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Abstract The Balanced method was introduced as a class of quasi-implicit methods,
based upon the Euler-Maruyama scheme, for solving stiff stochastic differential equa-
tions. We extend the Balanced method to introduce a class of stable strong order 1.0
numerical schemes for solving stochastic ordinary differential equations. We derive
convergence results for this class of numerical schemes. We illustrate the asymptotic
stability of this class of schemes is illustrated and is compared with contemporary
schemes of strong order 1.0. We present some evidence on parametric selection with
respect to minimising the error convergence terms. Furthermore we provide a con-
vergence result for general Balanced style schemes of higher orders.
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1 Introduction

In the case of ordinary differential equations (ODEs), stiffness arises as a conse-
quence of widely differing eigenvalues. This necessitates either implicit methods or
explicit methods (Chebyshev methods) with extended stability intervals. We will, in
this paper, consider these issues in relation to the solution of Itô stochastic ordinary
differential equations (SODE), given by

dX(t) = f (X(t)) dt +
d∑

i=1

gi(X(t)) dWi(t), X(t) ∈ R
m

X(t0) = X0,

(1)

where E(X0)
2 < ∞ and f (·), g1(·), . . . , gd(·) are m-dimensional Lipschitz con-

tinuous vector valued functions that fulfil a linear growth condition. The Wi(t),

t ≥ 0 represent d independent standard Wiener processes on a filtered probability
space (�, F , (Ft )t≥0,P). In this article, for simplicity, numerical methods on a given
time interval [0, T ] are fixed by schemes based on equidistant time discretisation
points tn = nh, n = 0,1, . . .N with stepsize h = T/N , N = 1,2, . . . . We shall use
the abbreviation Yn to denote the value of the numerical approximation at time nh.

In the case of SODEs, stiffness is characterised by widely differing Lyapunov
exponents. Thus in (1), when f (X) = AX and gi(X) = BiX the Lyapunov exponents
are given by

λ(X0) = lim sup
t→∞

1

t
ln |X(t,X0)|.

A number of authors have developed implicit numerical methods to solve SODEs,
including [9], [4] and [8]. However these authors have introduced implicitness in
the deterministic term only. Such methods are generally known as semi-implicit. For
example the semi-implicit Euler method has the form

Yn+1 = Yn + f (Yn+1)h +
d∑

j=1

gj (Yn)Ij ,

where the Itô integral Ij = ∫ tn+1
tn

dWj (s) = Wj(tn+1)−Wj(tn) is calculated using the
Normally distributed random variable �Wn ∼ N(0,�t). In this article, we follow the
notational convention of [9] to denote various Itô integrals: I0 = h, I1 = �W(n)(1),
I11 = 0.5[(�W(n)(1))2 − h] etc. We note that Abdulle & Cirilli have in [1] gen-
eralised the idea of explicit methods with extended stability regions to SODEs and
these methods can be effective on mildly stiff problems.

Problems arise, however when we try to introduce implicitness in the stochastic
terms, as convergence is no longer guaranteed. For example, if we examine the solu-
tion to the Itô equation

dXt = βXt dWt .
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The fully implicit Euler method, given by

Yn+1 = Yn + βYn+1I1,

is not guaranteed to converge because E|(1 − β�Wn)
−1| is not finite.

The Balanced method [11] was presented as a method incorporating quasi-
implicitness in the stochastic terms, that converges to the Itô solution and is suitable
for solving stiff systems of SODEs. Alcock & Burrage have in [2] examined in detail
the asymptotic and mean-square stability properties of a number of variants of the
Balanced method in the case where there is just one Wiener process. However, all
these variants still give rise to a method with strong order 0.5.

In this article we employ the principles developed by [11] to generate a class of
numerical schemes for solving stiff SODEs with strong order 1.0. Our work is re-
lated to that of [7] who also introduce Balanced Milstein schemes and explore their
stability properties. We present an extended exploration, that further explores the ex-
tension of these concepts to higher orders of convergence and considers the optimal
choice of parameters for these methods. The presentation of our article is as follows.
The concepts of convergence and stability are presented in Sect. 2. The Balanced
method is reviewed and the new class of methods is presented in Sect. 3, along with
convergence proofs. Section 4 explores an Ansatz on optimal parameter selection.
Asymptotic stability properties are presented in Sect. 5. Our method is applied to
Sagirow’s Satellite [12] problem in Sect. 6. We conclude in Sect. 7.

2 Convergence and stability issues

Perhaps the most well-known numerical method for solving (1) is the Euler-
Maruyama method, given by

Yn+1 = Yn + f (Yn)I0 +
d∑

j=1

gj (Yn)Ij , (2)

that converges strongly (weakly) with order 0.5 (1.0) and the explicit Milstein and
semi-implicit Milstein schemes, given by

Yn+1 = Yn + f (Yn)I0 +
d∑

j=1

gj (Yn)Ij +
d∑

k1=1

d∑

k2=1

g′
k1

(Yn)gk2(Yn)I(k1,k2), (3)

Yn+1 = Yn + f (Yn+1)I0 +
d∑

j=1

gj (Yn)Ij +
d∑

k1=1

d∑

k2=1

g′
k1

(Yn)gk2(Yn)I(k1,k2), (4)

respectively, that both converge strongly (weakly) with order 1.0 (1.0). Note that here
the Itô integrals are approximated by
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I0 = h

Ij = �W
(j)
n

I(k1,k2) =
∫ t+�t

t

∫ t+�t1

t

dWk1 dWk2 .

Strong convergence refers to the expected pathwise convergence of a numerical so-
lution, whereas weak convergence refers to the convergence of the moments of a
process. The following definitions and theorems make these concepts clearer.

Definition 1 (Strong Convergence) We say that a time discrete approximation Y con-
verges strongly with order γ > 0 at time T if there exists a positive constant C, that
does not depend on h, and a finite h0 > 0 such that

E (|X(T ) − YT |) ≤ Chγ ,

for each h ∈ (0, h0).

Let Cl denote the space of l times continuously differentiable functions that, to-
gether with their partial derivatives of orders up to and including order l, have poly-
nomial growth.

Definition 2 (Weak Convergence) We say that a time discrete approximation Y (h)

converges weakly with order β > 0 to X at time T as h ↓ 0 if for each v ∈
C 2(β+1)(Rd,R), there exists a positive constant C that does not depend on h, and
a finite h0 > 0 such that

|E(v(X(T ))) − E(v(YT ))| ≤ Chβ,

for each h ∈ (0, h0).

Theorem 1 (General Strong Order Convergence [10]) Suppose that a time discrete
approximation, Yn+1, to an Itô SODE Xtn+1 has local strong order p1 and mean local
order p2, that is

E (|X(tn+1) − Yn+1|) = O(hp1)

[
E (X(tn+1) − Yn+1)

T (X(tn+1) − Yn+1)
]1/2 = O(hp2),

such that p1 ≥ 0.5 and p2 ≥ p1 + 0.5. Then the time discrete approximation will
converge to the Itô solution with global strong order p = p2 − 0.5,

[
E (X(T ) − YT )T (X(T ) − YT )

]1/2 = O(hp).

Stability of a numerical scheme refers to the conditions under which the numerical
solution tends to zero with the true solution. The asymptotic stability of an SODE,
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Fig. 1 (a) Asymptotic and (b) Mean-square stability regions for the explicit Milstein scheme. The respec-
tive stability regions of the Milstein scheme lie within the dashed lines. The respective stability regions for
the linear test equation (5) are the regions bounded above the fixed lines

similar to asymptotic stability of an ODE, is often determined with reference to the
scalar linear test equation (for the d = 1 case),

dX(t) = aX(t) dt + bX(t) dW(t), a, b ∈ R. (5)

Solutions of (5) have the following properties1 [14]:

lim
t→∞ E(|X(t)|2) = 0 ⇐⇒ 2a + b2 < 0, (6)

lim
t→∞|X(t)| = 0, w.p. 1 ⇐⇒ 2a − b2 < 0. (7)

The asymptotic stability region of a one-step numerical SODE scheme can be
derived by applying the scheme to the linear test equation (5) resulting in

Yn+1 = R(h,a, b)Yn. (8)

The asymptotic stability region, R̂(h, a, b), of the numerical scheme is defined by the
parameters h,a, b that satisfy

lim
n→∞|Yn(h, a, b)| = 0 with probability one. (9)

On the other hand, a numerical scheme is said to be MS-stable [13] for (h, a, b) if

Ř(h, a, b) := E
(|R(h,a, b)|2) < 1. (10)

The function, Ř(h, a, b), is called the MS-stability function of the numerical scheme.
The Milstein scheme (d = 1) has a mean-square stability region Ř(h, a, b), defined
by the parameters h,a, b that satisfy

|1 + ah|2 + |b2h| + 1

2
|b4h2| < 1. (11)

1For a, b ∈ C, (6) becomes 2Re(a) + |b|2 < 0 and (7) becomes Re(2a − b2) < 0.
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Plots of the asymptotic and mean-square stability regions for the Euler-Maruyama
method are given in [2] while those of the explicit Milstein method are given in Fig. 1.
The figure shows that the Milstein scheme is not a particularly stable scheme. Even
for very small stepsizes, the MS stability region falls quite short of the region defined
by (6). The lower order Euler-Maruyama scheme has better stability properties than
the Milstein scheme (see Figs. 2.2 and 2.3 in [2]). Thus the Milstein scheme offers
a higher order of convergence than the EM scheme at the cost of reduced stability
properties.

3 A stable strong order 1.0 scheme

Milstein, Platen and Schurz [11] developed a class of quasi-implicit numerical
schemes of strong order 0.5 based upon the Euler-Maruyama method, collectively
called the Balanced method, to solve (1), given by

Yn+1 = Yn + f (Yn)I0 +
d∑

j=1

gj (Yn)I
j

1 + Dn(Yn − Yn+1), (12)

where Dn is a m × m matrix, given by

Dn = d0(Yn)I0 +
d∑

j=1

dj (Yn)|I j

1 |,

and the dj , j = 0, . . . , d are matrix functions that are often chosen as constant matri-
ces.

It is assumed that for any non-negative sequence of numbers, αi , and x ∈ R
m, the

matrix

M(x) = I + α0d0(x) +
d∑

j=1

αjdj (x), (13)

has an inverse with finite norm.
Recently, [2] derived the mean-square stability region for the Balanced method

with d = 1, given by

Ř(a, b,h) =
{
(a, b,h) ∈ R :

∫ ∞

0
e− x2

2h

[((
ah

1 + d0h + d1x

)
+ 1

)2

+
(

bx

1 + d0h + d1x

)2

− 1

]
dx < 0

}
. (14)

To understand why the Balanced method is a relatively stable method, consider
the implicit Euler-Maruyama method for solving (1) with d = 1, given by

Yn+1 = Yn + f (Yn+1)I0 + g(Yn+1)I1. (15)
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First note that the implicit Euler-Marayama method is not guaranteed to converge, as
described earlier. In addition, the evaluation of Yn+1 at each timestep involves solving
a non-linear equation (using a non-linear solver such as Newton’s method). Inspecting
(12) and (15) shows that the Balanced method introduces quasi-implicitness through a
form of splitting, using an implementation that maintains guarantees of convergence.
(12) can be rewritten

y
(Bal)
n+1 = yn + (I + Dn)

−1 (f I0 + gI1)

Dn = d0I0 + d1|I1|.
(16)

As such, the Balanced method has linearised the implicitness. Consequently there is
no need for a non-linear solver at each timestep. In this way, the Balanced method
can be considered a stochastic analog to the Rosenbrock methods for solving deter-
ministic ODEs [5].

We now propose a class of numerical schemes of strong order 1.0 (SSO1), based
upon both the Balanced scheme and the Milstein scheme to solve (1), given by

Yn+1 = Yn + f (Yn)I0 +
d∑

j=1

gj (Yn)Ij

+
d∑

j1,j2=1

g′
j1

(gj2)(Yn)I(j1,j2) + Dn(Yn − Yn+1), (17)

where Dn is given by

Dn = d0(Yn)I0 +
d∑

j1,j2=1

dj1,j2(Yn)
∣∣Ij1,j2

∣∣ . (18)

In order to demonstrate convergence in the case of multiple Wiener processes, two
lemmas must first be proven:

Lemma 1

E
(
Ij1,j2

∣∣Ik1,k2

∣∣) = O(h2) ∀j1, j2, k1, k2 ∈ Z
+. (19)

Proof Given j1, j2 
= 0, E(Ij1,j2) = 0 and E(|Ij1,j2 |2) = O(h2) so E(|Ij1,j2 |2)1/2 =
O(h) (Lemma 5.7.5 in [9]). Then

E
(∣∣Ij1,j2 |Ik1,k2 |

∣∣) ≤ E

(
|Ij1,j2 |2

)1/2
E

(∣∣Ik1,k2

∣∣2
)1/2 = O(h2).

By Jensens’ inequality,
∣∣E

(
Ij1,j2 |Ik1,k2 |

)∣∣ = O(h2),

and the result follows. �
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Lemma 2

E
[
IpIj1j2

∣∣Ik1k2

∣∣] = 0 ∀p, j1, j2, k1, k2 ∈ Z
+.

Proof If p 
= j1 
= j2 then at least one of (Ip, Ij1, Ij2) is independent of |Ik1k2 |. With-
out loss of generality then,

E[IpIj1j2 |Ik1k2 |] = E(Ip)E(Ij1j2 |Ik1k2 |) = 0.

If either p = j1, p = j2, j1 = j2 or p = j1 = j2 then the expectation is the integral of
a linear combination of odd functions, and the result follows. �

We are now in a position to prove convergence for the arbitrary Wiener case.

Theorem 2 Let g possess all necessary partial derivatives for all y ∈ R
m. Then the

numerical scheme to solve (1), defined by (17) with D given by (18) will converge to
the Itô solution with strong order 1.0, provided that for any non-negative sequence of
numbers, {αi} and x ∈ R

m, the matrix

M(x) = I + α0d0(x) +
d∑

j1,j2=1

αj1,j2dj1,j2(x), (20)

has an inverse bounded by

|M−1(x)| ≤ K < ∞, for all x. (21)

Proof The error term at any time, t ∈ (t0, T ), can be written
∣∣X(t) − Ytn

∣∣ ≤ |X(t) − Y
(Mil)
tn

| + |Y (Mil)
tn

− Ytn |,
where Y

(Mil)
n represents the approximation at step tn given by the Milstein scheme (3).

Consequently the strong order of convergence of (17) will be the minimum of the
strong order of convergence of the Milstein scheme and the strong order of conver-
gence of Yn to Y

(Mil)
n . The strong order of convergence of the Milstein scheme is

well known to be 1.0 [10]. Hence we need only examine the local deviation from the
Milstein scheme. Now

∣∣∣E
(
Y (Mil) − Y

)∣∣∣ =
∣∣∣∣∣E

(
(I − (I + Dn)

−1)

(
f I0 +

d∑

j=1

gj Ij +
d∑

j1,j2=1

g′
j1

gj2Ij1j2

))∣∣∣∣∣

=
∣∣∣∣∣E

(
((I + Dn)

−1Dn)

(
f I0 +

d∑

j=1

gj Ij +
d∑

j1,j2=1

g′
j1

gj2Ij1j2

))∣∣∣∣∣.

By the symmetry of Ij , j = 1, . . . , d and the boundedness of the components of the
matrices d0, d1, . . . , then

∣∣∣E
(
Y (Mil) − Y

)∣∣∣ ≤ K |E(Dnf I0)| +
d∑

j1,j2=1

K

∣∣∣E(Dng
′
j1

gj2Ij1j2)

∣∣∣ .
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Thus, by Lemma 1, E[Y (Mil)
n − Yn] = O(h2) implying that the local mean order will

be ∣∣∣E
(
Y (Mil) − Y

)∣∣∣ = O(h2).

Again by Lemmas 1 and 2, the local strong order will be

E
((

Y (Mil) − Y
)T (

Y (Mil) − Y
))1/2 = O(h3/2).

So by Theorem 1, the result follows. �

The specific form of the dj1,j2(Yn) will depend on stability issues, but quite often
we will only assume that these quantities are non-zero. A similar examination for
general D gives rise to a more general convergence proof for higher order stable
schemes based upon the Balanced method (12). First define I1(q) to be the Itô integral
denoted by I∗ where ∗ is q ones. That is I1(1) = I1 and I1(3) = I111. Define Iq to be
first q members of the set Iq = {I1(1) ,I1(2) ,I1(3) , . . . ,I1(q)}. Also let us define the set
D(p) to be the set of coefficient functions of all integrals in Iq .

For notational simplicity, the proof is given with respect to the single Wiener case,
(d = 1), although the same proof can be simply extended to the multiple Wiener case
albeit with significantly greater notational complexity.

Theorem 3 Let us define a general balanced numerical scheme to solve (1) with
d = 1, given by

Y
(G)
n+1 = Yn + �(Yn,Dp, Iq) + (Yn − Yn+1)Dn,

where Y
(T ayl)

n+1 = Yn + �(·) is the corresponding explicit Itô-Taylor scheme of strong
order O(hp) and where the damping term Dn is a function of required coefficient
terms (d0, d1, d11, d111, . . .) and the Itô integral increments, Iq , in the following form:

Dn = d0(Yn)I0 + d1(Yn)|I1| + d2(Yn)|I11| + d3(Yn)|I111| + · · · . (22)

Let us also assume that all required partial derivatives exist and are finite, and that

M(x) =
(

I + α0d0(x) +
s∑

i=1

αidi(x)

)
,

where s is the cardinality of Iq , has an inverse bounded by
∣∣∣M−1(x)

∣∣∣ ≤ K < ∞, for all x.

Then this general balanced scheme will also converge to the Itô solution with strong
order p if the expectation of the damping term, E[Dn] is O(hp).

Proof As for Theorem 2, the expected local error between the general balanced
scheme and the Itô-Taylor scheme of the same order is given by,

∣∣∣E
(
Y (G) − Y (T ayl)

)∣∣∣ =
∣∣∣E

(
(I + Dn)

−1Dn

)
�(·)

∣∣∣ .
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Now the Taylor scheme can be written as �(·) = �̄(·) + g1(Yn)I1, where
E[g1(Yn)I1] = O(h1/2) and E[�̄(·)] = O(h), so by the symmetry of I1 and the
boundedness of the components of the matrices d0, d1, . . . , then

∣∣∣E
(
Y (G) − Y (T ayl)

)∣∣∣ ≤ K

∣∣∣∣∣

n∑

i=1

E
(
Dn�̄(·))

∣∣∣∣∣.

By choosing the dj (Yn) such that E[Dn] = O(hp) then, as I1|I11...1| has a zero ex-
pectation, the mean local order will be O(hp+1). This means that dj (Yn) = 0 for
j = 1 . . .2p − 1.

Again following standard arguments, then

E
[(

YG
n+1 − Yn+1

)T (
YG

n+1 − Yn+1
)] = O(h2p+1),

and so the local strong order is O(hp+1/2). By Theorem 1, the result follows. �

As a direct result of Theorem 3, we can observe the following quality of an alter-
nate attempt at a higher order Balanced scheme:

Corollary 1 A Balanced scheme, for the d = 1 case, given by

Yn+1 = Yn + f (Yn)I0 + g(Yn)I1 + g′(Yn)g(Yn)I11 + Dn(Yn − Yn+1), (23)

where Dn is given by

Dn(Yn) = d0(Yn)I0 + d1(Yn)|I1| + d2(Yn)|I11|,
cannot be guaranteed to converge with strong order 1.0 unless d1 = 0.

However closer examination of the mean order and local strong order expansions
will reveal that a Balanced scheme given by (23) can converge with strong order 1.0
if d1g(Yn) = 0,∀n. Appropriately, the conditions listed in Theorem 3 are not listed
as ‘if and only if’.

4 Optimal parameter selection

The SSO1 method given in Sect. 3, allows for many different implementations de-
pending on the choice of the parameters dj . Clearly the choice of parameters will
effect stability and the constant of convergence. We now examine the optimal selec-
tion of these parameters with respect to the local truncation error in the strong order
convergence. More formally, what follows is an Ansatz, rather than a formal theorem,
on the optimal parameters due to a subtle measurability issue. As we shall illustrate,
significant information is nevertheless revealed from this examination.

In the case of one noise term (d = 1) the SSO1 method can be rewritten as

y
(SSO1)
n+1 = yn + (I + Dn)

−1 (
f I0 + gI1 + g′gI(1,1)

)
.
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The following Ansatz will utilise a Taylor expansion of (I + Dn)
−1 that, for con-

vergence, requires that (I + Dn) 
= 0 and |Dn| < 1. The first condition is assured by
the regularity assumptions underlying the SSO1 method (20). To examine the second
convergence condition note that Dn can be partitioned in the following manner,

Dn = Dn1|Dn|<1 + Dn1|Dn|≥1

= DnE
[
1|Dn|<1

] + DnE
[
1|Dn|≥1

]
,

where 1X is the indicator function given by

1X =
{

1 if X

0 if ¬X.

While the Wiener increment �Wn is unbounded, Dn behaves as d1
√

hεn where εn ∼
N(0,1). Hence

lim
h→0

Pr(|Dn| < 1) → 1.

Hence

lim
h→0

Dn = Dn1|Dn|<1.

Ansatz 1 Assume the previous conditions on (1) and (17) hold. The parameters of the
scheme (17) to solve (1) with one Wiener process that result in the minimum constant
of strong order convergence are given by the solution to

d0g = −1

2

(
f ′g + g′f + 1

2
g′′(g, g)

)
+ d1g,

d1g = I ∗

3

(
(g′)2g + g′′(g, g)

)
,

(24)

where I ∗ is the indicator function given by

I ∗ =
{

0 if I(1,1) > 0
1 if I(1,1) < 0.

Proof The scheme (17) can be rewritten

y
(SSO1)
n+1 = yn + (I + Dn)

−1 (
f I0 + gI1 + g′gI(1,1)

)

= yn +
(

I − Dn + D2
n +

∞∑

i=3

(−D)i

)
(
f I0 + gI1 + g′gI(1,1)

)

= yn + f I0 + gI1 + g′gI(1,1) − d0gI0I1 − d1gI1|I(1,1)| + O(h2).

Recall that the simplified Ito-Taylor expansion is given by,
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y
(T ayl)

n+1 = yn + f I0 + gI1 + g′gI(1,1) +
(

f ′f + 1

2
f ′′(g, g)

)
I(0,0)

+ f ′gI(1,0) + f ′gI(1,0) +
(

g′f + 1

2
g′′(g, g)

)
I(0,1)

+ (
g′′(g, g) + (g′)2g

)
I(1,1,1) + higher order terms.

Then the local error of the scheme (17) is given by

y
T ayl

n+1 − ySSO1
n+1 = f ′gI(1,0) +

(
g′f + 1

2
g′′(g, g)

)
I(0,1) + (

(g′)2g + g′′(g, g)
)
I(1,1,1)

+ d0gI0I1 + d1gI1|I(1,1)| + O(h2)

= (
f ′g + d0g

)
I(1,0) +

(
g′f + 1

2
g′′(g, g) + d0g

)
I(0,1)

+ (
(g′)2g + g′′(g, g)

)
I(1,1,1) + d1gI1|I(1,1)| + O(h2).

Thus the expected first order difference is given by

E
[∣∣YT ayl

n+1 − Y SSO1
n+1

∣∣] = O(h1.5).

By Theorem 1, we need to consider the expressions that ensure the second order
expansions have O(h3).

When I(1,1) < 0, I1|I(1,1)| = −(3I(1,1,1) + I(1,0) + I(0,1)), and so the local error for
the scheme (17) can be rewritten

(
y

T ayl

n+1 − ySSO1
n+1

)
1I(1,1)<0 = (

f ′g + d0g − d1g
)
I(1,0)

+
(

g′f + 1

2
g′′(g, g) + d0g − d1g

)
I(0,1)

+ (
(g′)2g + g′′(g, g) − 3d1g

)
I(1,1,1) + O(h2), (25)

and thus a conditional strong order condition is given by

E
[(

y
T ayl

n+1 − ySSO1
n+1

)T (
y

T ayl

n+1 − ySSO1
n+1

) ∣∣ I(1,1) < 0
]

=
[(

f ′g + g′f + 1

2
g′′(g, g) + 2d0g − 2d1g

)T

×
(

f ′g + g′f + 1

2
g′′(g, g) + 2d0g − 2d1g

)

+ (
(g′)2g + g′′(g, g) − 3d1g

)T (
(g′)2g + g′′(g, g) − 3d1g

)]
h3 + O(h4).
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Fig. 2 A study of error behaviour for the numerical method (17) when solving dXt = αXt dt + βXt dWt ,

(α,β) = (−4,
√

8). In this case d
opt
0 g = (4 + I∗16

√
2

3 )Yn and d
opt
1 = I∗16

√
2

3 Yn and error is given by

log2( 1
n

∑n
i=1 |Y (i)

N
− X(i)(T )|). Each of these expected values were estimated using N = 10000 sample

paths

Clearly the conditional strong order condition is minimised when (d0, d1) are given
by

d0g = −1

2

(
f ′g + g′f + 1

2
g′′(g, g)

)
+ d1g,

d1g = 1

3

(
(g′)2g + g′′(g, g)

)
.

A similar examination when I(1,1) > 0 reveals a conditional strong order condition
given by

E

[(
y

T ayl

n+1 − ySSO1
n+1

)T (
y

T ayl

n+1 − ySSO1
n+1

)∣∣∣∣ I(1,1) ≥ 0

]

= 1

6

[(
f ′g + g′f + 1

2
g′(g, g) + 2d0g + 2d1g

)T

×
(

f ′g + g′f + 1

2
g′(g, g) + 2d0g + 2d1g

)

+ (
(g′)2g + g′′(g, g) + 3d1g

)T (
(g′)2g + g′′(g, g) + 3d1g

)]
h3 + O(h4),

(26)

which is to be minimised subject to the constraint (20). The value for d1 which min-
imises (26) subject to (20) is d1 = 0. Consequently the optimal value for d0 is thus
d0 = − 1

2f ′g + g′f + 1
2g′′(g, g) and the result follows. �
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Corollary 2 For the numerical solution of (17), when g(X) = QX where Q is a
matrix of constants, the optimal value for d1 is d

opt

1 = I ∗
3 Q2. If, in addition f (X) =

FX, then d
opt

0 = − 1
2

(
F + QFQ−1

) + I ∗
3 Q2.

Selecting (d0, d1) in such a way generates a stable strong order 1.0 scheme for
solving (1) with one Wiener process, that has minimal error and satisfies (20). Fig-
ure 2 shows a log plot of error generated by the optimal SSO1 method (24) when solv-
ing a geometric Brownian motion. The parameters of the geometric Brownian mo-
tion, (α,β) = (−4,

√
8), are on the boundary of the mean-square stability region (10)

and so provide a good test for the capabilities of the method (17). The results shown
in Fig. 2 indicate that the scheme (17) does converge with strong order 1.0. Moreover
it shows better stability properties compared to the explicit Milstein method, with the
main improvements appearing when h > 2−4, as well as convergence improvements
over the Euler-based Balanced method.

However this choice of optimal parameters is Ftn+1 -measurable. The SSO1
method assumes that the parameters (d0, d1) are both Ftn -measurable. While this
choice of parameters was motivated by the analysis of the Balanced method given in
[2], clearly this parametric choice results in a numerical scheme which is not guar-
anteed to converge. Although numerical experiments indicate that this scheme does
converge.

5 Asymptotic stability

We can examine the stability properties of the scheme (17) more formally by cal-
culating the asymptotic stability region of (17) and comparing it to the asymptotic
stability properties of the linear test equation (5). The asymptotic stability region of
(17) can be calculated numerically using the following theorem [6].

Theorem 4 (Higham) Given a sequence of real-valued, non-negative, independent
and identically distributed random variables {Zn}, consider the sequence of random
variables, {Yn}n≥1 defined by

Yn =
(

n−1∏

i=0

Zi

)
Y0,

where Y0 ≥ 0 and where Y0 
= 0 with probability 1. Suppose that the random variables
log(Zi) are square integrable. Then

lim
n→∞Yn = 0, with probability 1 ⇔ E(log(Zi)) < 0. (27)

The asymptotic stability region of (17), using the optimal parameters (24), is given
in Fig. 3(b). For comparison, the asymptotic stability regions of the semi-implicit
Milstein scheme

Yn+1 = Yn + f (Yn+1)I0 + g(Yn)I1 + g′(g(Yn))I(1,1), (28)

is given in Fig. 3(a).
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Fig. 3 Asymptotic stability regions for the semi-implicit Milstein scheme and the optimal stable strong
order 1.0 scheme (17). Note that the shape of the asymptotic stability region for the Balanced method is
dependent on the stepsize, h. This is in contrast to Wagner-Platen series based methods, such as the explicit
Milstein method (see Fig. 1)

The comparative advantages of using (17) to solve stiff SODEs become apparent
when viewing the asymptotic stability regions of the respective numerical schemes.
The explicit-Milstein scheme has strong order 0.5 greater than the Euler-Maruyama
scheme but it has reduced asymptotic stability, while the semi-implicit Milstein
scheme does present limited improvements. However the asymptotic stability region
of (17) is significantly better than either the Milstein scheme or semi-implicit Mil-
stein scheme. The results in Fig. 3 even suggest that an optimal stepsize with respect
to asymptotic stability may exist—with h = 2−2 being close to optimal.

6 Application—Sagirow’s Satellite

The effect of a rapidly fluctuating density of the atmosphere of the earth on the motion
of a satellite in a circular orbit leads to the stochastic differential equation [12]

dUt =
(

U
(2)
t

C sin 2U1
t − BU

(2)
t − sinU

(1)
t

)
dt +

(
0

−A(sinU
(1)
t + BU

(2)
t )

)
dWt .

(29)
Following [3], substitution of Xt = sinUt gives

sin 2Ut = 2 sinUt

√
1 − sin2 Ut = 2 sinUt + O(U2

t ) ≈ 2Xt .

These substitutions yield a linearised equation with constant coefficients, given by

dXt =
(

0 1
2C − 1 −B

)
Xt dt +

(
0 0

−A −AB

)
Xt dWt . (30)
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Fig. 4 Trajectory analysis of deterministic Sagirow’s Satellite

Sufficient conditions for the system (30) to be asymptotically stochastically stable are
given by [3]

B > 0, 1 − 2C > 0, A2 <
2B(1 − 2C)

B2(1 − 2C) + 1
. (31)

Plots of the trajectory of the deterministic implementation of (30), with A = 0.6,

B = 5 and C = 0.2, are given in Fig. 4. Both displacement, U(1), and velocity, U(2),
tend to zero as time tends to infinity, however at significantly different rates. Velocity
quickly approaches zero while displacement has a rapid initial change, then slowly
approaches zero. The different relative time scales make this a challenging problem
to solve.

The stochastic system will serve as a useful test equation for the implementation
of the different schemes discussed so far. While we are largely interested in the value
of the displacement, X

(1)
t of (30), it is clear the accuracy of the numerical scheme

will be highly dependent on the effectiveness of the numerical scheme to solve for
the velocity, X

(2)
t .

The Milstein Scheme to solve (30) is given by

Yn+1 = Yn +
(

0 1
2C − 1 − 0.5A2B −B − 0.5A2B2

)
Ynh

+
(

0 0
−A −AB

)
Yn�Wn + 1

2

(
0 0

A2B A2B2

)
Yn(�Wn)

2.

The matrix of diffusion coefficients is not invertible and so the sub-optimal parame-
ters d0 = − 1

2F + d1 where d1 = I ∗
3 Q2 are used. That is, the SSO1 scheme to solve

(30) is given by

Yn+1 =
(

1 −h

h(1 − 2C) + A2B(h + (�Wn)
2)I ∗ 1 + Bh + A2B2(h + (�Wn)

2)I ∗
)−1

×
(

Yn +
[

0 1
2C − 1 − 0.5A2B −B − 0.5A2B2

]
Ynh



Stable strong order 1.0 schemes for solving SODEs 555

+
[

0 0
−A −AB

]
Yn�Wn + 1

2

[
0 0

A2B A2B2

]
Yn(�Wn)

2
)

.

For further comparison the optimal Balanced method, as implemented in [2] is also
used to solve (30). The optimal Balanced scheme to solve (30) is given by

Yn+1 =
(

1 −h/2
h(0.5 − C) + A�Wn1�Wn<0 1 + 0.5Bh + AB�Wn1�Wn<0

)−1

×
(

Yn +
[

0 1
2C − 1 −B

]
Ynh +

[
0 0

−A −AB

]
Yn�Wn

)
.

All three numerical schemes were implemented to obtain numerical solutions of
(30) with A = 0.6, B = 5 and C = 0.2 which satisfy (31). It is worth noting that these
choices of parameters are also close to the boundary of asymptotic stochastic stability
for (30) and so should be a good test for our method. The stepsize h = 2−2 was chosen
in the hope of reflecting the asymptotic stability behaviour given in Sect. 5.

An inspection of Fig. 5 suggests that the SSO1 method is reasonably accurate
when a large stepsize is used. In comparison the Milstein method and the Balanced
scheme, both with stepsize h = 2−2, seem unable to cope with the stability demands
of larger stepsizes and consistently generated unstable solutions. The Milstein scheme
is clearly exhibiting unstable behaviour, in as little as the first step. The Balanced
method, which is considered to be a stable method, also generated unstable solutions
after the first step. Both the Milstein and Balanced methods resulted in solutions
having little relevance to the application for this particular value of the stepsize.

7 Conclusions

The Balanced method was introduced as a class of quasi-implicit numerical schemes
that converges to the exact solution with strong order 0.5 and exhibits signs of im-
proved numerical stability over the Euler-Maruyama method. This class of methods
provided insight that led us to develop a new class of stable strong-order 1.0 (SSO1)
numerical schemes based upon the explicit Milstein scheme. The parameters of the
SSO1 method that result in minimal global error were explored by conditionally min-
imising a Taylor series expansion of the linearised expression of the SSO1 scheme.

An asymptotic stability of SSO1 was given and it was shown that the SSO1 scheme
is significantly more stable than either the Milstein, semi-implicit Milstein or the Bal-
anced methods, especially for larger stepsizes. Indeed the asymptotic stability region
of the SSO1 scheme when h = 2−2 closely mapped the asymptotically stochastic sta-
bility region of the linear test equation. Thus the SSO1 scheme, as with the midpoint
rule for deterministic integration, will generate stable solutions for stable problems
and unstable solutions for unstable problems.

The stability properties were tested by solving Sagirow’s satellite problem. This
problem proved to be a good test of the performance of numerical solution schemes.
For a large stepsize (h = 2−2), Milstein’s method and the optimal Balanced method
performed very poorly indeed. Most solutions of this type were quite inadequate
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Fig. 5 Comparison of numerical schemes, using stepsize h = 2−2, for the solution to Sagirows Satellite
problem. ‘True solutions’ are obtained using an Euler-Maruyama scheme with a stepsize of h = 2−12

and generated unstable solutions to a stable problem. The SSO1 method performed
significantly better than either of these two methods. While still not exceptional, the
SSO1 method obtained a solution that was close to the true value and, importantly, a
stable solution for larger stepsizes, h.

Clearly the SSO1 method is a more stable class of methods than the Milstein
method. In addition, it offers convergence improvements over the Balanced method,
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along with asymptotic stability improvements. Similarly with the Balanced method,
it remains to be seen if, in addition to an optimal parameter choice, certain parameter
choices turn out to be better suited for different types of problems. In addition while
the form of higher order methods that are inspired by the Balanced method may be
known, the stability properties are unknown. The usefulness of any of these methods
will only be determined once these stability properties are understood. This seems to
be a valuable area for future research efforts.
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