτ defined above, we can define the recovery
type a posteriori error estimator for eigenvalues:

ηe ≡ ‖uh − Qτ uh‖2
a + 2b(uh − Qτ uh,ph − Rτph). (4.5)

Then the following a posteriori error estimates can be proved.

Theorem 3 Suppose that all conditions of Lemmas 2 and 3 are valid. Under the
nondegeneracy condition (4.4), we have

∣
∣
∣
∣

|ηe|
|λh − λ| − 1

∣
∣
∣
∣ ≤ Chρ. (4.6)

Proof Recalling the identity (2.17), we have

λh − λ = ‖uh − u‖2
a − λ‖uh − u‖2

0 + 2b(uh − u,ph − p)

= ηe +
6∑

i=1

ξi, (4.7)

where

ξ1 = ‖Qτ uh − u‖2
a,

ξ2 = 2a(Qτ uh − u,uh − Qτ uh),

ξ3 = 2b(uh − Qτ uh,Rτph − p),

ξ4 = 2b(Qτ uh − u,ph − Rτph),

ξ5 = 2b(Qτ uh − u,Rτph − p),

ξ6 = −λ‖uh − u‖2
0.

Now, let us estimate the term ξi (i = 2, . . . ,6) one by one. We can deduce from (2.10),
(3.3) and (3.12) that

|ξ2| ≤ C‖Qτ uh − u‖a‖Qτ uh − uh‖a

≤ C‖Qτ uh − u‖a

(‖uh − u‖a + ‖u − Qτ uh‖a

)

≤ Chk+ρ
(
Chk + Chk+ρ

) ≤ Ch2k+ρ, (4.8)
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|ξ3| ≤ C‖uh − Qτ uh‖a‖Rτph − p‖0

≤ C
(‖uh − u‖a + ‖u − Qτ uh‖a

)‖Rτph − p‖0

≤ (
Chk + Chk+ρ

)
Chk+ρ ≤ Ch2k+ρ (4.9)

and

|ξ4| ≤ C‖Qτ uh − u‖a‖ph − Rτph‖0

≤ C‖Qτ uh − u‖a

(‖ph − p‖0 + ‖p − Rτph‖0
)

≤ Chk+ρ
(
Chk + Chk+ρ

) ≤ Ch2k+ρ. (4.10)

Similarly, applying (2.11), (3.3) and (3.12), we have

|ξ5| ≤ C‖Qτ uh − u‖a‖Rτph − p‖0

≤ Chk+ρ · Chk+ρ ≤ Ch2k+2ρ (4.11)

and

|ξ6| = λ‖uh − u‖2
0 ≤ Ch2k+2. (4.12)

It follows from (3.3) and (4.8)–(4.12) that
∣
∣
∣
∣

6∑

i=1

ξi

∣
∣
∣
∣ ≤

6∑

i=1

|ξi | ≤ Ch2k+ρ. (4.13)

By the nondegeneracy property (4.4) and (4.7), (4.13) we obtain
∣
∣
∣
∣

|ηe|
|λh − λ| − 1

∣
∣
∣
∣ ≤ |ηe − (λh − λ)|

|λh − λ| = |∑6
i=1 ξi |

|λh − λ| ≤ Ch2k+ρ

c2h2k
≤ Chρ,

this completes the proof. �

Based on the superconvergence results obtained in Sect. 3, Theorems 2 and 3
show that the a posteriori error estimators ηf and ηe are asymptotically exact to the
eigenfunction and eigenvalue, respectively. Noting that Theorems 2 and 3 are valid
under general regular meshes and the a posteriori error estimators ηf and ηe are
computable, they can be viewed as indicators for mesh refinement in adaptive finite
element procedure.

Although the above recovery type a posteriori error estimates were established for
the smooth eigenfunction, they can be extended to non-smooth eigenfunction on non-
convex domains by using similar techniques. The global regularity assumption used
in the proof doesn’t hold for non-smooth eigenfunction on the non-convex domains,
however, it is possible to make only local regularity assumptions so that some the-
oretical analysis of the results apply. For the singular solution of elliptic problems,
numerical results show that recovery type a posteriori error estimates still provide
useful information and form a reliable basis for adaptive refinement (see, e.g., [24,
25, 35, 36]). The theoretical analysis of recovery type a posteriori error estimators
of non-smooth solution on non-convex domains has been well established, see, e.g.,
[8, 33, 35, 36]. The theoretical analysis for the singular eigenvector problem will be
postponed to our future work.
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5 Numerical examples

In this section we give three numerical examples to illustrate the theoretical re-
sults obtained in above sections. Our numerical examples will be given for the two-
dimensional problem with the linear triangular MINI element for which the velocity
and pressure spaces are defined as

Vh = {
v ∈ V : v|T ∈ (

P1 + span{λ1λ2λ3}
)2

,∀T ∈ Th

}

and

Wh = {
q ∈ W ∩ H 1(Ω) : q|T ∈ P1,∀T ∈ Th

}
,

where λi (i = 1,2,3) denotes the barycentric coordinate and P1 consists of first order
polynomials defined on the element T .

In the following, we shall prove that the upper bounds of eigenvalues of the Stokes
problem are obtained by using MINI element. Denote pI the standard piecewise lin-
ear Lagrange interpolation of p in the finite element space Wh, we have the following
well known interpolation error estimate:

‖pI − p‖0 ≤ Ch2‖p‖2. (5.1)

Using (2.8) and (5.1), we have
∣
∣b(uh − u,ph − p)

∣
∣ = ∣

∣b(uh − u,ph − pI + pI − p)
∣
∣

= ∣
∣b(uh − u,pI − p)

∣
∣

≤ ‖uh − u‖1‖pI − p‖0

≤ Ch3‖u‖2‖p‖2. (5.2)

It follows from (2.17), (5.2) and the nondegeneracy property (4.1) that

λh − λ ≥ c1h
2 − Ch4 − Ch3. (5.3)

The inequality (5.3) implies that the approximate eigenvalues are greater than the
exact ones when h is small enough.

Let Vτ ⊂ (H 1
0 (Ω))2 and Wτ ∈ L2(Ω) be two new finite element spaces consisting

of continuous, piecewise quadratic polynomials and piecewise linear polynomials
associated with the partition Tτ , respectively. It is shown from Lemmas 2 and 3 that
theoretically, we should choose τ = h2/3 to guarantee the optimal superconvergence
with ρ equal to 1/3. But in our numerical examples, we only choose τ = 2h or τ = 4h

for the recovery operators Qτ , Rτ and obtain satisfied superconvergence results. The
fine mesh Th is always produced from Tτ , specifically, each coarse mesh element in
Tτ is refined into 4 elements by connecting the middle points of the edge or refined
uniformly twice to produce 16 elements for two-dimensional problems.

Suppose a sequence of meshes Th, given by either a uniform or an adaptive refine-
ment, we use a function F(N) = C(VN)−p/2 to estimate the order of convergence p.
The convergence rate is measured by the total number of vertices VN :

p := 2 log(eN) − 2 log(eN−1)

log(VN−1) − log(VN)
,
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Table 1 Errors and orders of
convergence for Example 5.1 on
uniform meshes

NOV 81 289 1089 4225 16641

λh − λ 1.290e0 3.142e-1 7.760e-2 1.940e-2 5.000e-3

order 2.22 2.11 2.05 1.98

ηe 1.158e0 2.764e-1 6.898e-2 1.720e-2 4.827e-3

order 2.25 2.09 2.05 1.85

λ∗ − λ 3.605e-1 3.755e-2 3.887e-3 6.521e-4 1.604e-4

order 3.56 3.42 2.63 2.05

Table 2 Errors and orders of
convergence for Example 5.1 on
adaptive meshes

NOV 65 265 1089 3617 13137

λh − λ 1.290e0 3.027e-1 6.450e-2 1.850e-2 4.900e-3

order 2.064 2.19 2.08 2.06

ηe 1.158e0 2.510e-1 5.316e-2 1.541e-2 4.042e-3

order 2.18 2.20 2.06 2.07

where eN is the error on the mesh of level N with number of vertices VN . In the
following tables, “order” represents the convergence order of the error, while “NOV”
represents the number of vertices. In the following, the reference solution has been
extrapolated from the numerical results by assuming that the error λh − λ behaves as
Chr for some constants C and r independent of h (see [5, 26]).

Example 5.1 In our first example we will consider problems defined on Ω =
(−1,1) × (−1,1) with homogenous Dirichlet boundary conditions imposed on the
velocity. We take λ = 13.0861 as the first reference eigenvalue.

In this example, the solution is very smooth, which satisfies all the assumptions
of our theory. In Table 1 we present the convergence results on the uniformly refined
meshes. It is shown quite clearly that order two is obtained for the errors λh − λ. It
shows also the superconvergence results for λ∗ − λ. Moreover, we can observe that
the recovery type a posteriori error estimate is asymptotically exact. In Table 2 we
record the convergence results on adaptively refined meshes. This adaptive refine-
ment procedure is based on longest-edge bisection, which results to a sequence of
unstructured, nonuniform and shape regular meshes. One can also observe that the
adaptively refined meshes are almost uniformly distributed because the exact eigen-
function is smooth, but the adaptive method is still more efficient than the uniform
refinement strategy. For example, for the uniform refinement method, we have that
λh − λ = 5.000e-3 on the mesh with 16641 nodes, while for the adaptive method,
the values of this error is 4.900e-3 on the mesh with only 13137 nodes. In Fig. 1
we present the log-log plots of the rate of convergence on the uniformly refined and
adaptively refined meshes. In Fig. 2 the adaptive mesh is plotted.

Example 5.2 In our previous example, the domain was a convex polygon. Let us
change the domain to a L-shaped domain Ω = [−1,1]× [−1,1] \ (0,1]× (0,1] with
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Fig. 1 Log-log plot of
convergence in Example 5.1

Fig. 2 Adaptively refined mesh
with 13137 vertices in
Example 5.1

reentrant corners. We take λ = 48.9844 as the fourth reference eigenvalue. The dual
problem of this example has H 1+σ regularity for σ ∈ (0,1).

In Table 3 we report the convergence results on the uniformly refined meshes. We
can also observe two order convergence for the errors λh − λ and superconvergence
result for λ∗ − λ. Moreover, we find that the recovery type a posteriori error esti-
mate is asymptotically exact. Form the convergence and superconvergence results we
conclude that the exact eigenfunction of the fourth eigenvalue is very smooth. In Ta-
ble 4 we record the convergence results on adaptively refined meshes. The adaptive
method is again more efficient than the uniform refinement strategy. For example, for
the uniform refinement method we have that λh − λ = 8.930e-2 on the mesh with
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Table 3 Errors and orders of
convergence for Example 5.2 on
uniform meshes

NOV 45 153 561 2145 8385

λh − λ 2.191e1 5.737e0 1.439e0 3.587e-1 8.930e-2

order 2.19 2.13 2.07 2.04

ηe 3.048e1 5.629e0 1.266e0 3.188e-1 8.038e-2

order 2.76 2.30 2.06 2.02

λ∗ − λ 1.492e1 1.642e0 2.160e-1 2.178e-2 2.516e-3

order 3.61 3.12 3.42 3.17

Table 4 Errors and orders of
convergence for Example 5.2 on
adaptive meshes

NOV 45 181 577 2095 8107

λh − λ 2.191e1 5.449e0 1.204e0 3.138e-1 7.950e-2

order 2.00 2.60 2.09 2.03

ηe 3.048e1 5.315e0 1.050e0 2.669e-1 6.794e-2

order 2.51 2.79 2.12 2.02

Fig. 3 Log-log plot of
convergence in Example 5.2

8385 nodes. However, for the adaptive method, the values of this error is 7.950e-2
on the mesh with only 8107 nodes. In Fig. 3 we present the log-log plot of the rate
of convergence on the uniformly refined and adaptively refined meshes. In Fig. 4 the
adaptive mesh is plotted.

Example 5.3 In the above examples the eigenfunction u was all analytic. We consider
a unit square with a 45◦-crack. We take λ = 31.2444 as the first reference eigenvalue.

Convergence results on uniformly and adaptively refined meshes are reported in
Tables 5 and 6. The exact eigenfunction u is not smooth in this case, and this can
be confirmed from the numerical results. For the case of uniform refinement with
8385 nodes, we see quite clearly the order of convergence for λh − λ is 1.16. In
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Fig. 4 Adaptively refined mesh
with 8107 vertices in
Example 5.2

Table 5 Errors and orders of
convergence for Example 5.3 on
uniform meshes

NOV 45 153 561 2145 8385

λh − λ 8.036e0 2.655e0 8.828e-1 3.292e-1 1.491e-1

order 1.81 1.70 1.47 1.16

ηe 1.263e1 2.543e0 8.111e-1 2.933e-1 1.139e-1

order 2.62 1.76 1.52 1.39

λ∗ − λ 3.478e0 1.039e0 2.691e-1 1.174e-1 7.382e-2

order 1.97 2.08 1.24 0.68

case of uniform meshes we can not expect superconvergence for the approximation
λ∗. For the adaptive meshes we used ηe as a posteriori error estimator, the order
of convergence is improved and approaches order two for λh − λ. This numerical
behavior is typical for a reasonable adaptive refinement procedure. Nevertheless, ηe

is still close to λh − λ. For the uniform refinement method, we have that λh − λ =
1.491e-1 on the mesh with 8385 nodes. However, for the adaptive method, this error
is 1.090e-1 on the mesh with only 3351 nodes. Since the exact eigenfunction is not
so smooth as the ones in previous examples, it is more efficient to use the adaptive
meshes than the uniform meshes. In Fig. 5 we present the log-log plots of the rate
of convergence. In Fig. 6 the adaptive mesh is plotted. The distributions of nodes in
adaptive mesh clearly show the accumulation of nodes in the vicinity of the singular
point (0,0).
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Table 6 Errors and orders of
convergence for Example 5.3 on
adaptive meshes

NOV 45 164 557 1300 3351

λh − λ 8.036e0 2.499e0 6.866e-1 3.191e-1 1.090e-1

order 1.81 2.11 1.81 2.27

ηe 1.263e1 2.134e0 5.470e-1 2.318e-1 8.698e-2

order 2.75 2.23 2.03 2.07

Fig. 5 Log-log plot of
convergence in Example 5.3

Fig. 6 Adaptively refined mesh
with 3351 vertices in
Example 5.3
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6 Conclusions

In this paper, we presented the superconvergence result and the related recovery type
a posteriori error estimators based on projection method for finite element approxi-
mation of the Stokes eigenvalue problems. The projection method is a postprocessing
procedure that constructs a new approximation by using the least squares method.
The results are based on some regularity assumptions for the Stokes equations, and
are applicable to the finite element approximations of Stokes eigenvalue problems
with general quasi-regular partitions.

The numerical examples show that the recovered eigenvalue λ∗ superconverges to
λ if the exact eigenfunction u is smooth enough (as shown in Examples 5.1 and 5.2).
It is shown in Example 5.2 that λ∗ enhances the accuracy of λh although the re-
lated Stokes problem does not satisfy H 2-regularity assumption. Furthermore, Exam-
ple 5.3 shows that λ∗ is still more accurate than λh even though the solutions are not
smooth and superconvergence can not be obtained. Moreover, one can observe that
the adaptive method using our a posteriori error estimators is more efficient relative
to the uniform refinement strategy, especially for singular problems. The effective-
ness of our adaptive scheme does not necessarily depend on either the uniformity of
the mesh or the global regularity of the solution. However, theoretically there is still
much work to do to fill in the gaps. Although the numerical results in this work are
solely for the two-dimensional problems and the conforming finite element methods,
the idea is nevertheless applicable to more general eigenvalue problems.
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