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Abstract Rational Arnoldi is a powerful method for approximating functions of
large sparse matrices times a vector. The selection of asymptotically optimal param-
eters for this method is crucial for its fast convergence. We present and investigate
a novel strategy for the automated parameter selection when the function to be ap-
proximated is of Cauchy–Stieltjes (or Markov) type, such as the matrix square root
or the logarithm. The performance of this approach is demonstrated by numerical
examples involving symmetric and nonsymmetric matrices. These examples suggest
that our black-box method performs at least as well, and typically better, as the stan-
dard rational Arnoldi method with parameters being manually optimized for a given
matrix.

Keywords Rational Arnoldi method · Matrix square root · Matrix logarithm ·
Optimal parameters
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1 Introduction

An important problem arising in science and engineering is the computation of the
matrix-vector product f (A)v, where A ∈ C

N×N , v ∈ C
N , and f is a function such
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that f (A) is defined. The term f (A) is called a matrix function, and a sufficient
condition for f (A) to be defined is that f (z) be analytic in a neighborhood of Λ(A),
the set of eigenvalues of A. For more detailed information on matrix functions and
their possible definitions we refer to the monograph by Higham [28].

In most applications, A is very large and sparse (e.g., a finite-difference or finite-
element discretization of a differential operator), so that explicitly computing and
storing the generally dense matrix f (A) is infeasible. In the recent years, polynomial
and rational Krylov methods have proven to be the methods of choice for comput-
ing approximations to f (A)v efficiently, without forming f (A) explicitly. Rational
Krylov methods require the solution of shifted linear systems with A, and the approx-
imations they deliver are rational matrix functions of the form rn(A)v, with rn being
a rational function of type (n − 1, n − 1) and n � N . Polynomial Krylov methods
are a special case obtained when rn reduces to a polynomial. Although each iteration
of a rational Krylov method may be considerably more expensive than a polynomial
Krylov iteration, rational functions often have superior approximation properties than
polynomials, which may lead to a reduction of the overall Krylov iteration number.

An important pitfall, which possibly prevents rational Krylov methods from being
used more widely in practice, is the selection of optimal poles of the rational func-
tions rn. These poles are parameters that should be chosen based on the function f ,
the spectral properties of the matrix A, and the vector v. While the function f is
usually known a priori, spectral properties of A may be difficult to access when A

is large. Recently, interesting strategies for the automated selection of the poles have
been proposed for the exponential function and the transfer function of symmetric
and nonsymmetric matrices, see [18] and [19], respectively. The algorithms proposed
in these two papers gather spectral information from quantities computed during the
rational Krylov iteration, and they only require some initial rough estimate of the
“spectral region” of the matrix A (see [19]). Because the exponential function can
be represented as a Cauchy (or Fourier) integral along the imaginary axis, one can
motivate that it is natural to choose the poles of the rational Krylov space as mirrored
images of rational Ritz values for A with respect to the imaginary axis, and a similar
reasoning applies for the resolvent function, see [18, 19]. In the case of functions
of Cauchy–Stieltjes (or Markov) type the imaginary axis does not play a prominent
role, such that a direct application of the idea of mirrored Ritz values is not helpful.
The aim of this paper is to give analysis and numerical evidence for a heuristic pole
selection strategy for such functions of non-necessarily symmetric matrices proposed
in [26]. Cauchy–Stieltjes functions are of the form

f (z) =
∫

Γ

dγ (x)

z − x
(1.1)

with a (complex) measure γ supported on a prescribed closed set Γ ⊂ C. Particularly
important examples of such functions are

f1(z) = z−1/2 =
∫ 0

−∞
1

z − x

dx

π
√−x

,

f2(z) = e−t
√

z − 1

z
=

∫ 0

−∞
1

x − z

sin(t
√−x)dx

πx
.
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For instance, certain solutions of the equation

Au(t) − d2u

dt2
(t) = g(t)v

can be represented as u(t) = f (A)v with f being a rational function of f1 and
f2 (cf. [15, 17]). Functions of this type also arise in the context of computation of
Neumann-to-Dirichlet and Dirichlet-to-Neumann maps [3, 16], the solution of sys-
tems of stochastic differential equations [2], and in quantum chromodynamics [22].
Another relevant Cauchy–Stieltjes function is

f3(z) = log(1 + z)

z
=

∫ −1

−∞
−1/x

z − x
dx;

see [28] for applications of this function. The variant of the rational Arnoldi method
presented here is parameter-free and seems to enjoy remarkable convergence prop-
erties and robustness. We believe that our method outperforms (in terms of required
iteration numbers) any other available rational Krylov method for the approximation
of f (A)v, and we will demonstrate this by a number of representative numerical tests.

This paper is structured as follows. In Sect. 2 we review the rational Arnoldi
method and some of its important properties. In Sect. 3 we present our automated
version of the rational Arnoldi method for functions of Cauchy–Stieltjes type (1.1).
The problem of estimating the error of Arnoldi approximations is dealt with in Sect. 4.
In Sect. 5 we study the asymptotic convergence of our method and compare it to other
available methods for the approximation of f (A)v. Finally, in Sect. 6 we demonstrate
the performance of our parameter-free algorithm for a large-scale numerical example.
Throughout this paper, ‖ · ‖ denotes the Euclidian norm, I is the identity matrix of
size N × N , and C = C ∪ {∞} is the extended complex plane. Vectors are printed in
bold face.

2 Rational Arnoldi method

A popular rational Krylov method for the approximation of f (A)v is known as the
rational Arnoldi method. It is based on the extraction of an approximation f n =
rn(A)v from a rational Krylov space [35, 36]

Qn(A,v) := span

{
pn−1

qn−1
(A)v : pn−1 polynomial of degree ≤ n − 1

}
,

qn−1(z) :=
n−1∏
j=1

ξj 
=∞

(z − ξj ),
(2.1)

where the parameters ξj ∈ C (the poles) are different from the eigenvalues Λ(A).
Note that fractions in (2.1) range over the linear space of rational functions of type
(n − 1, n − 1) with a prescribed denominator qn−1, and that Qn(A,v) reduces to
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a polynomial Krylov space if we set all poles ξj = ∞. If Qn(A,v) is of full di-
mension n, as we assume in the following, we can compute an orthonormal basis
Vn = [v1, . . . ,vn] ∈ CN×n of this space. The rational Arnoldi approximation is then
defined as

f n := Vnf (An)V
∗
n v, An := V ∗

n AVn. (2.2)

If n is relatively small, then f (An) can be evaluated easily using algorithms for
dense matrix functions (see [28]). A stable iterative procedure for computing the or-
thonormal basis Vn is the rational Arnoldi algorithm by Ruhe [36], which we briefly
review in the following. Let σ be a finite number different from all ξj , and consider
the translated operator Ã := A − σI and the translated poles ξ̃j := ξj − σ . Note that
the rational Krylov space Q̃n(Ã,v) built with the poles ξ̃j coincides with Qn(A,v).
We may therefore equally well construct an orthonormal basis for Q̃n(Ã,v) as fol-
lows:

Starting with v1 = v/‖v‖, in each iteration j = 1, . . . , n one utilizes a modified
Gram–Schmidt procedure to orthogonalize the vector

wj+1 = (I − Ã/ξ̃j )
−1Ãvj (2.3)

against {v1, . . . ,vj }, yielding the vector vj+1, ‖vj+1‖ = 1 which satisfies

vj+1hj+1,j = wj+1 −
j∑

i=1

vihi,j , hi,j = v∗
i wj+1. (2.4)

Equating (2.3) and (2.4), and collecting the orthogonalization coefficients in Hn =
[hi,j ] ∈ C

n×n, we obtain in the n-th iteration of the rational Arnoldi algorithm a
decomposition

ÃVn

(
In + Hn diag

(
ξ̃−1

1 , . . . , ξ̃−1
n

)) + Ãvn+1hn+1,nξ̃
−1
n eT

n = VnHn + vn+1hn+1,ne
T
n ,

or in more compact form after defining Kn := In + Hndiag(ξ̃−1
1 , . . . , ξ̃−1

n ),

ÃVnKn + Ãvn+1hn+1,nξ̃
−1
n eT

n = VnHn + vn+1hn+1,ne
T
n , (2.5)

where In denotes the n × n identity matrix and en its last column. Using the con-
vention that ξ̃n = ∞ (i.e., ξn = ∞, which corresponds to a polynomial Krylov step,
cf. [8, 24]), Eq. (2.5) reduces to

ÃVnKn = VnHn + vn+1hn+1,ne
T
n . (2.6)

If the matrix Hn appended with the row hn+1,ne
T
n is an unreduced upper Hessenberg

matrix (that is, all the coefficients hj+1,j of (2.4) are nonzero), then the right-hand
side of (2.6) is of full rank n and therefore Kn is invertible. Otherwise, if hn+1,n = 0,
then Qn(A,v) is an A-invariant subspace and we have a lucky early termination. The
matrix An required for computing the rational Arnoldi approximation (2.2) can be
calculated from (2.6) without explicit projection as

An = V ∗
n AVn = V ∗

n ÃVn + σIn = HnK
−1
n + σIn. (2.7)



A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix 599

Note that An corresponds to the projection of the non-translated operator A onto the
rational Krylov space Qn(A,v).

Remark 2.1 In exact arithmetic the rational Arnoldi approximation (2.2) is indepen-
dent of the choice of the translation σ . However, for numerical stability of the rational
Arnoldi algorithm, σ should have a large enough distance to the poles ξj relative to
‖A‖, because otherwise the pole and the zero in the fraction of (2.3) may “almost
cancel”, causing accuracy loss in the rational Krylov basis [32].

It is well known that the rational Arnoldi approximation f n defined in (2.2) is (in
some sense) a near-optimal approximation for f (A)v from the space Qn(A,v) (see,
e.g., [8, 15, 24]), that is, f n is very close to the orthogonal projection VnV

∗
n f (A)v.

Therefore the poles ξj need to be chosen such that Qn(A,v) contains a good ap-
proximation to f (A)v, and of course, such a choice depends both on the spectral
properties of A and the function f . This necessity for choosing optimal parameters
is a serious problem that prevents rational Arnoldi from being used in practice more
widely. Before discussing our automated pole selection strategy, we list some well-
known properties of the rational Arnoldi approximation (2.2). The interested reader
is referred to [8, 24, 25] for further details.

1. By the definition of a rational Krylov space Qn(A,v) (cf. (2.1)), there exists a
rational function rn of type (n − 1, n − 1) such that

f n = rn(A)v = pn−1

qn−1
(A)v.

2. This function rn is a rational interpolant for f with prescribed denominator qn−1

and interpolation nodes Λ(An) = {θ1, . . . , θn}, the so-called rational Ritz values.
Defining the rational nodal function sn of type (n,n − 1),

sn(z) :=
∏n

k=1(z − θk)

qn−1(z)
, (2.8)

by the Hermite–Walsh formula for rational interpolants (see, e.g., [39, Theo-
rem VIII.2] or [6]) we have

rn(z) =
∫

Γ

sn(z)

sn(x)(x − z)
dγ (x),

and therefore

∥∥f (A)v − rn(A)v
∥∥ ≤ ∥∥sn(A)v

∥∥ ·
∥∥∥∥
∫

Γ

(xI − A)−1

sn(x)
dγ (x)

∥∥∥∥. (2.9)

3. The term ‖sn(A)v‖ in (2.9) is minimal among all rational functions of the form
s̃n(z) = (zn + αn−1z

n−1 + · · · + α0)/qn−1(z) (see, e.g., [24, Lemma 4.5]).



600 S. Güttel, L. Knizhnerman

3 Automated pole selection

Note that the rational nodal function sn of (2.8) is explicitly known in the n-th it-
eration of the rational Arnoldi method: it has poles ξ1, . . . , ξn−1, and its zeros are
the rational Ritz values Λ(An). The aim of an automated pole selection strategy
is, of course, to achieve a smallest possible (bound for the) approximation error
‖f (A)v − f n‖ at every iteration of the rational Arnoldi method. In view of (2.9) we
will therefore try to make |sn(x)| uniformly large on Γ (the support of the measure
γ in (1.1)) by choosing the next pole ξn ∈ Γ such that

∣∣sn(ξn)
∣∣ = min

x∈Γ

∣∣sn(x)
∣∣.

This choice is inspired by the pole selection strategy proposed in [18, 19], where
the nodal function has to be large on a negative real interval Γ and small on −Γ

(the spectral interval of a symmetric matrix). In our case we do not necessarily have
such symmetry, but still we can achieve that our nodal rational function sn is large
on Γ . Recall from above that the term ‖sn(A)v‖ in (2.9) is guaranteed to be minimal
among all rational functions with the prescribed poles. This justifies our strategy to
minimize explicitly only the second factor on the right-hand side of (2.9). In Algo-
rithm 1 we summarize our rational Arnoldi method with automated pole selection,
see also [26].

Algorithm 1 Rational Arnoldi method for f (A)v with automated pole selection

Input: Function f , associated set Γ (see (1.1)), A ∈ C
N×N , v ∈ C

N \ {0},
and translation parameter σ if necessary (i.e., when 0 ∈ Γ , see Remark 2.1).
Output: Rational Arnoldi approximations f j and pole sequence ξ1, ξ2, . . .

1. Set Ã := A − σI , q0(z) := 1, and v1 := v/‖v‖.
2. For j = 1,2, . . .

3. Compute w̃j+1 := Ãvj .
4. Compute hi,j := v∗

i
w̃j+1 (i = 1, . . . , j ).

5. Set Hj := [hi,j ] ∈ Cj×j and Kj := Ij + Hj diag(ξ̃−1
1 , . . . , ξ̃−1

j−1,0) ∈ Cj×j .

6. Compute Aj := HjK−1
j

+ σIj .

7. Compute j -th order Arnoldi approximation f j := Vjf (Aj )V ∗
j

v ∈ Qj (A,v).
8. Compute an error estimate for f j (see Sect. 4) and halt if a stopping criterium is satisfied.
9. Compute Λ(Aj ) = {θ1, . . . , θj } and set

ξj := arg min
z∈Γ

∣∣sj (z)
∣∣ = arg min

z∈Γ

∣∣∣∣∣
j∏

k=1

(z − θk)/qj−1(z)

∣∣∣∣∣.

10. Set qj (z) := (z − ξj )qj−1(z).

11. Set ξ̃j := ξj − σ and compute wj+1 := (I − Ã/ξ̃j )−1w̃j+1.

12. Redefine hi,j := v∗
i
wj+1 (i = 1, . . . , j ) and compute v̂j+1 := wj+1 − ∑j

i=1 vihi,j .
13. Compute hj+1,j := ‖v̂j+1‖ and vj+1 := v̂j+1/hj+1,j .
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Remark 3.1 Note that, in contrast to the algorithms presented in [18, 19], Algorithm 1
does not require any estimation for the spectral region of A (except for a very rough
estimate of ‖A‖ to choose the parameter σ , see Remark 2.1). In fact, we will demon-
strate in Sects. 5 and 6 that our algorithm also performs well for highly nonsymmetric
and nonnormal matrices.

Remark 3.2 In a practical implementation of Algorithm 1 one can use an a-posteriori
error estimator in Step 8 to halt the iteration if ‖f (A)v − f j‖ is below some toler-
ance. We will discuss such error estimators in Sect. 4.

Remark 3.3 Typically, the cost for orthogonalization of the Krylov basis vectors,
equations (2.3) and (2.4), is negligible compared with the cost of solving the shifted
linear systems with A. Step 3 of Algorithm 1 corresponds to a polynomial Krylov step
(i.e., ξ̃j = ∞) and allows for the cheap computation of the projection matrix Aj =
V ∗

j AVj in Step 6 using the relation (2.7). Overall two orthogonalizations are required
in one iteration of the algorithm. However, techniques for reducing the number of
inner products in the rational Arnoldi algorithm using so-called auxiliary vectors
could be employed [24, Chap. 6]. Reorthogonalization techniques may be employed
as well, however, we have not found this necessary in the numerical experiments
presented in this paper.

4 Error criteria

In this section we derive some practical estimates for the approximation error
‖f (A)v − f n‖. Some of these techniques were adopted from [14, 24, 31], where
they were used for other problems: computation of some non-Markov matrix func-
tions and solution of matrix equations. This section also contains a comparison of
these error estimators in Fig. 1 for a simple test matrix.

4.1 The difference of iterates

Given some delay integer d , by the triangle inequality ‖f (A)v − f n‖ ≤ ‖f (A)v −
f n+d‖ + ‖f n+d − f n‖. Under the assumption that the rational Arnoldi method con-
verges sufficiently fast so that ‖f (A)v − f n+d‖ is relatively small in comparison to
‖f (A)v − f n‖, a primitive estimator for the approximation error is

∥∥f (A)v − f n

∥∥ ≈ ‖f n+d − f n‖. (4.1)

Note that the Euclidian norm of the difference of two iterates can be computed
cheaply using only their coordinates in the orthonormal basis Vn+d and Vn, with-
out forming the long Arnoldi approximation vectors f n+d and f n. We warn that this
estimator may be too optimistic, in particular, when the approximations f n (almost)
stagnate for d iterations or more. This underestimation of the error can be seen in
Fig. 1.
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Fig. 1 Comparison of the error estimators from Sect. 4, given in (4.1), (4.2), (4.3), and (4.4) for a diagonal
matrix whose eigenvalues are 104 Chebyshev points in [10−3,103]. The delay integer for the first two error
estimators (4.1) and (4.2) is chosen as d = 2. Note that the corresponding curves (blue with crosses and
red with circles) partly overlay the actual error curve (solid gray). The integrals involved in the other two
estimators have been approximated by adaptive Gauss–Kronrod quadrature (Color figure online)

4.2 Exploiting geometric convergence

Another estimate can be derived by assuming that the error is decaying approximately
geometrically (as is typically the case, see Sect. 5). A similar estimator has been
successfully applied in [14, 31]. One starts by assuming the ideal equalities

‖f n − f n+d‖ = cR−n and ‖f n+d − f n+2d‖ = cR−(n+d),

and defining χj = log‖f j+d − f j‖. Moreover, one defines

R = exp

(
χn − χn+d

d

)
and c = exp

(
(n + d)χn − nχn+d

d

)
.

From
∥∥f (A)v − f n

∥∥ ≤ ‖f n − f n+d‖ + ‖f n+d − f n+2d‖ + · · ·
≈ cR−n

(
1 + R−d + R−2d + · · · )

we obtain the estimator

∥∥f (A)v − f n

∥∥ ≈ cR−n

1 − R−d
. (4.2)

The last equality is only valid if R > 1. In practice it may happen that R ≤ 1, in
which case this estimator becomes negative or infinite. This typically indicates an
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error increase or stagnation in the iterates, and one should iterate further to reobtain
a reliable estimator. This effect can be seen in Fig. 1, where the curve corresponding
to this error indicator shows several “gaps”.

4.3 Approximate error bound

An approximate bound for the approximation error can be derived by replacing A

with An in the integrand of (2.9), yielding

∥∥f (A)v − rn(A)v
∥∥ �

∥∥sn(A)v
∥∥ ·

∥∥∥∥
∫

Γ

(xIn − An)
−1

sn(x)
dγ (x)

∥∥∥∥. (4.3)

If An is diagonalizable, then this new integral can be approximated by scalar quadra-
ture. We still need to compute ‖sn(A)v‖. Note that sn(A)v is just a scalar multiple of
vn+1, say sn(A)v = δnvn+1. A simple trick to get a hand on this scalar δn is to run
the rational Arnoldi algorithm with a modified matrix and starting vector

Â =
[
A

τ

]
, v̂ =

[
v

1

]
,

where τ ∈ C is away from Γ and all Ritz values, still performing all inner products
only on the first N components (and hence not changing the orthogonality of Vn). We
therefore have

sn(Â)v̂ =
[
sn(A)v

sn(τ )

]
= δnv̂n+1.

Comparing the last (that is, (N + 1)-st) element of v̂n+1 with sn(τ ), we obtain the
desired scaling factor |δn| = ‖sn(A)v‖ as

δn = sn(τ )/[v̂n+1]N+1.

The behavior of the resulting approximate upper bound is shown in Fig. 1. Typi-
cally, this approximate bound cannot be trusted for small iteration numbers n, but it
becomes more reliable in later iterations when more spectral information about A has
been captured in An.

4.4 Residual-based estimator

As explained in Sect. 2, the matrix An = V ∗
n AVn required for the Arnoldi approxi-

mation (2.2) can be computed via An = HnK
−1
n + σIn without explicit projection.

This allows us to use a shifted version of the decomposition (2.6) in the form

(x̃I − A)Vn = Vn(x̃I − An) − vn+1hn+1,ne
T
n K−1

n ,

where x̃ = x + σ for an arbitrary x ∈ C. Let us consider a shifted linear system
(x̃I − A)x(x̃) = v and the corresponding rational Arnoldi approximation xn(x̃) =
Vn(x̃In − An)

−1V ∗
n v. The residual of this approximation satisfies
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v − (x̃I − A)xn(x̃) = v − (x̃I − A)Vn(x̃In − An)
−1V ∗

n v

= v − [
Vn(x̃I − An) − vn+1hn+1,ne

T
n K−1

n

]
(x̃In − An)

−1V ∗
n v

= vn+1hn+1,ne
T
n K−1

n (x̃In − An)
−1V ∗

n v.

Using the fact that V ∗
n v = ‖v‖e1 by construction of the rational Arnoldi algorithm,

and K−1
n (x̃In − An)

−1 = (xKn − Hn)
−1, we obtain

∥∥v − (x̃I − A)xn(x̃)
∥∥ = hn+1,n‖v‖ · ∣∣eT

n (xKn − Hn)
−1e1

∣∣.
This allows for the definition of a “residual” of a Cauchy–Stieltjes matrix function

residual(f,n) := vn+1hn+1,n

∫
Γ −σ

eT
n (xKn − Hn)

−1e1 dγ (x),

whose norm is given by

∥∥residual(f,n)
∥∥ = hn+1,n‖v‖ ·

∥∥∥∥
∫

Γ −σ

eT
n (xKn − Hn)

−1e1 dγ (x)

∥∥∥∥. (4.4)

See also [10, 13, 29, 37] for related constructions. In our numerical experiments this
appeared to be a good indicator, being almost proportional to the actual error; see
again Fig. 1.

5 Convergence studies

A thorough convergence analysis of our algorithm appears to be complicated by
the interaction between the Ritz values Λ(An) (which vary in each iteration) and the
selected poles {ξj }. Although there is hope of characterizing these two sets asymp-
totically as equilibrium charges on a condenser (at least in the case of a symmetric
matrix A; see our Remark 5.1), we decided to present here a numerical comparison
of our method with competing approaches for computing approximations for f (A)v.
Our comparison is two-fold. In Sect. 5.1 we compare our method with two other
methods, both of which use asymptotically optimal poles computed by assuming
knowledge of the spectral properties of A. In Sect. 5.2 we then compare our method
to well-established Krylov methods with prescribed pole sequences independent of
A, namely the polynomial and extended Krylov subspace methods.

5.1 Comparison with asymptotically optimal pole sequences

Our algorithm can be seen as a strategy for constructing the nodal function sn of
(2.8) such that this function is large on Γ and small on the numerical range W(A).
The numerical range W(A) := {x∗Ax : ‖x‖ = 1} is a convenient set for bounding the
norm ‖sn(A)‖: by a theorem of Crouzeix [12] we have

∥∥sn(A)
∥∥ ≤ 11.08 max

z∈W(A)

∣∣sn(z)∣∣. (5.1)



A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix 605

Unfortunately, bounds based on the numerical range may be crude, in which case
it is not clear on which set Σ ⊂ C the function sn actually needs to be small so that
‖sn(A)‖ is guaranteed to be small. Although the convergence bounds below are given
in terms of Σ = W(A), the reader should keep in mind that possibly a smaller set Σ

may be relevant for the actual convergence of the Krylov methods under considera-
tion. For example, adaptation of polynomial Krylov methods to the operator spectrum
is treated in [30], or in [6] for the rational Krylov case, and improved (theoretical)
bounds for ‖sn(A)‖ may be obtainable by considering sets Σ = Σn that shrink as the
iteration progresses (see, e.g., [6]), or by considering pseudospectra of A instead of
the numerical range (see, e.g., [38]).

Assuming that Σ = W(A) and Σ is disjoint from Γ , we may compare the per-
formance of our automated pole selection strategy with that of explicit selection of
(asymptotically) optimal poles ξj . One choice of such poles is so-called generalized
Leja points (or Leja–Bagby points, see [5]), which are constructed as follows: Start-
ing with a point σ1 ∈ Σ such that maxz∈Σ |z − σ1| is minimal, the points σj+1 ∈ Σ

and ξj ∈ Γ are determined recursively such that with the nodal function

sj (z) =
∏j

i=1(z − σi)∏j−1
i=1 (z − ξi)

the conditions

max
z∈Σ

∣∣sj (z)∣∣ = ∣∣sj (σj+1)
∣∣ and min

z∈Γ

∣∣sj (z)∣∣ = ∣∣sj (ξj+1)
∣∣

are satisfied. Note that the function sj defined here would agree with the nodal func-
tion defined in (2.8) at iteration j of the rational Arnoldi method if all the σi were to
coincide with Ritz values θi , and all the poles ξi were the same. Results from loga-
rithmic potential theory [23, 33] assert that there exists a positive number cap(Σ,Γ ),
called the condenser capacity, such that

lim sup
n→∞

(
maxz∈Σ |sn(z)|
minz∈Γ |sn(z)|

)1/n

= e−1/cap(Σ,Γ ).

Determining the capacity of an arbitrary condenser (Σ,Γ ) is a nontrivial problem.
The situation simplifies if both Σ and Γ are simply connected sets (and not single
points): then by the Riemann mapping theorem (cf. [27, Theorem 5.10h]) there exists
a bijective function Φ that conformally maps the complement of Σ ∪Γ onto a circu-
lar annulus AR := {w : 1 < |w| < R}. The number R is called the Riemann modulus
of AR and it satisfies

R−1 = e−1/cap(Σ,Γ ).

To relate the asymptotic behavior of sn to that of the error ‖f (A)v − rn(A)v‖ we use
(2.9) and (5.1), and obtain

lim sup
n→∞

∥∥f (A)v − rn(A)v
∥∥1/n ≤ R−1.
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In the following examples we demonstrate that our adaptive rational Arnoldi
method, Algorithm 1, (asymptotically) converges at least with rate R−1, i.e., not
slower than a rational Krylov method with asymptotically optimal poles would con-
verge if the set Σ were known a priori. To this end, we numerically compare our
method with two reference methods, both of which are known to converge asymptot-
ically at least with rate R−1.

The first reference method is the so-called PAIN (poles and interpolation nodes)
method, which is a two-term recurrence described in [24]

v1 = v/‖v‖,
βjvj+1 = (I − A/ξj )

−1(A − σj I )vj , j = 1, . . . , n,

where the numbers βj are chosen to normalize the vectors vj+1, and σj and ξj are
the generalized Leja points for the condenser (Σ,Γ ). The corresponding PAIN ap-
proximation is defined as

f (P)
n := [v1, . . . ,vn]f

(
RnL

−1
n

)‖v‖e1,

where e1 ∈ R
n denotes the first unit coordinate vector,

Ln =

⎡
⎢⎢⎢⎣

1
β1/ξ1 1

. . .
. . .

βn−1/ξn−1 1

⎤
⎥⎥⎥⎦ and Rn =

⎡
⎢⎢⎢⎣

σ1
β1 σ2

. . .
. . .

βn−1 σn

⎤
⎥⎥⎥⎦ .

It can be shown that f (P)
n = r

(P)
n (A)v, where r

(P)
n is the rational interpolant for f with

prescribed poles ξ1, . . . , ξn−1 and interpolation nodes σ1, . . . , σn [24]. Note that the
PAIN method is not spectrally adaptive: both the poles and the interpolation nodes
are chosen a priori and no discrete spectral information about A is taken into account.

The second reference method is the rational Arnoldi method where the poles ξj are
chosen a priori as generalized Leja points, and we will refer to this as the standard ra-
tional Arnoldi method in the following. We denote the corresponding approximations
as f (S)

n . Note that the standard rational Arnoldi method chooses the interpolation
nodes spectrally adaptive as Ritz values associated with the rational Krylov space.
It is therefore an adaptive method for the interpolation nodes, but still the poles are
chosen a priori. The methods under consideration are summarized in Table 1.

Table 1 Overview of the methods to be compared, all of which compute approximations to f (A)v of the
form rn(A)v, where rn is a rational interpolating function for f

Method Interpolation nodes for rn Poles of rn

PAIN f
(P)
n generalized Leja generalized Leja

standard rational Arnoldi f
(S)
n adaptive (Ritz values) generalized Leja

adaptive rational Arnoldi f n adaptive (Ritz values) adaptive
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The interval case Let A be a symmetric matrix with Σ = W(A) = [a, b] being a
positive spectral interval. Moreover, let f be a Markov function (1.1) whose generat-
ing measure γ is supported on Γ = (−∞,0]. Then the conformal map Φ that carries
the complement of Γ ∪ Σ = (−∞,0] ∪ [a, b] onto the annulus AR can be given ex-
plicitly in terms of elliptic functions. In particular, the Riemann modulus R is given
as (see [23, § 3])

R = exp

(
π

2

K(
√

1 − κ2)

K(κ)

)
, where κ =

√
b/a − 1√
b/a + 1

(5.2)

and

K(κ) =
∫ 1

0

1√
(1 − t2)(1 − κ2t2)

dt (5.3)

is the complete elliptic integral of the first kind (see [4]).1

Let f (z) = z−1/2 without further mention in this Sect. 5.1. We first consider a
diagonal matrix A1 with N = 104 eigenvalues being scaled and shifted Chebyshev
points of the second kind,

λj = a + cos(πj/(N − 1)) + 1

2
(b − a), j = 0,1, . . . ,N − 1,

in the interval [a, b] = [10−3,103], and a vector v whose entries are normally dis-
tributed pseudo-random numbers. In Fig. 2 (top left) we show the convergence of
our adaptive rational Arnoldi method, Algorithm 1, in comparison with the two ref-
erence methods (the PAIN method and standard rational Arnoldi, cf. Table 1). The
theoretical convergence rate R−1 from (5.2) is indicated by the slope of the dashed
line. Note that all the three methods converge almost linearly with the predicted rate.
The reason for the rational Arnoldi methods behaving like this is that the Chebyshev
eigenvalues are denser at the endpoints of the spectral interval, and almost no spectral
adaption takes place during the first 50 iterations shown here. In some sense, the ratio-
nal Krylov methods behave initially as if the spectrum were not discrete; see [6] for a
potential theoretic explanation. We expect our adaptive method to choose roughly the
same poles as were chosen in the generalized Leja case, and the plot below confirms
this expectation by depicting the (smoothed) empirical distribution functions of the
first 50 adaptive poles and generalized Leja poles; the two distributions are visually
hard to distinguish.

We next consider a diagonal matrix A2 with N = 104 equispaced eigenvalues

λj = a + j (b − a)/(N − 1), j = 0,1, . . . ,N − 1,

in the interval [a, b] = [10−3,103]. In Fig. 2 (top right) we again show the conver-
gence of the three methods. While the PAIN method still converges linearly with rate
R given by (5.2), the standard rational Arnoldi method is somewhat faster because

1The definition of K(κ) is not consistent in the literature. We stick to the definition used in [34, Chap. VI].
In MATLAB one would type ellipke(kappa^2) to obtain the value K(κ).
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Fig. 2 Left: Convergence curves (top) and distribution of poles (below) when approximating A
−1/2
1 v with

different rational Krylov methods. Right: Similar plots for the matrix A2

the interpolation nodes (Ritz values) “deflate” some of the left-most eigenvalues of A

in early iterations, causing a superlinear convergence speedup (see [6] for an analysis
of this effect). The adaptive rational Arnoldi method converges even faster than stan-
dard rational Arnoldi, because the poles of the rational Krylov space are selected by
taking into account the deflation of left-most eigenvalues. The plot of the pole distri-
bution functions below reveals that the adaptive method has the tendency to place the
poles ξj somewhat farther away from the origin.

Union of intervals In Fig. 3 (left) we consider a diagonal matrix A3 whose spectrum
is the union of 10 Chebyshev points on the interval [10−3,10−1] and 9990 Chebyshev
points on [101,103]. Note that the PAIN method with poles optimized for the spec-
tral interval [10−3,103] converges linearly. However, our adaptive method changes
its slope after a few iterations to converge linearly as if the spectral interval were
[101,103]. Both slopes are depicted in this figure. The spectral adaption becomes
also visible in the pole distribution function (Fig. 3, bottom left).

Remark 5.1 In view of the behavior of our adaptive rational Arnoldi method for the
above symmetric matrices, we believe that the convergence can be asymptotically
(that is, for a sequence of symmetric matrices growing larger in size and having
a joint limit eigenvalue distribution) compared to min-max rational functions with
poles on Γ and zeros on Σ being constrained Leja points in the sense of [11]. The
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Fig. 3 Left: Convergence curves (top) and distribution of poles (below) when approximating A
−1/2
3 v with

different rational Krylov methods. Right: Similar plots for the matrix A4

constraint for the zeros is given by the interlacing property of Ritz values associated
with symmetric matrices (see, e.g., [7]).

A Jordan block The matrix A4 is a single Jordan block

A4 =

⎡
⎢⎢⎢⎢⎣

1 1

1
. . .

. . . 1
1

⎤
⎥⎥⎥⎥⎦ ∈ C

N×N,

and its numerical range is a disk W(A4) = {z : |z − 1| ≤ r} with radius r =
cos(π/(N + 1)). The conformal mapping of the complement of W(A4) in the slit
complex plane onto an annulus is known in terms of elliptic functions (see [34,
p. 293–294]), and the Riemann modulus of this domain is

R = exp

(
π

4

K(
√

1 − κ2)

K(κ)

)
, where κ =

(
c

r
−

√
c2

r2
− 1

)2

,

with K(κ) defined in (5.3). The resulting convergence of the three methods is shown
in Fig. 3 (right), together with the theoretical rate R−1. Note that the PAIN method
converges as predicted from the bound involving the numerical range, whereas the
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two rational Arnoldi methods converge faster due to spectral adaption. In particular,
our adaptive method converges significantly faster.

5.2 Comparison with fixed pole sequences

In this section we will briefly discuss polynomial and rational Krylov methods with
poles prescribed independently of Σ , and therefore not leading to the optimal con-
vergence rate associated with the condenser capacity cap(Σ,Γ ).

The simplest of these methods is the polynomial Arnoldi method, which is the
special case of rational Arnoldi in which all poles ξj are set to infinity. This method
has the obvious advantage that no linear system solves are required. If A is Hermitian
and we consider the approximation of functions with generating measure supported
on Γ = (−∞,0], such as f (z) = z−1/2, then the convergence rate of the polynomial
Arnoldi method equals that of the CG method, i.e.,

∥∥f (A)v − f n

∥∥ ≤ C

(√
κ − 1√
κ + 1

)n

� C · exp

(
− 2n√

κ

)
, κ = λmax

λmin
,

where the approximate inequality is valid for large condition numbers κ . Obviously,
convergence can be slow if the condition number κ gets large, and therefore many
Krylov iterations will be required to approximate f (A)v to a prescribed accuracy.
Note that Arnoldi (and also Lanczos) methods for matrix functions require the Krylov
basis Vn to be stored for the final computation of the Arnoldi approximation f n of
(2.2), which renders this method impractical if n is large. Although restarted variants
of the polynomial Arnoldi method for f (A)v have been proposed, which prevent the
dimension of the Krylov space to grow above memory limit (see [1, 20, 21]), the use
of finite poles ξj typically is a worthwhile alternative if linear systems with shifted
versions of A can be solved efficiently.

If the poles alternate between ξ2j = ∞ and ξ2j+1 = 0, we obtain the so-called
extended Krylov subspace method with convergence (see [15] and [31, Theorem 3.4])

∥∥f (A)v − f n

∥∥ ≤ C

(
4
√

κ − 1
4
√

κ + 1

)n

� C · exp

(
− 2n

4
√

κ

)
.

A computational advantage of the extended Krylov subspace method is that only the
actions of A and A−1 on vectors are required. In particular, if a direct solver is ap-
plicable, only one factorization of A needs to be computed. The convergence of the
polynomial and extended Krylov subspace methods is illustrated in Fig. 4, and com-
pared with that of our adaptive rational Arnoldi method. In this figure, f (z) = z−1/2

and A is the finite-difference discretization of the negative 2D Laplacian with 100
discretization points in each coordinate direction (i.e., N = 1002). Note that the pre-
dicted convergence rate for the extended Krylov subspace method is only observable
in the first few iterations because superlinear convergence effects take place when
some rational Ritz values start converging to the left-most eigenvalues of A (which
are close to the poles at 0, see [6] for an explanation).

Our last test is more challenging: We consider the computation of the logarithm
log(A)v of a random diagonalizable matrix A ∈ C

200×200 having eigenvalues in the
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Fig. 4 Comparison of polynomial and rational Arnoldi methods for the approximation of f (A)v =
A−1/2v for the negative 2D Laplacian. The dashed lines indicate the expected linear convergence slopes

Fig. 5 Left: Eigenvalues of a highly nonnormal random matrix A ∈ C
200×200. Right: Convergence of

rational Arnoldi for f (A)v = log(A)v, random vector v, with adaptive poles on Γ = (−∞,0]

unit disk under the constraint that the distance of each eigenvalue to Γ = (−∞,0]
is at least 0.1. The eigenvalues of this matrix are shown in Fig. 5 (left). We remark
that A is highly nonnormal: although the moduli of its eigenvalues are nicely bounded
above and below, it has a condition number of ≈ 2.5×104. To our best knowledge, no
existing convergence theory is able to explain why Algorithm 1 converges so robustly
even for this matrix (see Fig. 5, right). Note that the usual arguments involving the
numerical range W(A) fail here, as this set is not even disjoint from Γ . We have failed
to implement the extended Krylov subspace method in such a way that it reproduces
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the exact solution at least at iteration n = N = 200, as theory predicts. This instability
is probably caused by the (n/2)-fold pole 0 being surrounded by eigenvalues of A

and lying inside the numerical range.

6 A large-scale numerical example with inexact solves

The following tests are run on a desktop computer with 3.7 GB of RAM, running
an AMD Phenom II X3 705e processor at 2.5 GHz. The software environment is
Matlab 7.12.0 (R2011a) under Ubuntu Release 10.04.

We shall consider the problem of computing the impedance function f (z) = z−1/2

of a discretization A of the convection–diffusion operator

A u = −div(a gradu) + bT gradu

on Ω = [0,1]3. We assume that a is a uniformly positive and bounded function de-
fined on Ω , and b = (b1, b2, b3)

T is a vector function whose components posses the
same properties. We have discretized this operator by the standard second-order finite
difference scheme with 100 regular interior grid points.

In Fig. 6 (left) we show the convergence behavior of our adaptive method and
the extended Krylov subspace method for smooth low-contrast conductivity a1 and
smooth convective field b, namely

a1(x, y, z) = 1 + exp(x − 2y), b(x, y, z) =
⎡
⎣ sin(x + y)

cos(x + y)

sin(y + z)

⎤
⎦ . (6.1)

In Fig. 6 (right) we show the results for piecewise constant high-contrast conductivity
a2 and the same b as in (6.1),

a2(x, y, z) =
{

100, if |x| ≤ 0.5 and |y| ≤ 0.6,

1 otherwise.

The resulting discretization matrices are of size 106 × 106 and are referred to as A1
and A2, respectively. All components of the vector v are set to 1.

All shifted linear systems are solved with a relative error tolerance of 10−5, which
is sufficiently smaller than our target relative error of 10−4 for the approximation
f (A�)v (� = 1,2). The linear system solver is BICGSTAB preconditioned by ILU(0).
This combination works quite well for the shifted linear systems under considera-
tion, as is indicated in Table 2. The errors of the linear system solves are estimated
by exploiting the almost geometric convergence of BICGSTAB with the estimator
presented in Sect. 4.2 (we chose the delay integer d = 2). As indicated in the last
column of Table 2, the measured errors are typically below 10−5, or at least of that
order. We have also tried other combinations of iterative solvers and preconditioners,
such as BICGSTABL, restarted GMRES, GMR, TFQMR, and IDRS(s)2 in combina-
tion with drop-tolerance ILU or Gauss–Seidel preconditioners. The results of these

2As available from http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
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Fig. 6 Left: Convergence curves (top) and distribution of poles (below) when approximating A
−1/2
1 v.

The iteration is stopped when the relative error is below 10−4. The linear systems involved are solved with
a relative error tolerance of 10−5. Right: The same plots for the matrix A2

comparisons are not reported here, but the combination ILU(0) and BICGSTAB con-
sistently outperformed the others. Moreover, BICGSTAB and ILU(0) are parameter-
free methods, which is important in our case where we try to develop a black-box
method. The initial guess for all linear systems was the vector of all zeroes.

Our adaptive shifts ξj are chosen by a greedy search on a discretization of the in-
terval [−106,−10−6] with 105 logarithmically equispaced points. We have found
experimentally that this is a sufficiently fine approximation to the continuous set
Γ = (−∞,0]: Taking more discretization points or increasing the width of the search
interval did not give any visible improvement in the convergence of our adaptive
method. As can be seen in Table 2, the computation time of BICGSTAB clearly dom-
inates that of the ILU(0) factorization, the latter being more or less shift-independent.
Note how linear systems with a large shift (in modulus) are typically solved faster
than systems with a shift of moderate size. The reason for this observation may be
the stronger diagonal dominance of systems with larger shifts, which renders the
ILU(0) preconditioner to be more effective, a well-known effect [9].

Our adaptive method clearly outperforms the extended Krylov subspace method
in terms of required iterations and computation time. For example, in the case of
low-contrast conductivity, the adaptive method requires n = 7 iterations, whereas
the extended Krylov subspace method requires n = 24 iterations (see Fig. 6, left).
With the conservative assumption that each shifted linear system solve requires about
30 seconds (see Table 2), our adaptive method requires at least 6 × 30 = 180 seconds
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Table 2 Solving linear systems with the matrices A1 − ξI and A2 − ξI using BICGSTAB preconditioned
by ILU(0). The BICGSTAB iteration is terminated when our estimator of Sect. 4.2 indicated a relative error
below 10−5

Matrix Shift ξ ILU(0)
time in s

BICGSTAB Relative
error#iterations Time in s

low-contrast
conductivity

−0e+00 0.39 85 28.5 8.72e−07

−1e−06 0.42 82 27.5 1.31e−06

−1e−04 0.42 82 27.4 1.14e−06

−1e−02 0.43 83 27.7 1.84e−06

−1e+00 0.42 78 26.2 1.43e−05

−1e+02 0.42 55 20.1 1.12e−06

−1e+04 0.43 11 3.4 1.26e−08

−1e+06 0.42 6 1.7 1.33e−12

high-contrast
conductivity

−0e+00 0.39 71 23.7 2.90e−06

−1e−06 0.42 71 27.3 2.70e−06

−1e−04 0.42 71 26.4 3.49e−06

−1e−02 0.74 71 30.9 3.43e−06

−1e+00 0.43 70 26.4 2.86e−06

−1e+02 0.43 65 25.2 1.19e−06

−1e+04 0.42 35 14.1 2.44e−06

−1e+06 0.43 9 3.7 1.74e−11

computation time (the first iteration only utilizes the vector v1 = v/‖v‖ and does not
require a linear system solve). The extended Krylov subspace method, on the other
hand, requires at least 11 × 30 = 330 seconds (only every second iteration of this
method requires a linear system solve). Note that we have still neglected the com-
putational costs for orthogonalization and memory management of the long Krylov
basis vectors. These costs are larger for the extended Krylov subspace method, be-
cause the associated Krylov basis is of higher dimension, but in comparison to the
time spent in the BICGSTAB routine these computations are negligible. The gap in
iteration numbers between our adaptive method and the extended Krylov subspace
method becomes even larger for the example with high conductivity contrast: in this
case the methods required 9 versus 43 iterations, respectively (see Fig. 6, right).

We finally remark that the extended Krylov subspace method does not perform
well in these examples due to the use of an iterative solver which cannot exploit the
fact that only one finite shift ξ = 0 appears. The use of direct methods is typically
prohibitive for 3D problems. For 2D problems, however, the situation is different and
the extended Krylov subspace method in combination with direct solvers may still be
competitive with our adaptive method in terms of computation time. In any case, our
method tends to require lower-dimensional Krylov subspaces, so that our advantage
of lower memory consumption and fewer orthogonalizations still persists.
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7 Summary and future work

We have presented a parameter-free rational Arnoldi method for the efficient compu-
tation of certain matrix functions f (A) acting on a vector v. We provided numerical
evidence that this method converges at least as well as rational Krylov methods using
optimal pole sequences constructed with the knowledge of the spectrum. In fact, our
new method typically even outperforms such methods due to the spectral adaption
of the poles during the iteration. A rigorous convergence analysis, perhaps involving
tools from potential theory as in [6, 7], for explaining spectral adaption of this ratio-
nal Arnoldi variant applied with a symmetric matrix, may be an interesting research
problem. The first author also has experienced cases where it seems profitable to take
Γ different from the “canonical choice” (−∞,0] when approximating the inverse
matrix square root, an observation that will be subject of future investigation.
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