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Abstract In this paper, we introduce efficient methods for the approximation of so-
lutions to weakly singular Volterra integral equations of the second kind with highly
oscillatory Bessel kernels. Based on the asymptotic analysis of the solution, we derive
corresponding convergence rates in terms of the frequency for the Filon method, and
for piecewise constant and linear collocation methods. We also present asymptotic
schemes for large values of the frequency. These schemes possess the property that
the numerical solutions become more accurate as the frequency increases.
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1 Introduction

Integral equations with highly oscillatory kernels occur in a number of applications in
electromagnetics, acoustic scattering, and engineering. For example, many problems
of scattering of time-harmonic acoustic or electromagnetic waves can be formulated
as the Helmholtz equation

�u + ω2u = 0, in Rd \ Ω , d = 2, 3, (1.1)

subject to appropriate boundary conditions [3, 9, 19, 24]. Here, Ω is the scattering
object and the wave number ω > 0 is an arbitrary positive constant, proportional to the
frequency of the incident wave. Standard schemes for solving this problem become
prohibitively expensive as ω → ∞. Langdon and Chandler-Wilde [19] reformulated
it as an integral equation,

u(x) =
∫

TH

∂H
(1)
0 (ω|x − y|)

∂y2
φ(y)ds(y), x ∈ UH ,

for some density φ ∈ L∞(TH ), where H
(1)
0 is the Hankel function of the first kind

of order zero, UH = {(x1, x2) : x2 > H > 0} and TH = {(x1,H) : x1 ∈ R}. Moreover,
as mentioned in [3], for the two-dimensional Helmholtz equation (1.1) in the exterior
domain, the solution can be written as the sum of the incoming wave ui and a scat-
tered wave us , u(x) = ui(x)+us(x). Due to the linearity of the problem, the function
us itself satisfies the Helmholtz equation with the boundary condition

us(x) = −ui(x), x ∈ Γ.

The unknown scattered wave with the single-layer potential can then be computed by
means of

us(x) = (Sq)(x) = i

4

∫
Γ

H
(1)
0

(
ω|x − y|)q(y)ds(y),

where q is the single-layer potential density function found from an integral equation
of the first kind [3, 24],

i

4

∫
Γ

H
(1)
0

(
ω|x − y|)q(y)ds(y) = ui(x), x ∈ Γ, (1.2)

or an integral equation of the second kind,

q(x)

2
+ i

4

∫
Γ

(
∂H

(1)
0 (ω|x − y|)

∂nx
+ iηH

(1)
0 (ω|x − y|)

)
q(y)ds(y) = ∂ui

∂n
(x)+ iηui(x),

(1.3)
with η ∈ R denoting a coupling parameter.

For the study of the numerical solution of a scalar retarded potential integral equa-
tion posed on an infinite flat surface,

∫
Γ

u(x′, t − |x′ − x|)
|x′ − x| dx′ = a(x, t) on Γ × (0, T ),
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Davies and Duncan showed in their 2004 paper [10] that by taking the continuous
Fourier transform the problem can be transformed into a Volterra integral equation of
the first kind,

2π

∫ x

0
û(ω, x − t)J0(ωt)dt = â(ω, x), ω > 0, (1.4)

with highly oscillatory Bessel kernel.
In 1985 Beezley and Krueger [5] considered direct and inverse scattering problems

in dispersive media which can be reformulated, using Green’s function and invariant
embedding techniques for the physical region [0,L] as L → ∞, as a Volterra integral
equation of second kind,

4R(t) + G(t) + (
G ∗ (2R + R ∗ R)

)
(t) = 0, t > 0, (1.5)

where f ∗ g denotes the convolution (f ∗ g)(x) = ∫ x

0 f (t)g(x − t)dt . In some cases
the equation can be solved explicitly, for example when

G(t) = γ eβt ⇐⇒ R(t) = −e(β−γ /2)t I1(γ t/2)

t

or

G(t) = γ teβt ⇐⇒ R(t) = −2eβt J2(
√

γ t)

t
.

Here, I1 is the modified Bessel function of the first kind of order one, and J2 is the
Bessel function of the first kind of order two. For more details, see [5, 18]. However,
in the nonhomogeneous case,

4R(t) + G(t) + (
G ∗ (2R + R ∗ R)

)
(t) = f (t), t > 0, (1.6)

the solution of direct and inverse scattering problems is much more compli-

cated, in particular for large values of γ when R(t) = −2eβt J2(
√

γ t)

t
or R(t) =

−e(β−γ /2)t I1(γ t/2)
t

.
One feature of the integral equations (1.2)–(1.4) and (1.6) is of particular rele-

vance: when ω 
 1, the kernel function is highly oscillatory, and then the computa-
tion of integrals by standard quadrature methods is exceedingly difficult and the cost
steeply increases with ω (see for example [15, 20, 27]). This means that the numer-
ical methods based on standard numerical quadrature formulas [4, 6, 8, 14, 21, 23]
are not feasible for solving these equations.

In order to obtain high-order accurate time-stepping methods for the single-layer
potential equation (1.4), Brunner, Davies and Duncan [7] employed the discontinuous
Galerkin (DG) method for first-kind integral equations

∫ x

0
K(x − t)y(t)dt = a(x), K(0) = 1, x ∈ [0,1], (1.7)

and analyzed its application to (1.4). However, the computational use of this method
for very large values of ω (e.g. the appropriate approximation of the inner products
and the discretization of the Volterra integral operator) has not yet been studied.
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Volterra integral equations with highly oscillatory kernels that also contain weak
singularities arise in solving various problems of mathematical physics; see for ex-
ample [2, 17].

In this paper we are concerned with the numerical solution of Volterra integral
equations of the second kind with highly oscillatory Bessel kernels,

y(x) +
∫ x

0

Jm(ω(x − t))

(x − t)α
y(t)dt = f (x), x ∈ [0,1], 0 ≤ α < 1, ω 
 1,

(1.8)
with x ∈ [0,1]. Here, y is the unknown function, f a given smooth function, and Jm

the Bessel function of the first kind of order m ≥ 0.
The purpose of this paper is to present efficient methods for (1.8). In Sect. 2, we

show that the solution of (1.8) is uniformly bounded for ω ≥ 0. Based on these results,
we present its asymptotics and approximations. In Sect. 3, we introduce efficient
algorithms, a Filon method, and collocation methods using piecewise constant and
piecewise linear polynomials. We show that these methods achieve higher accuracy
as the frequency increases. The efficiency of these methods is illustrated, in Sect. 4,
by a broad range of numerical examples.

2 Asymptotics of the solution of (1.8)

The theoretical aspects of the solutions of the general Volterra integral equation of
the second kind,

y(x) +
∫ x

0

K(x, t)

(x − t)α
y(t)dt = f (x), x ∈ [0,1], 0 ≤ α < 1,

have been investigated extensively. For further reference we cite the following regu-
larity result.

Lemma 2.1 [6, 13, 14, 23, 25] Assume that the functions f = f (x) and K = K(x, t)

are continuous on their respective domains [0,1] and D = {0 ≤ t ≤ x ≤ 1}. Then the
above equation possesses a unique continuous solution y = y(x). Furthermore, if
f ∈ Cq [0,1] and K ∈ Cq(D), then y ∈ Cq(0,1] ∩ C[0,1], with |y′(x)| ≤ Cαx−α

(x ∈ (0,1]) for some constant Cα .

The existence of a continuous solution y = yω of the integral equation (1.8) now
follows immediately from Lemma 2.1.

Theorem 2.1 (i) For every f ∈ C[0,1] and 0 ≤ α < 1, the solution yω(x) of (1.8) is
uniformly bounded for ω ≥ 0; that is,

sup
ω∈[0,+∞)

∥∥yω(x)
∥∥∞ < ∞. (2.1)

(ii) If f ∈ C1[0,1] and 0 ≤ α < m, then yω ∈ C1[0,1] and y′
ω(x) is uniformly

bounded for ω ≥ 0.
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(iii) Let f ∈ Cq [0,1] (q ≥ 1) and 0 ≤ m < α < 1. Then yω(x) satisfies yω ∈
C[0,1] ∩ Cq(0,1] with |y′

ω(x)| ≤ Cαx−α (x ∈ (0,1]), where Cα is a constant not
depending on ω.

Proof (i) Define

F(z) = f (x) −
∫ x

0

Jm(ω(x − t))

(x − t)α
z(t)dt

= f (x) −
∫ x

0

Jm(ωt)

tα
z(x − t)dt, ∀z ∈ C[0,1].

Then for all z1, z2 ∈ C[0,1],
∥∥F(z1) − F(z2)

∥∥∞ =
∥∥∥∥

∫ x

0

Jm(ωt)

tα

[
z1(x − t) − z2(x − t)

]
dt

∥∥∥∥∞

≤ ‖z1 − z2‖∞ max
x∈[0,1]

∫ x

0

|Jm(ωt)|
tα

dt

≤ ‖z1 − z2‖∞
ω1−α

max
x∈[0,1]

∫ ωx

0

|Jm(u)|
uα

du

≤ ‖z1 − z2‖∞
ω1−α

∫ ω

0

|Jm(u)|
uα

dt. (2.2)

Set β(ω) = 1
ω1−α

∫ ω

0
|Jm(u)|

uα du. Since |Jm(s)| ≤ As−1/3 uniformly for m and s ≥ 1,

for some constant A [26, p. 357] and |Jm(s)| ≤ 1 for m ≥ 0 [1, Eq. (9.1.60)], it
follows that

β(ω) ≤ 1

ω1−α

∫ 1

0

1

tα
dt + A

ω1−α

∫ ω

1
t−1/3−αdt

=
{

1
ω1−α

( 1
1−α

+ A
2
3 −α

ω
2
3 −α − A

2
3 −α

)
, α �= 2

3
1

ω1−α ( 1
1−α

+ A lnω), α = 2
3

−→ 0, ω → +∞.

This shows that there exists a constant ω0 ≥ 1 such that β(ω) ≤ 1
2 for ω ≥ ω0. Defin-

ing

β̄ = max
ω∈[ω0,+∞)

β(ω),

Equation (2.2) implies that

∥∥F(z1) − F(z2)
∥∥∞ ≤ β̄‖z1 − z2‖∞,

and hence F : C[0,1] → C[0,1] is a contraction mapping. Thus, the sequence {zn}
defined by the iteration zn+1 = F(zn), with z0(x) ≡ 0, converges to the solution
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yω(x) of (1.8) satisfying

∥∥yω(x) − f (x)
∥∥∞ = ∥∥F(y) − F(z0)

∥∥∞

= lim
n→∞

∥∥F(zn+1) − F(z0)
∥∥∞

= lim
n→∞

∥∥∥∥∥
n∑

k=0

(
F(zk+1) − F(zk)

)∥∥∥∥∥∞

≤ 1

1 − β̄

∥∥f (x)
∥∥∞.

This reveals that yω(x) is uniformly bounded by 2−β̄

1−β̄
‖f (x)‖∞ for ω ≥ ω0.

For ω ∈ [0,ω0], the solution of yω(x) can be represented by

yω(x) = f (x) −
∫ x

0
Rα(x, t,ω)f (t)dt, t ∈ [0,1], (2.3)

(cf. [6, p. 343-344]), where

Rα(x, t,ω) = (x − t)−αQ(x, t,ω;α),

Q(x, t,ω;α) =
∞∑

n=1

(x − t)(n−1)(1−α)Φn(x, t,ω;α).
(2.4)

Here, Φn(x, t,ω;α) ∈ C[0,1;0,1;0,+∞) is defined by

Φn(x, t,ω;α)

=
∫ 1

0
(1 − z)−αz(n−1)(1−α)−1Jm

(
ω(1 − z)(x − t)

)
Φn−1

(
t + (x − t)z, t,ω;α)

dz,

(2.5)

with Φ1(x, t,ω;α) = Jm(ω(x − t)). Since the series

∞∑
n=1

(x − t)(n−1)(1−α)Φn(x, t,ω;α),

converges uniformly, it follows that Q(x, t,ω;α) is continuous in x, t and ω,
and hence Rα(t, x,ω) possesses the same property. Therefore, yω(x) is uniformly
bounded on [0,1] for all ω. This establishes (2.1).

(ii) From the definition of Jm(x) (Abramowitz and Stegun [1, Eq. (9.1.10)]),

Jm(x) =
(

x

2

)m ∞∑
n=0

(− 1
4x2)n

n!Γ (m + n + 1)
, (2.6)
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we see that f ′(x) − Jm(ωx)yω(0)
xα ∈ C[0,1] is uniformly bounded in ω and x. Here we

have used that

∣∣Jm(ωx)
∣∣ ≤ 1 for all x ∈ [0,1] and ω ∈ [0,+∞) [1, Eq. (9.1.60)]

and the limit 0 of Jm(ωx)yω(0)
xα as x → 0. Thus, by the proof of (i), the integral equation

z(x) +
∫ x

0

Jm(ωt)

tα
z(x − t)dt = f ′(x) − Jm(ωx)yω(0)

xα
(2.7)

has a unique solution z ∈ C[0,1] and z(x) is uniformly bounded for ω ≥ 0. It follows
in particular from (2.7) that

f (x) − f (0) =
∫ x

0
z(u)du + yω(0)

∫ x

0

Jm(ωu)

uα
du +

∫ x

0

∫ u

0

Jm(ωt)

tα
z(u − t)dtdu

=
∫ x

0
z(u)du + yω(0)

∫ x

0

Jm(ωt)

tα
dt +

∫ x

0

Jm(ωt)

tα
dt

∫ x

t

z(u − t)du

=
∫ x

0
z(u)du +

∫ x

0

Jm(ωt)

tα
dt

(
yω(0) +

∫ x

t

z(u − t)du

)

=
∫ x

0
z(u)du +

∫ x

0

Jm(ωt)

tα

(
yω(0) +

∫ x−s

0
z(s)ds

)
dt,

which by f (0) = yω(0) yields

yω(0) +
∫ x

0
z(s)ds +

∫ x

0
Jm(ωt)

(
yω(0) +

∫ x−s

0
z(s)ds

)
dt = f (x).

Thus yω(x) = yω(0) + ∫ x

0 z(t)dt ∈ C1[0,1] and y′
ω(x) = z(x) is uniformly bounded

for ω ≥ 0.
(iii) By (2.6), the kernel of (1.8) can be rewritten as

Jm(ω(x − t))

(x − t)α
=

(
ω

2

)m

(x − t)m−α

∞∑
n=0

(−ω2

4 (x − t)2)n

n!Γ (m + n + 1)
=: (x − t)m−αF (x − t).

Thus, F ∈ C∞[0,1] and Theorem 6.1.6 in [6, p. 346] lead to y ∈ C[0,1] ∩ Cq(0,1].
Moreover, we see from (2.3)–(2.5) and the definition Φ1(x, t,ω;α) =

Jm(ω(x − t)) that Φn(x, t,ω;α) can be represented as

Φn(x − t,ω;α)

=
∫ 1

0
(1 − z)−αz(n−1)(1−α)−1Jm

(
ω(1 − z)(x − t)

)
Φn−1

(
(x − t)z,ω;α)

dz,

and thus we obtain that

Rα(x, t,ω) = Rα(x − t,ω) = (x − t)−αQ(x − t,ω;α)
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Q(x, t,ω;α) = Q(x − t,ω;α) =
∞∑

n=1

(x − t)(n−1)(1−α)Φn(x − t,ω;α).

In particular, setting K̄ = max{|Jm(ω(x − t))| : (x, t) ∈ D} ≤ 1 and using Lem-
ma 6.1.3 in [6, p. 344] we arrive at the estimate

∣∣(x − t)(n−1)(1−α)Φn(x − t,ω;α)
∣∣ ≤ K̄n Γ ((1 − α))n

Γ (n(1 − α))
.

This is independent of ω and yields

∣∣Q(x − t,ω;α)
∣∣ ≤

∞∑
n=1

Γ ((1 − α))n

Γ (n(1 − α))
< ∞.

Thus, differentiating both sides of (2.3),

yω(x) = f (x) −
∫ x

0
Rα(x − t,ω)f (t)dt = f (x) −

∫ x

0
Rα(t,ω)f (x − t)dt,

we obtain

y′
ω(x) = f ′(x) − Q(x,ω;α)

xα
f (0) −

∫ x

0
Rα(t,ω)f ′(x − t)dt, x ∈ (0,1].

This leads to |y′
ω(x)| ≤ Cαx−α for some constant Cα not depending on ω. �

For ease of notation, we will in the following write y(x) for the solution yω(x) of
(1.8).

Theorem 2.2 Suppose that f ∈ C1[0,1] and 0 ≤ α < 1. Then

y(x) − f (x) +
∫ x

0

Jm(ωt)

tα
f (x − t)dt =

{
O(ω−1), α �= 1

2 ,

O( ln2 ω
ω

), α = 1
2 ,

ω 
 1. (2.8)

Proof The estimate

y(x) − f (x) +
∫ x

0

Jm(ωt)

tα
f (x − t)dt

=
∫ x

0

Jm(ωt)

tα

(
f (x − t) − y(x − t)

)
dt

=
∫ x

0

Jm(ωt)

tα
dt

∫ x−t

0

Jm(ωs)

sα
y(x − t − s)ds

≤ ‖y‖∞
ω2−2α

(∫ ω

0

|Jm(t)|
tα

dt

)2

=
{

O(ω−1), α �= 1
2 ,

O( ln2 ω
ω

), α = 1
2 ,

ω 
 1,
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follows from (1.8), Theorem 2.1 on the uniform boundedness of y(x), and the esti-

mates |Jm(t)| ≤ 1, |Jm(x)| ≤ Amx− 1
2 for x 
 1 [26, p. 357] and

∫ ω

0

|Jm(t)|
tα

dt ≤
∫ 1

0

1

tα
dt + Am

∫ ω

1

dt

t
1
2 +α

=
{

O(ω
1
2 −α), α �= 1

2 ,

O(lnω), α = 1
2 ,

ω 
 1.
�

Based on the asymptotic (2.8) of the solution, we present the simplest approxima-
tion formula for y(x).

Corollary 2.1 Suppose that f ∈ C1[0,1]. Then

y(x) = f (x) + O
(
ω−1+α

)
, ω 
 1. (2.9)

Proof The following lemma forms the basis for the proof of Corollary 2.1

Lemma 2.2 For every function h ∈ C1[0,1], m ≥ 0 and ω 
 1,

∣∣∣∣
∫ 1

0
h(t)tκJm(ωt)dt

∣∣∣∣ ≤
{

Cω−1−κ (|h(1)| + ∫ 1
0 |h′(t)|dt), −1 < κ < 1

2 ,

Cω−3/2(|h(1)| + ∫ 1
0 |h′(t)|dt), κ ≥ 1

2 ,
(2.10)

where the constant C does not depend on h(t) and ω.

Proof Since ∫ x

0
tκJm(ωt)dt = ω−1−κ

∫ ωx

0
uκJm(u)du

for every x ∈ [0,1], we find that, using [1, Eq. (11.4.16)],

∫ +∞

0
uμJν(u)du = 2μΓ (

μ+ν+1
2 )

Γ (
ν−μ+1

2 )
< +∞, �(μ + ν) > −1 and �(μ) <

1

2
.

This shows that
∫ ωx

0 uκJm(u)du is bounded for x ∈ [0,1] and thus there is a constant
C̃ not depending on h(t) and ω such that

∣∣∣∣
∫ x

0
tκJm(ωt)dt

∣∣∣∣ =
∣∣∣∣ω−1−κ

∫ ωx

0
uκJm(u)du

∣∣∣∣ ≤ C̃ω−1−κ , −1 < κ <
1

2
. (2.11)

For κ = 1
2 we find, using d

dt
[tν+1Jν+1(t)] = tν+1Jν(t) and [1, Eq. (9.1.30)], that

∫ x

0
tκJm(ωt)dt = 1

ω

∫ x

0
tκ−m−1d

[
tm+1Jm+1(ωt)

]

= xκJm+1(ωx)

ω
− κ − m − 1

ω

∫ x

0
tκ−1Jm+1(ωt)dt

Thus, we obtain

κ − m − 1

ω

∫ x

0
tκ−1Jm+1(ωt)dt = O

(
ω− 3

2
)
,
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which, together with Jm(z) = O(z− 1
2 ) [26, p. 357] and by setting x = ω−η with

η > 0, yields

xκJm+1(ωx)

ω
= O

(
ω− 3

2
)

and hence ∫ x

0
tκJm(ωt)dt = O

(
ω− 3

2
)
.

If κ > 1
2 , we resort to the second mean value theorem for integration: it then fol-

lows for some ξ ∈ [0,1] that
∫ x

0
tκJm(ωt)dt =

∫ x

0
tκ− 1

2
√

tJm(ωt)dt = xκ− 1
2

∫ x

ξ

√
tJm(ωt)dt

= xκ− 1
2

[∫ x

0
−

∫ ξ

0

]√
tJm(ωt)dt

= O
(
ω− 3

2
)
.

Combining the above results we are led to

∣∣∣∣
∫ x

0
tκJm(ωt)dt

∣∣∣∣ ≤
{

Cω−1−κ , −1 < κ < 1
2 ,

Cω−3/2, κ ≥ 1
2 ,

(2.12)

where the constant C does not depend on h(t) and ω.
The expression (2.10) follows by an argument similar to the one in the proof of

Corollary in [26, p. 334], by letting F(t) = ∫ t

0 ukJm(ωu)du, integrating by parts,

∫ 1

0
h(t)tJm(ωt)dt = h(1)F (1) +

∫ 1

0
h′(t)F (t)dt,

and recalling (2.12). �

Figures 1 and 2 illustrate the asymptotics stated in Lemma 2.2 for h(t) ≡ 1, which
show the asymptotic orders on ω are attainable.

Lemma 2.2 now implies that
∫ x

0

Jm(ωt)

tα
f (x − t)dt = O

(
ω−1+α

)
, ω 
 1,

and this, together with Theorem 2.1, proves the desired result. �

3 Efficient methods for the computation of the solution of (1.8)

The accuracy of the asymptotic approximations (2.8) or (2.9) is based on large values
of ω. In order to obtain higher-order approximations we introduce, in the follow-
ing subsections, a Filon method and two collocation methods based, respectively, on
piecewise constant and piecewise linear polynomials.
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Fig. 1 The values of the moments scaled by ω4/5 for I = ∫ 1
0 t

− 1
5 J1.3(ωt)dt and by ω4/3 for

I = ∫ 1
0 t

1
3 J1/3(ωt)dt , respectively: ω from 1 to 1000

Fig. 2 The values of the moments scaled by ω3/2 for I = ∫ 1
0 t2J2(ωt)dt and for I = ∫ 1

0 t
1
2 J0(ωt)dt ,

respectively: ω from 1 to 1000

Filon-type method for
∫ b

a
f (x)S(ωx)dx [11, 15, 16, 30]: Let s be some positive

integer and let {mk}v0 be a set of multiplicities associated with the node points a =
c0 < c1 < · · · < cv = b such that m0,mv ≥ s. Suppose that v(x) = ∑n

k=0 akx
k , where

n = ∑v
k=0 mk − 1, is the solution of the system of equations

v(ck) = f (ck), v′(ck) = f ′(ck), . . . , v(mk−1)(ck) = f (mk−1)(ck)
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for every integer 0 ≤ k ≤ v. Then Filon-type method is defined by

QF
s [f ] ≡ I

[
v(x)

] =
n∑

k=0

akI
[
xk

]
, I

[
xk

] =
∫ b

a

xkS(ωx)dx, k = 0,1, . . . , n.

Notice that from Theorem 2.1, the solution of (1.8) is not differentiable at t = 0
for general cases. In this section, we consider the Filon-type method for (1.8) with
s = 1 which was established by Filon [11].

3.1 The Filon method for (1.8)

Let {tj }Nj=1 be a set of nodal points such that 0 = t0 < t1 < t2 < · · · < tN = 1, and let

L
[
y(0), y(tj )

] = y(0) + y(tj ) − y(0)

tj
t

denote the linear interpolant between y(0) and y(tj ). Since y(0) = f (0) (cf. (1.8)) it
follows that for j = 1,2, . . . ,N ,

y(tj ) +
∫ tj

0

Jm(ω(tj − t))

(tj − t)α
L

[
y(0), y(tj )

]
dt

= f (tj ) −
∫ tj

0

Jm(ω(tj − t))

(tj − t)α

{
y(t) − L

[
y(0), y(tj )

]}
dt. (3.1)

We use this representation to introduce the Filon approximate scheme

yj +
∫ tj

0

Jm(ω(tj − t))

(tj − t)α
L

[
y(0), yj

]
dt = yj +

∫ tj

0

Jm(ωt)

tα
L

[
yj , y(0)

]
dt = f (tj )

(3.2)
(j = 1,2, . . . ,N ), where yj denotes an approximation of y(tj ). This approximation
is given by

yj = tj f (tj ) − f (0)I [1 − α,m,ω, tj ]
tj + tj I [−α,m,ω, tj ] − I [1 − α,m,ω, tj ] , j = 1,2, . . . ,N, (3.3)

where I [μ,m,ω, tj ] denotes the moment

I [μ,m,ω, tj ]
=

∫ tj

0
tμJm(ωt)dt

= 2μΓ (
m+μ+1

2 )

ωμ+1Γ (
m−μ+1

2 )

+ tj

ωμ

[
(μ + m − 1)Jm(ωtj )s

(2)
μ−1,m−1(ωtj ) − Jm−1(ωtj )s

(2)
μ,ν(ωtj )

]
, (3.4)

Γ (z) is the gamma function and s
(2)
μ,ν(z) denotes the Lommel function of the second

kind [1, 12, 22, 28].
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The moment I [μ,m,ω, z] can be efficiently calculated [29, 30]. Note that s
(2)
μ,ν(z)

admits the following asymptotic expansion (cf. [28, p. 351-352]):

s(2)
μ,ν(z) = zμ−1

[
1 − (μ − 1)2 − ν2

z2
+ {(μ − 1)2 − ν2}{(μ − 3)2 − ν2}

z4
− · · ·

]

= zμ−1
[

1 − (μ − 1)2 − ν2

z2
+ · · ·

+ (−1)p
{(μ − 1)2 − ν2} · · · {(μ − 2p + 1)2 − ν2}

z2p

]
+ O

(
zμ−2p−2).

(3.5)

Therefore, s
(2)
μ,ν(z) can be efficiently approximated by a few terms of

zμ−1
[

1 − (μ − 1)2 − ν2

z2
+ · · · + (−1)p

{(μ − 1)2 − ν2} · · · {(μ − 2p + 1)2 − ν2}
z2p

]

(3.6)

when z 
 max{μ,ν}. In this paper, for z ≥ 50, the moment is computed using (3.4),
by truncating after the first 10 terms of (3.5). For z = ω ∗ b < 50, we use

I [μ,m,ω,b]

= bμ

ω(μ + m + 1)

∞∑
j=0

(2j + m + 1)
m + 1 − μ

m + 3 + μ
· · · m + 2j − 1 + μ

m + 2j + 1 + μ
J2j+m+1(ωb)

with the first 60 truncated terms [29, 30].

Theorem 3.1 Suppose that f ∈ C1[0,1] and 0 ≤ α < 1. Then the error estimate for
the Filon method for (1.8) is

yj − y(tj ) = O

(
1

ω1−α

)
. (3.7)

Furthermore, if f (0) = 0 and f ∈ C2[0,1], the error estimate for the Filon method
for (1.8) is

yj − y(tj ) = O

(
1

ω2−α

)
. (3.8)

Proof It follows from (3.1)–(3.3) that

yj − y(tj ) =
∫ tj

0
Jm(ωt)

tα
{y(tj − t) − L[y(tj ), y(0)]}dt

tj + tj I [−α,m,ω, tj ] + I [1 − α,m,ω, tj ]

=
∫ tj

0
Jm(ωt)

tα
{y(tj − t) − y(tj ) + (y(tj )−y(0))t

tj
}dt

tj + tj I [−α,m,ω, tj ] + I [1 − α,m,ω, tj ] . (3.9)
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Applying Lemma 2.2 and Theorem 2.1 we immediately obtain (3.7), since

E(t)|t=tj := y(tj − t) − y(tj ) + (y(tj ) − y(0))t

tj

∣∣∣∣
t=tj

= 0,

and E′(t) is uniformly bounded for t ∈ [0,1] and large values of ω.
In particular, if f (0) = 0 and f ∈ C2[0,1], then by (1.8) and y′(0) = f ′(0) we

find (similarly to the proof of Theorem 2.1) that y ∈ C1[0,1] and |y′′(x)| ≤ Cαx−α ,
where

y′′(x) +
∫ x

0

Jm(ωt)

tα
y′′(x − t)dt = f ′′(x) − Jm(ωx)

tα
y′(0).

Integrating by parts and noting that E(0) = E(tj ) = 0 leads to

∫ tj

0
Jm(ωt)t−αE(t)dt = 1

ω

∫ tj

0
t−1−m−αE(t)d

[
tm+1Jm+1(ωt)

]

= − 1

ω

∫ tj

0

[
t−1−α−mE(t)

]′
tm+1Jm+1(ωt)dt

= − 1

ω

∫ tj

0

Jm+1(ωt)

tα

[
E′(t) − (1 + α + m)E(t)

t

]
dt.

From the definition of E(t), we see that

E′′(t) = y′′(tj − t) = O
(
(tj − t)−α

)
,

E(t)

t
= y(tj − t) − y(tj )

t
+ y(tj ) − y(0)

tj
,

and E(t)
t

|t=0 = limt→0
E(t)

t
= −y′(tj ) + y(tj )−y(0)

tj
and

(
E(t)

t

)′
= −y′(tj − t)t + y(tj − t) − y(tj )

t2
for t �= 0,

(
E(t)

t

)′∣∣∣∣
t=0

= y′′(tj )
2

,

which yields [
E′(t) − (1 + α + m)E(t)

t

]′
= O

(
(tj − t)−α

)
.

This, together with (3.9) and Lemma 2.2 establishes the desired result. �

3.2 Piecewise constant and linear collocation methods

A direct improvement of the Filon method is the composite Filon method, that is,
the sum of j Filon method for the subintervals [0, t1], . . . , [tj−1, tj ]. The derived
method coincides with the continuous linear collocation method. An alternative to the
continuous linear collocation method is the piecewise constant collocation method.

Suppose that

I� = {tj : j = 0,1, . . . ,N}
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and ŷ(x) is an approximation of y(x) such that

ŷ(x)|(tj ,tj+1]

{
is a constant for j = 0,1, . . . ,N − 1

is linear for j = 0,1, . . . ,N − 1

satisfying

ŷ(tj ) +
∫ tj

0

Jm(ωt)

tα
ŷ(tj − t)dt = f (tj ), j = 1,2, . . . ,N.

This leads to the piecewise constant collocation method

ŷ1 = f (0), ŷj = f (tj ) − ∑j−1
i=1 ŷi (I [−α,m,ω, tj−i+1] − I [−α,m,ω, tj−i])

1 + I [−α,m,ω, t1] ,

j = 2, . . . ,N, (3.10)

and the continuous linear collocation method

ŷ1 = f (t1)t1 − f (0)I [1 − α,m,ω, t1]
t1 + t1I [−α,m,ω, t1] − I [1 − α,m,ω, t1] , (3.11a)

ŷj = f (t1)t1 − ŷj−1I [1 − α,m,ω, t1] − Q1 − Q2

t1 + t1I [−α,m,ω, t1] − I [1 − α,m,ω, t1] , j = 2, . . . ,N, (3.11b)

respectively, where

Q1 =
j−1∑
k=1

t1(tk+1ŷj−k − tkŷj−k−1)

tk+1 − tk

(
I [−α,m,ω, tk+1] − I [−α,m,ω, tk]

)
,

Q2 =
j−1∑
k=1

t1(ŷj−k−1 − ŷj−k)

tk+1 − tk

(
I [1 − α,m,ω, tk+1] − I [1 − α,m,ω, tk]

)
.

Theorem 3.2 Suppose that f ∈ C1[0,1], 0 ≤ α < 1 and {tj } are uniform mesh points
with h = 1/N . Then the error bound for the above collocation methods is

max
1≤j≤N

∣∣ŷj − y(tj )
∣∣ = O

(
h1−α

ω1−α

)
.

Proof For the piecewise constant collocation method, y(tj ) satisfies

y(tj ) +
j∑

i=1

∫ ti

ti−1

Jm(ωt)

tα
y(tj−i+1)dt

= f (tj ) −
j∑

i=1

∫ ti

ti−1

Jm(ωt)

tα

[
y(tj−i+1) − y(tj − t)

]
dt,
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which, together with (3.10), yields

Ej =
∑j

i=1

∫ ti
ti−1

Jm(ωt)
tα

[y(tj−i+1) − y(tj − t)]dt

1 + I [−α,m,ω, t1]

−
∑j−1

i=1 Ei (I [−α,m,ω, tj−i+1] − I [−α,m,ω, tj−i])
1 + I [−α,m,ω, t1] .

Here, Ej = y(tj )− ŷj . Using y(tj−i+1)−y(tj − t)|t=ti−1 = 0,
∫ ti
ti−1

t−αdt = O(h1−α)

and Lemma 2.2, we find

|Ej | = O

(
h1−α

ω1−α

)
+ O

(
1

ω1−α

) j−1∑
i=1

h1−α|Ei |,

and the desired result is then found by employing the generalized discrete Gronwall
inequality (cf. [6, p. 95]).

Similar arguments can be applied to the linear collocation method (3.11a)–
(3.11b). �

4 Numerical examples

We now illustrate the proposed methods numerically for

y(x) +
∫ x

0

J0(ωt)√
t

y(x − t)dt = sin(x),

y(x) +
∫ x

0
J1(ωt)y(x − t)dt = sin(x), x ∈ [0,1].

Here QA[y(x)] = f (x), QF
N denotes the Filon method (3.3), Q2

A = f (x) −∫ x

0
Jm(ωt)

tα
f (x − t)dt where

∫ x

0
Jm(ωt)

tα
f (x − t)dt is computed by two-point Filon

method, Q
L,0
N the piecewise constant collocation method (3.10) and Q

L,1
N the linear

collocation method (3.11a)–(3.11b) (Tables 1–6).
Figures 3, 4 and 5 illustrate the asymptotics of Theorems 3.1–3.2 for f (x) = ex

and f (x) = x with respect to α = 0.1,0.8 respectively. Here, we use the reference
solution Q

L,1
100 as the exact solution to compute the errors for large values of ω.

5 Final remarks

The standard quadrature method, the collocation method and the discontinuous
Galerkin method [4, 6, 8, 14, 21, 23] are not feasible for the numerical approxi-
mation of Volterra integral equations containing highly oscillatory kernels, since the
computation of the highly oscillatory integrals by standard quadrature methods is
exceedingly difficult and the cost steeply increases with the frequency.
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Table 1 Approximations at x = 0.1,0.5,1 for y(x) + ∫ x
0

J0(ωt)√
t

y(x − t)dt = sin(x) with ω = 104

x 0.1 0.5 1

QA[y(x)] = sin(x) 0.09983341664683 0.47942553860420 0.84147098480790

Q2
A

0.09774402832210 0.46939625839236 0.82386556055110

QF
10 0.09778806153725 0.46960145889132 0.82422771691863

Q
L,0
10 0.09778746085725 0.46960046983603 0.82422691381786

Q
L,0
100 0.09778852007547 0.46960196841630 0.82422791394085

Q
L,1
10 0.09778806153725 0.46960143190203 0.82422759760585

Q
L,1
100 0.09778806023321 0.46960142272695 0.82422758074811

Q
L,1
1000 0.09778806003663 0.46960142174819 0.82422757902113

Table 2 Approximations at x = 0.1,0.5,1 for y(x) + ∫ x
0

J0(ωt)√
t

y(x − t)dt = sin(x) with ω = 108

x 0.1 0.5 1

QA[y(x)] = sin(x) 0.09983341664683 0.47942553860420 0.84147098480790

Q2
A

0.09981253050334 0.47932523802296 0.84129494072548

QF
10 0.09981253487447 0.47932525900365 0.84129497754997

Q
L,0
10 0.09981253487324 0.47932525900275 0.84129497754926

Q
L,0
100 0.09981253487543 0.47932525900435 0.84129497755031

Q
L,1
10 0.09981253487447 0.47932525900362 0.84129497754985

Q
L,1
100 0.09981253487447 0.47932525900361 0.84129497754983

Q
L,1
1000 0.09981253487447 0.47932525900361 0.84129497754983

Table 3 Approximations at x = 1 for α = 0.1,0.5,0.8 for y(x) + ∫ x
0

J0.5(ωt)
tα

y(x − t)dt = ex with ω =
104

α 0.1 0.5 0.8

QA[y(x)] = ex 2.71828182845905 2.71828182845905 2.71828182845905

Q2
A

2.71756812635460 2.68420847645203 2.04302094850687

QF
10 2.71757097229437 2.68463549661376 2.17741856768165

Q
L,0
10 2.71757085436034 2.68463493024976 2.17740590968926

Q
L,0
100 2.71757106342719 2.68463553135443 2.17740908437911

Q
L,1
10 2.71757098489771 2.68463618252938 2.17742904966274

Q
L,1
100 2.71757098644422 2.68463627375973 2.17743015474134

Q
L,1
1000 2.71757098679108 2.68463628286911 2.17743025707174
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Table 4 Approximations at x = 1 for α = 0.1,0.5,0.8 for y(x) + ∫ x
0

J0.5(ωt)
tα

y(x − t)dt = ex with ω =
108

α 0.1 0.5 0.8

QA[y(x)] = ex 2.71828182845905 2.71828182845905 2.71828182845905

Q2
A

2.71828165003674 2.71794114235191 2.61126470807041

QF
10 2.71828165003775 2.71794118504896 2.61531832021046

Q
L,0
10 2.71828165003747 2.71794118504642 2.61531831984771

Q
L,0
100 2.71828165003828 2.71794118505011 2.61531831985936

Q
L,1
10 2.71828165003775 2.71794118504966 2.61531832040527

Q
L,1
100 2.71828165003775 2.71794118504975 2.61531832043058

Q
L,1
1000 2.71828165003775 2.71794118504976 2.61531832043319

Table 5 Approximations at x = 1 for m = 0.1,1.1,2.1 for y(x)+∫ x
0 Jm(ωt)y(x− t)dt = x with ω = 104

m 0.1 1.1 2.1

QA[y(x)] = x 1.00000000000000 1.00000000000000 1.00000000000000

Q2
A

0.99989905640483 0.99989870131250 0.99990092131190

QF
10 0.99990001093444 0.99990002104392 0.99990003105918

Q
L,0
10 0.99989973443085 0.99990021682458 0.99990028612447

Q
L,0
100 0.99990011182045 0.99989990669179 0.99989990750082

Q
L,1
10 0.99990001093444 0.99990002104392 0.99990003105918

Q
L,1
100 0.99990001093444 0.99990002104392 0.99990003105918

Q
L,1
1000 0.99990001093444 0.99990002104392 0.99990003105918

Table 6 Approximations at x = 1 for m = 0.1,1.1,2.1 for y(x)+∫ x
0 Jm(ωt)y(x− t)dt = x with ω = 108

m 0.1 1.1 2.1

QA[y(x)] = x 1.00000000000000 1.00000000000000 1.00000000000000

Q2
A

0.99999998999866 0.99999999000086 0.99999999000134

QF
10 0.99999999000000 0.99999999000000 0.99999999000000

Q
L,0
10 0.99999998999983 0.99999998999997 0.99999999000017

Q
L,0
100 0.99999999000012 0.99999998999988 0.99999998999988

Q
L,1
10 0.99999999000000 0.99999999000000 0.99999999000000

Q
L,1
100 0.99999999000000 0.99999999000000 0.99999999000000

Q
L,1
1000 0.99999999000000 0.99999999000000 0.99999999000000
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Fig. 3 The absolute errors for Filon method QF
10 scaled by ω1−α and ω2−α for y(x) +∫ x

0
J0.5(ωt)

tα
y(x − t)dt = f (x) with f (x) = ex and f (x) = x, respectively: ω from 106 to 108

Fig. 4 The absolute errors for Q
L,0
10 and Q

L,1
10 scaled by ω1−α for y(x) + ∫ x

0
J0.5(ωt)

tα
y(x − t)dt = ex

with α = 0.1 and α = 0.8, respectively: ω from 106 to 108

This paper presents efficient numerical methods, by using Filon, piecewise con-
stant and linear collocation techniques for the approximation of weakly singular
Volterra integral equations with highly oscillatory Bessel kernels, in which the com-
putational cost remains the same regardless of the size of the frequencies. Based on
the asymptotics of the solutions, some simpler formulas for approximating the solu-
tions for large values of the parameter ω are derived. A broad sample of numerical
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Fig. 5 The absolute errors Q
L,0
10 and Q

L,1
10 scaled by ω1−α for y(x) + ∫ x

0
J0.5(ωt)

tα
y(x − t)dt = x with

α = 0.1 and α = 0.8, respectively: ω from 106 to 108

results confirms that these methods are efficient and become more accurate as the
frequency increases.

Moreover, all the algorithms in Sect. 3 may directly be applied to
∫ x

0

Jm(ω(x − t))

(x − t)α
y(t)dt = f (x), x ∈ [0,1], 0 ≤ α < 1. (5.1)

Following Sect. 3, the Filon method and linear collocation methods for (5.1) are de-
fined as follows

– Filon method:

yj = tj f (tj ) − f (0)I [1 − α,m,ω, tj ]
tj I [−α,m,ω, tj ] − I [1 − α,m,ω, tj ] , j = 1,2, . . . , n (5.2)

– piecewise constant collocation method:

ŷ1 = f (0), ŷj = f (tj ) − ∑j−1
i=1 ŷi (I [−α,m,ω, tj−i+1] − I [−α,m,ω, tj−i])

I [−α,m,ω, t1] ,

j = 2, . . . ,N. (5.3)

– linear continuous collocation method:

ŷ1 = f (t1)t1 − f (0)I [1 − α,m,ω, t1]
t1I [−α,m,ω, t1] − I [1 − α,m,ω, t1] , (5.4a)

ŷj = f (t1)t1 − yj−1I [1 − α,m,ω, t1] − Q1 − Q2

t1I [−α,m,ω, t1] − I [1 − α,m,ω, t1] , j = 2, . . . ,N, (5.4b)

where Q1 and Q2 are the same as those in Sect. 3.
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Table 7 Relative errors at x = 0.1,0.5,1 for
∫ x

0 J0(ωt)y(x − t)dt = sin(x) with ω = 104

x 0.1 0.5 1

QF
10 2.00652975094e-5 5.76193202502e-7 1.13799662868e-6

Q
L,0
10 0.00468196281711 0.00474994451117 0.00251061418856

Q
L,0
100 0.00552438897065 0.01603727275066 7.26172424566e-4

Q
L,1
10 2.00652975094e-5 3.33552322445e-7 1.44173676689e-6

Q
L,1
100 2.01271381262e-5 6.07083015121e-7 1.19362466230e-6

Table 8 Relative errors at x = 0.1,0.5,1 for
∫ x

0 J0(ωt)y(x − t)dt = ln(1 + x) with ω = 104

x 0.1 0.5 1

QF
10 1.98791011838e-5 9.23497455163e-7 1.23393857323e-6

Q
L,0
10 0.00468194679016 0.00416701133146 0.00274902878000

Q
L,0
100 0.00478604605864 0.00235649460611 8.21225045085e-4

Q
L,1
10 1.98791011838e-5 6.63809850934e-7 1.63697775652e-6

Q
L,1
100 2.18662386283e-5 6.77618590319e-7 1.50642342730e-6

We now illustrate the proposed methods numerically for x ∈ [0,1]
∫ x

0
J0(ωt)y(x − t)dt = f (x), f (0) = 0,

whose solution can be represented respectively by

y(x) = f ′(x) − ω

∫ x

0
f ′(x − t)J1(ωt)dt + ω2

∫ x

0
f (x − t)J0(ωt)dt,

which can be computed for ω = 104 by the Clenshaw-Curtis quadrature with 106

shifted Chebyshev points in [0,1] for each fixed x in (0,1] (see Tables 7, 8). Here
QF

N denotes the Filon-type method, Q
L,0
N the piecewise constant collocation method,

Q
L,1
N the linear collocation method.
In the future work, we will study better methods to solve the motivating prob-

lems in Sect. 1 as well as Fredholm integral equations, and the error bounds on the
numerical schemes for the above Volterra integral equation of first kind.
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