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Abstract The Wright-Fisher model is an Itô stochastic differential equation that was
originally introduced to model genetic drift within finite populations and has recently
been used as an approximation to ion channel dynamics within cardiac and neuronal
cells. While analytic solutions to this equation remain within the interval [0,1], cur-
rent numerical methods are unable to preserve such boundaries in the approxima-
tion. We present a new numerical method that guarantees approximations to a form
of Wright-Fisher model, which includes mutation, remain within [0,1] for all time
with probability one. Strong convergence of the method is proved and numerical
experiments suggest that this new scheme converges with strong order 1/2. Extend-
ing this method to a multidimensional case, numerical tests suggest that the algo-
rithm still converges strongly with order 1/2. Finally, numerical solutions obtained
using this new method are compared to those obtained using the Euler-Maruyama
method where the Wiener increment is resampled to ensure solutions remain within
[0,1].
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1 Introduction

The Wright-Fisher model describes the stochastic fluctuations in gene frequency
among a finite population of reproducing individuals, [5]. When the population size
is large, the dynamics are given by an Itô stochastic differential equation, SDE, [20].
This equation is of importance in the study of population dynamics as it can be used
to calculate quantities such as the expected time until a single gene remains. In a
different setting this equation can also be used to approximate the Langevin SDE
that describes the random behaviour of ion channels within cardiac and neuronal
cells.

The Wright-Fisher SDE models the change in the proportion of a specific type
of gene within a population over time and analytic solutions can be shown to re-
main within the interval [0, 1], [20]. When mutation is included into the model then
under certain parameter regimes, solutions will not hit the boundary of this interval
in finite time. The issue is that commonly used numerical techniques, such as the
Euler-Maruyama and Milstein methods, [21], are unable to preserve the boundaries
to the solution of this SDE. This is because as the approximation becomes close to
the boundary, at the next time step the Wiener increment can be large enough to force
the solution out of the interval [0,1]. There are two commonly used alterations that
are made in the numerical algorithm to force approximations to remain within the
desired region. If the solution goes out of the interval then the Wiener increment is
resampled until the approximation at that time step remains in [0,1], as is done in
[7, 28]. Alternatively, if the approximation becomes negative or is greater than 1 then
the solution at that time step is set to 0 or 1, respectively. The problem is that such
alterations can introduce bias into the numerical solution, [22].

In recent years a number of numerical schemes that aim to preserve the bound-
aries of solutions to SDEs have been developed. Most techniques have focused on
algorithms that ensure positive numerical solutions to mean-reverting square root
processes in financial models. The Balanced Implicit Method (BIM) incorporates
implicitness into the Euler-Maruyama scheme, [24], and was shown in [29] to pre-
serve the boundaries of a mean reverting process with cubic diffusion and a model of
diffusion of innovation in marketing sciences. In [18] the Balanced Milstein Method
(BMM), an extension to the BIM, was developed and was shown to preserve positiv-
ity for a class of SDEs whose diffusion coefficients satisfied a number of conditions.
In recent years a number of splitting step methods have been constructed to preserve
the positivity of solutions to models in finance. A scheme that splits one dimensional
SDEs into a SDE whose analytic solution is known and an ordinary differential equa-
tion (ODE) was developed in [25] and shown to preserve positivity for the Cox In-
gersoll Ross (CIR) model, [3], and constant elasticity volatility models. However this
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algorithm is difficult to implement for multidimensional systems since few analyti-
cal solutions of higher dimensional SDEs are known. Other splitting methods have
utilised techniques to solve ODEs such as the Strang splitting method, [11, 26], and
Jacobi splitting, [12], in order to preserve the positivity of solutions to mean reverting
square root processes under certain parameter regimes. The main issue with current
boundary preserving algorithms is that many methods are model dependent [25], or
they only work under certain parameter regimes [11, 12, 17, 26] and so they do not
necessarily generalise to Wright-Fisher models.

In this paper, we propose a novel numerical method for the solution of the Wright-
Fisher model, for the specific case where mutation is included, that ensures approxi-
mations remain within the interval [0,1] for all time. This method combines two ex-
isting schemes, the Balanced Implicit Method (BIM) [24] and the Moro and Schurz
split step method [25], using a special property of the BIM for the Wright-Fisher
model to ensure that numerical solutions remain within [0,1]. This scheme is shown
to converge in the strong sense and numerical tests suggest that the order of conver-
gence is 1/2 for both scalar and multidimensional forms.

We begin with a brief introduction to the Wright-Fisher model and discuss its use
in modelling ion channel dynamics within cardiac and neuronal cells. In Sect. 3 we
formalise what it means for a numerical method to preserve the boundaries of a SDE.
We introduce the numerical scheme and show that it is boundary preserving for the
Wright-Fisher model with mutation in Sect. 4 and in Sect. 5 the strong convergence
of the method is proved. Numerical experiments that suggest the scheme converges
with strong order 1/2 for the one-dimensional and multidimensional Wright-Fisher
models with mutation are presented in Sect. 6. We apply the new method to one
of the gating variables for the sodium ion channel in the Hodgkin-Huxley model
[16], an electrophysiology model of a neuronal cell, where the membrane potential is
fixed in Sect. 7. The solution is compared to that obtained using the Euler-Maruyama
method where the Wiener increment is resampled to ensure solutions remain within
[0,1]. Finally the new method is used to solve the ion channel equations in the full
Hodgkin-Huxley model where the membrane potential varies over time.

2 Wright-Fisher model

The Wright-Fisher model is a simple model describing the stochastic evolution of a
population and was introduced in the 1930s independently in [6, 30]. The most basic
version of the model assumes that there are two types of alleles, r1 and r2 for a gene
in a population whose total size, N , remains constant from one generation to the next.
Since the total number of alleles in the population remains constant, i.e. r1 + r2 = N ,
it is sufficient to consider the number, Y(τ) of a single allele r1 at generation τ .
The gene pool of the kth generation is sampled to give the genetic structure of the
(k + 1)th generation.

This model can be extended to include the possibility of alleles mutating from
one generation to the next. Let us assume that a r2 allele mutates to a r1 allele
over one generation with probability A and a r1 mutates to a r2 with probabil-
ity B . The transition probabilities that the system moves from state i to state j over
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one generation, Pij , follow a binomial distribution with the probability of success
pi = i(1−A)+B(N−i)

N
and the number of trials equal to the population size N ,

Pij =
(

N

j

)
p

j
i (1 − pi)

N−j . (2.1)

When the population size is large, the Wright-Fisher model with mutation can be
approximated by a continuous state continuous time process, Y(t), which represents
the proportion of alleles of type r1 in the population and is described by the following
SDE, [20]

dY = (A − (A + B)Y )dt + √
Y(1 − Y)dW, (2.2)

where dW is a Wiener increment. A Wiener process, W(t), is a stochastic process
whose increment on the interval [t, t + Δt ], defined by dW(t) = W(t + Δt) − W(t),
satisfies the properties E(dW(t)) = 0, E(dW(t) − E(dW(t)))2 = Δt and Wiener in-
crements on non-overlapping intervals are independent. From here on we refer to the
Wright-Fisher SDE or model as that which includes mutation between alleles, (2.2).
The analytic solution to (2.2) can be shown to remain within [0,1] for all time, [20].
In [9, 10] the Wright-Fisher SDE given by (2.2) has been extended to the multidimen-
sional case that describes the dynamics of d + 1 different alleles that can undergo m

reversible mutations.
A different setting in which a form of the Wright-Fisher SDE has been used is

as an approximation to the dynamics of ion channels within cardiac and neuronal
cells. Ion channels are specialised proteins that lie in the membrane of excitable cells
and are assumed to reside in one of m discrete states with transition rates between
states depending on the membrane potential, V . The ion channel transitions from one
state to another at random and the evolution of the proportion of channels in each
state can be described by an Itô SDE taking the special form of a Langevin equation,
[8, 23]. The issue is that for the simplest system, where the ion channel is assumed to
occupy one of two positions, analytic solutions to the Langevin equation can leave the
interval [0,1], questioning the biological relevance of this model. In [4] we suggested
using a form of the Wright-Fisher model described by the Itô SDE

dY = (Ã − (Ã + B̃)Y )dt + C̃
√

Y(1 − Y)dW (2.3)

as an approximation to the stochastic dynamics of the simple ion channel model. If
a and b are the transition rates between closed and open and open and closed states
respectively then setting the parameters in (2.3) to be

Ã = a, B̃ = b, C̃ =
√

2(a + b)

N − 1
, (2.4)

where N is the total number of ion channels within a cell, ensures the mean of (2.3) is
identical to that of the Langevin equation and the difference in the variance of these
two equations is of the order 1/N . Therefore (2.3) and (2.4) provide an alternative
model for the stochastic behaviour of ion channels with biologically realistic solu-
tions, whilst still providing a good approximation to the mean and variance of the
Langevin equation.
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Using (2.3) to model ion channel dynamics adds a level of complexity to the nu-
merical methods employed to solve this equation since the parameters are no longer
constant but are functions of the membrane potential V and so will vary over time.
Providing the discretisation time step used in the simulation is small, the voltage can
be assumed to remain frozen over each time step and so the rates at which the channel
transitions from one state to another are constant. Hence, over each time step (2.3)
can be solved assuming that the parameters Ã, B̃ , and C̃ are constant. The main com-
plication of voltage dependent transition rates is that the numerical scheme used to
solve (2.3) must preserve the boundaries of 0 and 1 for all physiologically realistic
parameter regimes. Otherwise this limits the ability for incorporation into an elec-
trophysiological model where the membrane potential varies over time, such as the
Hodgkin-Huxley model [16].

Throughout this paper we assume that the parameters Ã, B̃ , and C̃ are strictly
positive, Ã, B̃ , C̃ > 0, as is the case for electrophysiology models of cardiac and
neuronal cells, [16, 27]. In the next three sections we also assume that the parameters
in (2.3) are constant.

3 The lifetime of a numerical method

The concept of a boundary preserving numerical scheme was formalised by Schurz
in [29]. He introduced the notion of an algorithm having eternal lifetime which is
defined as follows.

Definition 3.1 [29] Let yn be computed from a stochastic numerical scheme that
approximates the solution to the Wright-Fisher model, (2.3), where yn is the approx-
imation at time tn. The numerical scheme yn is said to possess eternal lifetime if

P (yn ∈ [0,1]|y0 ∈ [0,1]) = 1, for all n > 0. (3.1)

If (3.1) does not hold then the numerical scheme is said to have finite lifetime and
so the approximation can leave the interval [0, 1] with positive probability. A weaker
notion of a boundary preserving numerical scheme is that of ε-lifetime.

Definition 3.2 [29] Let yn be computed from a stochastic numerical scheme that
approximates the solution to the Wright-Fisher model, (2.3), where yn is the approx-
imation at time tn. The numerical scheme yn is said to possess ε-lifetime if

P (yn ∈ [0,1]|yn−1 ∈ [ε,1 − ε]) = 1, for some ε > 0. (3.2)

This property provides a one step assurance that the approximation to (2.3) will lie
within the correct region. However, since yn can lie in the region [0, ε) ∪ (1 − ε,1]
with positive probability, at time tn+1 the numerical solution is not guaranteed to
remain within [0,1] and so this property does not ensure the discretisation scheme is
boundary preserving for all time.
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4 A boundary preserving numerical scheme for the Wright-Fisher model

The Balanced Implicit Split Step (BISS) method is a combination of the Balanced
Implicit Method (BIM), first introduced in [24], and the split step method developed
in [25]. In what follows we shall consider the numerical approximation to the Wright-
Fisher model on a fixed time interval [0, T ] with discretisation t0 = 0, . . . , tM = T

where tn+1 − tn = Δtn for 0 ≤ n ≤ M − 1. For simplicity we assume a fixed time step
Δtn = Δt throughout. We begin with a brief description of the two methods on which
the BISS scheme is based.

4.1 BIM method

The Balanced Implicit Method (BIM) was introduced in [24] as a method for solving
stiff stochastic systems. Unlike drift implicit methods, the scheme introduced implic-
itness into the diffusion term as well as the drift term through a system of freely
chosen control functions, dj (X). In [1] the optimal choice for the control functions
with respect to the local truncation error in strong convergence are given and shown
to improve the accuracy of the scheme.

The BIM for the Wright-Fisher model, (2.3), can be described by the one-step
discretisation scheme (where we have removed the tildes from the parameters)

yB
n+1 = yB

n + (A − (A + B)yB
n )Δt + C

√
yB
n (1 − yB

n )ΔWn + D(yB
n )(yB

n − yB
n+1),

(4.1)
where Δt is the length of the time discretisation interval and ΔWn is a Wiener in-
crement. In the update formula above, D(yB

n ) is the system of control functions and
takes the form,

D(yB
n ) = d0(yB

n )Δt + d1(yB
n )|ΔWn|. (4.2)

Although the BIM scheme was originally introduced as a method for solving stiff
stochastic systems, in [29] Schurz showed that by careful choice of the control func-
tions the BIM scheme possesses ε-lifetime for the Wright-Fisher model with no drift,
i.e. the case A,B = 0. The control functions that ensure such a property are

d1(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C

√
1−ε
ε

if y < ε,

C

√
1−y
y

if ε ≤ y < 1/2,

C
√

y
1−y

if 1/2 ≤ y ≤ 1 − ε,

C

√
1−ε
ε

if y > 1 − ε.

(4.3)

Since there is no drift term in this case d0(y) = 0. This choice for the control function
satisfies the following property.

Lemma 4.1 Assuming y ∈ [0,1], by the choice of control function, (4.3), we have

d1(y)
√

y(1 − y) ≤ C.
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Proof The proof follows directly from the choice of the control function. �

From here we assume that y ∈ [0,1] since in Sect. 4.4 we show that the new
numerical scheme we introduce will always remain in the interval [0,1].
4.2 Moro and Schurz method

In [25], Moro and Schurz developed a split step scheme that exploits the structure of a
SDE so as to guarantee the numerical solution remains within the natural boundaries
of the system. The scheme decomposes the SDE into two equations, a SDE and an
ODE. This split is taken in such a way so that the exact solution or the conditional
probability to the first equation (the SDE) is known. The exact solution to the first
equation is then used as the initial condition for the ODE in that time step, which
is integrated using any converging deterministic algorithm. The Moro and Schurz
method can be used to obtain numerical solutions to the Wright-Fisher model for
channel dynamics, [4], by splitting (2.3) as follows (where again the tildes have been
removed from the parameters)

dy1 = C2(1 − 2y1)

4
dt + C

√
y1(1 − y1)dW, (4.4)

dy2 =
(

A − C2

4
−

(
A + B − C2

2

)
y2

)
dt. (4.5)

The first equation is equivalent to the Stratonovich SDE dy1 = C
√

y1(1 − y1) ◦ dW

and so the analytic solution can be calculated (see [21], p. 120). This scheme en-
sures numerical solutions remain within [0,1] providing a

a+b
∈ [ 1

2(N−1)
,1− 1

2(N−1)
],

where a and b are the transition rates in the corresponding ion channel model, [4],
which relate to the parameters A, B and C by (2.4). However, converting the SDE into
the Stratonovich form introduces an extra term into the ODE part of the split, altering
the dynamics of the ODE system and so preventing the scheme from preserving the
boundaries for all parameter regimes. This limits the ability for incorporation into an
electrophysiological model where the membrane potential varies over time and hence
the parameters, which depend on the membrane potential, can take a wide range of
values.

The scheme that we present below uses the Balanced Implicit Method to solve the
SDE in the Moro and Schurz split scheme. The idea is to select the control functions
so the BIM possesses ε-lifetime. ε is then taken as a function of the time step in such
a way so as to ensure the approximation to the ODE remains within [0,1]. Thus the
scheme can be shown to possess eternal lifetime.

4.3 BISS method

The BISS method decomposes (2.3) into two equations, as in the Moro and Schurz
method. The first is a SDE that consists of the diffusion term of (2.3) only. The second
is an ODE that consists of the drift part and so (2.3) is separated into the following
two equations

dy1 = C
√

y1(1 − y1)dW, (4.6)
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dy2 = (A − (A + B)y2)dt. (4.7)

As in the Moro and Schurz method, the numerical solution to (4.6) is used as
the initial condition in (4.7) with the solution to this second equation providing the
approximation to the true solution at each time step. The main difference between
the BISS method and the split step method of Moro and Schurz is the way in which
the first equation is solved. The BISS method approximates the solution to (4.6) at
each time step using the BIM, where the control functions are taken to be (4.3), so
that the scheme possesses ε-lifetime. The second equation can be solved using any
converging deterministic algorithm of at least order 1, and so the simplest method to
use is the Euler method. Therefore the BISS method for (2.3) can be described by the
following one step discretisation formula,

yn+1 = yn + (A − (A + B)yn)Δt + C
√

yn(1 − yn)ΔWn

1 + d1(yn)|ΔWn| (1 − (A + B)Δt). (4.8)

Note that by definition d1(yn) ≥ 0, providing yn ∈ [0,1], since we assume C > 0. In
the next section we shall prove that for all time, the BISS method does indeed remain
within this interval, and so the denominator of the last term in (4.8) is always greater
than or equal to one. Thus the numerical scheme for the BISS method, given by (4.8),
will not become unstable, even for very small values of Wiener increments ΔWn.

While in the standard sense of ε-lifetime the ε is constant, as discussed in [29], in
the BISS method the ε is determined in terms of the discretisation time step Δt . In
particular the ε is chosen to ensure that for a particular time step Δt , the numerical
approximation to (4.7) is driven to a distance of ε away from the boundary, i.e. the
numerical solution lies in the region [ε,1 − ε]. This is always possible since A and B

are strictly positive, so the drift of (2.3) pushes the solution away from the boundary.
We take ε as

ε = min(AΔt ,BΔt ,1 − AΔt,1 − BΔt) > 0 when Δt sufficiently small. (4.9)

Such a choice will be shown to ensure that the discretisation scheme given by (4.8)
possesses ε-lifetime.

4.4 Properties of the BISS method

We begin by proving a Lemma and a Theorem which together show that the BISS
method possesses eternal lifetime as defined in Sect. 3. The Lemma is stated in [29],
although no formal proof for the Lemma was given. From these two results it fol-
lows immediately that the first two moments of the discretisation scheme (4.8) are
bounded, which we state as a Corollary.

Lemma 4.2 [29] The BIM scheme for the Wright-Fisher model with no drift, where
the control functions are taken to be (4.3), possesses ε-lifetime.
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Proof First let us assume that at time tn, yn,1 ∈ [ε,1/2). The value at the next time
step, according to the BIM scheme, is given by

yn+1,1 = yn,1 + C
√

yn,1(1 − yn,1)(ΔWn + |ΔWn|)
1 + C

√
(1 − yn,1)/yn,1|ΔWn|

. (4.10)

If ΔWn ≤ 0 then

yn+1,1 = yn,1

(
1

1 + C
√

(1 − yn,1)/yn,1|ΔWn|

)
,

which is clearly non-negative and since 1 + C
√

(1 − yn,1)/yn,1|ΔWn| ≥ 1 hence
yn+1,1 lies in the interval [0,1/2). Otherwise

yn+1,1 = yn,1 + 2C
√

yn,1(1 − yn,1)|ΔWn|
1 + C

√
(1 − yn,1)/yn,1|ΔWn|

,

which is clearly non-negative. In order for yn+1,1 ≤ 1 then the following inequality
must hold (

1

yn,1
− 1

)
+

(
1

yn,1
− 2

)
C

√
(1 − yn,1)

yn,1
|ΔWn| ≥ 0.

Since yn,1 < 1/2 it follows that the inequality above is satisfied. Hence, given yn,1 in
[ε,1/2) then yn+1,1 ∈ [0,1].

Now let us assume that yn,1 ∈ [1/2,1 − ε], then the value at the next time step is
given by

yn+1,1 = yn,1 + C
√

yn,1/(1 − yn,1)((1 − yn,1)ΔWn + yn,1|ΔWn|)
1 + C

√
yn,1/(1 − yn,1)|ΔWn|

. (4.11)

If ΔWn ≥ 0, (4.11) becomes,

yn+1,1 = yn,1 + C
√

yn,1/(1 − yn,1)|ΔWn|
1 + C

√
yn,1/(1 − yn,1)|ΔWn|

. (4.12)

This is clearly non-negative and it also follows that yn+1,1 will be less than 1 since
yn,1 < 1. Otherwise if ΔWn < 0 then (4.11) can be written as

yn+1,1 = yn,1 + C
√

yn,1/(1 − yn,1)(2yn,1 − 1)|ΔWn|
1 + C

√
yn,1/(1 − yn,1)|ΔWn|

. (4.13)

It follows directly that this is non-negative and for yn+1,1 ≤ 1 the inequality
(

1

yn,1
− 1

)
+ 2

(
1

yn,1
− 1

)
C

√
yn,1

1 − yn,1
|ΔWn| ≥ 0,

must hold. It is clear that this is true since yn,1 < 1, therefore if yn,1 ∈ [1/2,1 − ε]
then yn+1,1 ∈ [0,1].
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Thus if yn,1 ∈ [ε,1 − ε], then yn+1,1 ∈ [0,1] with probability 1 and so the BIM
scheme for the Wright-Fisher model with no drift possesses ε-lifetime. �

Theorem 4.1 The BISS scheme for the Wright-Fisher model possesses eternal life-
time.

Proof In order to prove the BISS scheme possesses eternal lifetime we must show
that yn,2 = yn ∈ [0,1] for all n > 0. By the previous Lemma we have that the solution
to the first part of the split in the BISS method must remain in [0,1] over a single time
step, providing the initial condition is a distance ε away from the boundary. Therefore
we must show that given the initial condition to the second equation in the split lies
in [0,1], then the choice of ε, (4.9), guarantees that the solution to this equation at
each time step lies in the interval [ε,1 − ε].

Let us assume that the initial condition to (2.3), y0, lies in the interval [ε,1 − ε],
where ε is given by (4.9). Since y0 = y0,1 then by the previous Lemma it follows that
y1,1 ∈ [0,1], due to the ε-lifetime property of the BIM scheme for (4.6). Taking y1,1
as the initial condition for the second equation in the split, (4.7), and using the Euler
method to solve this equation, y1,2 is given by

y1,2 = y1,1 + (A − (A + B)y1,1)Δt . (4.14)

For y1,2 ∈ [ε,1 − ε], ε must be such that ε ≤ min(AΔt ,1 − AΔt,BΔt ,1 − BΔt),
since the minimum and maximum values attained by y1,1 are 0 and 1, respectively.
By the definition of ε, (4.9), this inequality clearly holds. Therefore it follows that
y1,2 ∈ [ε,1 − ε]. Since y1 = y1,2, we have that y1 ∈ [ε,1 − ε] ⊂ [0,1].

Now let us assume that yn ∈ [ε,1 − ε]. Again it follows from the previous Lemma
that yn+1,1 ∈ [0,1] and so it remains to show that yn+1,2 ∈ [ε,1 − ε] given that the
initial condition to (4.7) is taken to be yn+1,1. This follows immediately from the
definition of ε, (4.9), as the Euler method is used to solve (4.7). Since yn+1 = yn+1,2
we have that yn+1 ∈ [ε,1 − ε].

Thus by induction it follows that given y0 ∈ [ε,1 − ε] we have with probability
1 yn ∈ [ε,1 − ε] ⊂ [0,1] for all n > 0 and so the BISS method possesses eternal
lifetime. �

Note that in the above theorem we prove a slightly stronger condition than the
definition of eternal lifetime given by Definition 3.1, namely that the BISS method
ensures numerical solutions remain a distance ε away from the boundaries for all
time and so lie within a subset of [0,1].

Corollary 4.1 The first two moments of the method (4.8) are bounded. That is there
exist positive constants 0 < G2 ≤ G1 ≤ 1 such that

E(yn) ≤ G1, (4.15)

E(y2
n) ≤ G2. (4.16)

Proof The proof follows directly from the fact that (4.8) possesses eternal lifetime
by the above Theorem, and so yn ∈ [0,1] for all n > 0. �
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5 Strong convergence of the BISS method

The BIM method converges with strong order 1/2 providing the drift and diffusion
coefficients are Lipschitz continuous, [24]. The Moro and Schurz method converges
with strong order 1 for weaker conditions on the drift and diffusion functions, namely
that the drift coefficient is 3 times differentiable, the diffusion coefficient 4 times dif-
ferentiable and the solution to the equation satisfies a certain moment bound. Extend-
ing these two results it is relatively straight forward to show that the BISS method
converges with strong order 1/2, under the assumption of Lipschitz continuous drift
and diffusion coefficients. However, the diffusion coefficient in the Wright-Fisher
model does not satisfy the Lipschitz condition on [0,1] and indeed it is not even
differentiable at the end points of this interval. Therefore this proof of strong conver-
gence breaks down.

In recent years a number of authors have tried to tackle the issue of convergence of
certain numerical schemes when the diffusion coefficient fails to satisfy the Lipschitz
condition [2, 14, 15], but this is still a little explored area. In [14] the authors use the
Yamanda method, [19], to prove strong convergence of the Euler method for the CIR
model, whose diffusion coefficient is only Hölder continuous, a weaker condition
than Lipschitz continuity. Since the diffusion coefficient for the Wright-Fisher model
satisfies the Hölder condition we shall use a similar approach to that presented in [14]
to prove strong convergence of the BISS method.

For ease of notation we let f (y) = A − (A + B)y and g(y) = √
y(1 − y). In the

convergence analysis we work with the integral form of (2.3),

Y(t) = Y0 +
∫ t

0
f (Y (r))dr +

∫ t

0
Cg(Y (r))dW(r), (5.1)

and the continuous approximation to (4.8), y(t), defined for t ∈ [tn, tn+1)

y(t) := yn + f (yn)(t − tn) + Cg(yn)(W(t) − W(tn))

1 + d1(yn)|ΔWn| (1 − (A + B)Δt), (5.2)

where ΔWn = W(tn+1) − W(tn), Δt = Δtn = tn+1 − tn and W(t) is a continuous
Wiener process taking values W(tn),W(tn+1), . . . at the grid points. Defining y(t)

and W(t) to be the following step functions

y(t) := yk for t ∈ [tk, tk+1),

W(t) := W(tk+1) − W(tk) for t ∈ [tk, tk+1),

(5.2) can be re-written in the integral form

y(t) = y0 +
∫ t

0
f (y(r))dr +

∫ t

0

Cg(y(r))(1 − (A + B)Δt)

1 + d1(y(r))|W(r)| dW(r). (5.3)

Note that y(t) is equal to y(t) at the discretisation points, t = tn.
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Lemma 5.1 For all Δt sufficiently small

sup
t∈[0,T ]

E((y(t) − y(t))2) ≤ HΔt, (5.4)

where H > 0 is a constant independent of Δt .

Proof Letting t ∈ [tk, tk+1) and using the results of Corollary 4.1 and the fact that
1/(1 + d1(y(r))|W(r)|)2 ≤ 1, we have

E
(
(y(t) − y(t))2

)

= E

[(
f (yk)(t − tk) + Cg(yk)(1 − (A + B)Δt)(W(t) − W(tk))

1 + d1(yk)|ΔWk|
)2

]

≤ 2

(
E

[
(f (yk))

2(t − tk)
2 + C2(g(yk))

2(1 − (A + B)Δt)
2(W(t) − W(tk))

2

(1 + d1(yk)|ΔWk|)2

])

≤ 2

(
E

[
(f (yk))

2
]
Δ2

t + E

[
C2(g(yk))

2(1 − (A + B)Δt)
2

(1 + d1(yk)|ΔWk|)2

]
Δt

)

≤ HΔt, (5.5)

for some constant H > 0 independent of Δt . Finally taking the supremum over 0 ≤
t ≤ T we obtain the result of the Lemma. �

Following [14] we construct a sequence of twice continuosly differentiable smooth
functions, φk(v), that approximate the function |v|. This approximation is then used
to obtain an upper bound on the expectation of the absolute value between the true
and the approximate solutions, E|Y(t) − y(t)|.

Letting a0 = 1 and ak = e
−k(k+1)

2 , k ≥ 1, then there exists a continuous function
ψk(v) with support in (ak, ak−1) such that

0 ≤ ψk(v) ≤ 2

kv
, ak < v < ak−1 and

∫ ak−1

ak

ψk(u)du = 1.

Therefore the function

φk(v) =
∫ |v|

0
dx

∫ x

0
ψk(u)du,

is twice continuously differentiable with the first two differentials satisfying the prop-
erties

|φ′
k(v)| ≤ 1, ∀v ∈ R, |φ′′

k (v)|
{

≤ 2
k|v| ak < |v| < ak−1,

= 0 otherwise.
(5.6)

Furthermore, φk satisfies the inequality

|v| − ak−1 ≤ φk(v) ≤ |v|, ∀v ∈ R. (5.7)
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Theorem 5.1 Let Y(t) denote the true solution of (2.3), then for all Δt sufficiently
small,

sup
0≤t≤T

E|Y(t) − y(t)| ≤ eλT

[
ak−1 + C2T

k

]

+ eλT C2T Δ
1/2
t

[√
H

(
1

kak

+ λ

C2

)
+ 2L

kak

]
, (5.8)

where λ = A + B and L > 0 is a constant independent of Δt . Hence, it follows that

lim
Δt→0

sup
0≤t≤T

E|Y(t) − y(t)| = 0.

Proof Letting λ = A+B , σ(y(r)) = 1− (1−λΔt)/(1+d1(y(r))|W(r)|), and using
(5.1) and (5.3) we have that

Y(t) − y(t) = −λ

∫ t

0
(Y (r) − y(r))dr

+ C

∫ t

0

[
g(Y (r)) − g(y(r)) + σ(y(r))g(y(r))

]
dW(r).

Applying Itô’s formula and using (5.6) we get

Eφk(Y (t) − y(t)) = −λE

∫ t

0
φ′

k(Y (r) − y(r))(Y (r) − y(r))dr

+ C2

2
E

∫ t

0
φ′′

k (Y (r) − y(r))(g(Y (r)) − g(y(r))

+ σ(y(r))g(y(r)))2dr

≤ λ

∫ t

0
E|Y(r) − y(r)|dr + C2

2
I(t),

where,

I(t) : = E

∫ t

0
φ′′

k (Y (r) − y(r)) (g(Y (r)) − g(y(r)) + σ(y(r))g(y(r)))2 dr

≤ 2E

∫ t

0
φ′′

k (Y (r) − y(r))
(
[g(Y (r)) − g(y(r))]2 + [σ(y(r))g(y(r))]2

)
dr.

Using Lemma 4.1 and the fact that

max(g(y)) = 1/2 and 1/
(

1 + d1(y(r))|W(r)|
)

≤ 1,

we have

(σ (y(r))g(y(r)))2 ≤ C2|W(r)|2 + CλΔt |W(r)| + λ2Δ2
t

4
.
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Therefore using (5.6)

E

∫ t

0
φ′′

k (Y (r) − y(r)) (σ (y(r))g(y(r)))2 dr

≤
∫ t

0

2

kak

E

(
C2|W(r)|2 + CλΔt |W(r)| + λ2Δ2

t

4

)
dr

≤
(

C2Δ
1/2
t + CλΔt + λ2Δ

3/2
t

4

)
2tΔ

1/2
t

kak

= p(Δ
1/2
t )

2tΔ
1/2
t

kak

, (5.9)

where p(Δ
1/2
t ) is a polynomial in Δ

1/2
t with positive coefficients. Therefore for all

Δt small enough,

p(Δ
1/2
t ) < L,

for some constant L > 0 independent of Δt . If follows that

E

∫ t

0
φ′′

k (Y (r) − y(r))(σ (y(r))g(y(r)))2dr <
2LtΔ

1/2
t

kak

.

The function g(y) = √
y(1 − y) is Hölder continuous with exponent 1/2 and

Hölder constant, 1/
√

2. Using this fact along with (5.6) and Lemma 5.1

E

∫ t

0
φ′′

k (Y (r) − y(r)) (g(Y (r)) − g(y(r)))2 dr

≤ 1

2
E

∫ t

0
φ′′

k (Y (r) − y(r))|Y(r) − y(r)|dr

+ 1

2
E

∫ t

0
φ′′

k (Y (r) − y(r))|y(r) − y(r)|dr

≤ 1

2
E

∫ t

0

2

k
1{ak<|Y(r)−y(r)|<ak−1}dr + 1

2
E

∫ t

0

2

kak

|y(r) − y(r)|dr

≤ t

k
+ t

kak

√
HΔt .

Therefore, for all Δt small enough the integral I(t) is bounded by,

I(t) ≤ 2

(
t

k
+ t

kak

√
HΔt + 2LtΔ

1/2
t

kak

)
=: J (t).
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Again using Lemma 5.1 we obtain,

Eφk(Y (t) − y(t)) ≤ λ

∫ t

0
E|Y(r) − y(r)|dr + λ

∫ t

0
E|y(r) − y(r)|dr + C2

2
J (t)

≤ λ

∫ t

0
E|Y(r) − y(r)|dr + λt

√
HΔt + C2

2
J (t).

From (5.7),

Eφk (Y (t) − y(t)) ≥ E|Y(t) − y(t)| − ak−1.

So

E|Y(t) − y(t)| ≤ ak−1 + C2t

k
+ √

HΔt

(
C2t

kak

+ λt

)

+ 2C2Lt
√

Δt

kak

+ λ

∫ t

0
E|Y(r) − y(r)|dr.

Applying the Grönwall inequality,

E|Y(t) − y(t)| ≤ eλt

[
ak−1 + C2t

k

]

+ eλtC2tΔ
1/2
t

[√
H

(
1

kak

+ λ

C2

)
+ 2L

kak

]
. (5.10)

Finally, taking the supremum over 0 ≤ t ≤ T gives (5.8).
For any δ > 0, to prove the convergence we may choose k ≥ 1 large enough such

that

eλT

[
ak−1 + C2T

k

]
<

1

2
δ, (5.11)

and then choose Δt > 0 small enough so that

eλT C2Δ
1/2
t T

[√
H

(
1

kak

+ λ

C2

)
+ 2L

kak

]
<

1

2
δ.

Therefore sup0≤t≤T E|Y(t)−y(t)| < δ and so limΔt→0 sup0≤t≤T E|Y(t)−y(t)| = 0
as required. �

6 Numerical convergence of the BISS method

Numerical tests were performed to study the strong convergence of the BISS method
for the Wright-Fisher model, (2.3), and a multidimensional form of this model in-
volving 3 states. The 3 state system can be described by a system of two Itô SDEs,

dY1 = (A3 + (A2 − A3)Y2 − (B3 + B1 + A3)Y1) dt − C1

√
Y1Y2dW1

+ C2

√
Y1(1 − Y1 − Y2)dW2,

(6.1)
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dY2 = (A1 + (B1 − A1)Y1 − (A2 + B2 + A1)Y2) dt + C1

√
Y1Y2dW1

− C3

√
Y2(1 − Y1 − Y2)dW3,

where Y1, Y2 are the proportion of alleles or channels in states 1 and 2 respectively
and 1 − Y1 − Y2 is the proportion in state 3.

As before this system is split into a SDE that consists of the diffusion part of (6.1)
only and an ODE. The SDE is solved using the following one step discretisation
scheme,

yn+1
1 = yn

1 − C1
√

yn
1 yn

2 ΔWn
1 + C2

√
(1 − yn

1 − yn
2 )yn

1 ΔWn
2

1 + D1(yn) + D2(yn) + D3(yn)

+ yn
1 (D1(yn) + D2(yn) + D3(yn))

1 + D1(yn) + D2(yn) + D3(yn)
,

yn+1
2 = yn

2 + C1
√

yn
1 yn

2 ΔWn
1 − C3

√
(1 − yn

1 − yn
2 )yn

2 ΔWn
3

1 + D1(yn) + D2(yn) + D3(yn)

+ yn
2 (D1(yn) + D2(yn) + D3(yn))

1 + D1(yn) + D2(yn) + D3(yn)
,

where the control functions are

D1(y) =
⎧⎨
⎩

C1

(√
y2
y1

+
√

ε
y1y2

)
|ΔW1|, if ε < y1 ≤ y2,

C1

(√
y1
y2

+
√

ε
y1y2

)
|ΔW1|, if ε < y2 < y1,

D2(y) =
⎧⎨
⎩

C2

(√
1−y1−y2

y1
+

√
ε

y1(1−y1−y2)

)
|ΔW2|, if 2y1 + y2 < 1,

C2

(√
y1

1−y1−y2
+

√
ε

y1(1−y1−y2)

)
|ΔW2|, if 2y1 + y2 ≥ 1,

D3(y) =
⎧⎨
⎩

C3

(√
1−y1−y2

y2
+

√
ε

y2(1−y1−y2)

)
|ΔW3|, if 2y2 + y1 < 1,

C3

(√
y2

1−y1−y2
+

√
ε

y2(1−y1−y2)

)
|ΔW3|, if 2y2 + y1 ≥ 1.

If y1 or y2 are less than ε then set yi = ε for i = 1,2 respectively. Also if y1 + y2 ≥
1 − ε then set this sum equal to 1 − ε in the above formulas.

The error between the true, ytrue(t) and the approximate solution yapprox(t) at
the final time, T , is considered. The “true” solution is calculated using the Euler-
Maruyama method over a very fine time discretisation, namely with time step
Δt = 2−9. We have chosen the parameter regime such that the solution lies far from
the boundaries 0 and 1 and so the probability of the Euler-Maruyama approximation
leaving the desired region is very small. Therefore instead of altering the scheme to
ensure solutions remain within [0,1], paths outside this interval are rejected. Since
only a few paths will need to be rejected such an approach is computationally feasi-
ble, however this is not the case for all parameter regimes as we shall be discussed in
the next section.
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Fig. 1 (Color online) Log log plots showing the convergence results for Wright-Fisher models, (2.3) (left)
and (6.1) (right). The red dashed line is a reference slope of 1/2. The parameter values for (2.3) are A = 1,
B = 2 and C = 0.2462 and for (6.1) A1 = 1, A2 = 2, A3 = 3, B1 = 1.2, B2 = 2.3, B3 = 3.4, C1 = 0.1271,
C2 = 0.1798 and C3 = 0.1291. The initial condition is taken to be the steady state of the deterministic part
of (2.3) and (6.1)

We calculate the error,

E|ytrue(T ) − yapprox(T )| (6.2)

between the “true” solution and a numerical approximation using the following five
different time discretisations, Δk

t = 2k−1 for 1 ≤ k ≤ 5 over a million simulations
with final time T = 1, [13]. Results are given in Fig. 1.

The slopes of the errors appear to match well with the reference slope of 1/2,
Fig. 1, suggesting that the BISS method converges with strong order 1/2 for both the
one dimensional and multidimensional Wright-Fisher models, (2.3) and (6.1).

7 Application of the BISS method

7.1 Fixed voltage

The Hodgkin-Huxley model, [16], describes the propagation of an action potential
(a rapid rise and fall in the cell membrane potential) through a squid giant axon. The
change in membrane potential, V , over time is described in terms of the proportion of
open sodium and potassium ion channels. The sodium channel is assumed to consist
of three gates of type m and one of type h while the potassium channel is assumed
to consist of four gates of type n, where each gate can be either open or closed. The
proportion of open channels is thus given by the product of the proportion of open
gates. Taking into account the stochastic behaviour of the ion channel, the proportion
of open gates of type i can be approximated by the Wright-Fisher SDE as follows

di = (ai(V ) − (ai(V ) + bi(V ))i) dt +
√

2(ai(V ) + bi(V ))

(Nr − 1)

√
(1 − i)idW, (7.1)
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Fig. 2 (Color online) Left: Mean solution over a million simulations to (2.3) using the Euler-Maruyama
method (blue dot dash) and the BISS method (red solid line). Right: Difference between the mean BISS
method solution and the mean Euler-Maruyama solution over a million simulations (black solid line) and
the mean of the difference between the mean paths (green horizontal dot dash line). The parameter values
used for simulation are a = 7.0064, b = 0.0204, N = 100, Δt = 0.01 and the initial condition is the steady
state of the deterministic system. The maximum standard error for the BISS method is 2.8582 × 10−6 and
for the Euler-Maruyama method it is 6.9183 × 10−6

where Nr is the number of sodium or potassium channels, depending on the type of
channel, and ai(V ), bi(V ) are the transition rates from closed to open and open to
closed, respectively. These transition rates vary with the membrane potential accord-
ing to the functions given in [4].

We consider the solution to (7.1) for the m gating variable of the sodium channel
with fixed voltage, V = 30 mV, using the BISS method. This value of the voltage is
attained near the height of the action potential. For this biologically relevant param-
eter regime the solution lies very close to the boundary 1, and so the chance that the
Euler-Maruyama approximation leaves the interval [0,1] is very high. In one million
simulations, we observed that the Euler-Maruyama path left the desired region in over
700 000 simulations. Therefore if such paths were to be rejected, computing a mean
solution using the Euler-Maruyama method over a large number of simulations would
not be computationally feasible. Indeed this is not the common method employed in
cardiac and neuronal cell stochastic simulation studies. Instead if the solution leaves
this region at some time t , the Wiener increment is continually resampled until the
approximation at that time lies within [0,1]. Thus in practice the Euler-Mauryama
scheme is altered to force the path to lie within a biologically realistic region, [7,
28]. To the best of our knowledge no convergence has been studied for the Euler-
Maruyama method when such an alteration is performed, and it seems plausible that
such an adjustment could potentially bias the numerical solution. Since the BISS
method ensures solutions remain within [0,1] without the need for any such alter-
ation, we investigated the potential affect of this modification to the Euler-Maruyama
method by comparing numerical solutions to (2.3) obtained using the BISS method
with those of the adjusted Euler-Maruyama method.
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Fig. 3 (Color online) Parameter values for (2.3) over a biologically realistic voltage range. The red dot
dash line is the parameter A, the blue dash line is the parameter B and the black solid line is the C

parameter. All parameters are calculated for the m gate of the sodium channel in the Hodgkin-Huxley
model according to the functions in [4]

In any single simulation, out of the one million simulations shown in Fig. 2, the
maximum number of times the modification was utilised in the Euler-Maruyama im-
plementation was 874. If the resampling of the Wiener increment did not bias the
solution obtained using the Euler-Maruyama method then we would expect the differ-
ence between the two mean paths to fluctuate about 0. However, the Euler-Maruyama
path is consistently smaller than the path obtained using the BISS method suggest-
ing the effect of resampling the Wiener increment is to underestimate the solution
to (2.3). Such effects are potentially important when the transition rates are no longer
constant but are functions of time, as is the case when considering ion channel dy-
namics within the full Hodgkin-Huxley model.

7.2 Varying voltage

Finally we use the BISS method to solve the SDEs for the ionic currents in the full
Hodgkin-Huxley model, [16], where the membrane potential varies over time accord-
ing to the following differential equation

dV

dt
= 1

C

(
−GNm3h(V − EN) − GKn4(V − EK) − GL(V − EL) + I

)
,

where the constants are as in [4]. The transition rates for the gating variables depend
on the membrane potential, and so the parameters in (2.3) will also vary at each time
step. In the Hodgkin-Huxely model the voltage varies between about −75 mV and
35 mV during an action potential. To illustrate the variation in the parameters for the
ion channel equations over this voltage range, the values of A, B and C for the m
gate Wright-Fisher approximation are shown in Fig. 3.

As previously mentioned, the BISS scheme ensures that the numerical approxi-
mation to (2.3) always lies a distance of ε away from the boundary, where ε depends
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Fig. 4 Single realisation of the stochastic Hodgkin-Huxley model where the gating variables m, h and n

are solved using the BISS method. The parameter values used for simulation are Δt = 0.01, NNa = 100
and NK = 33 and the initial condition for the system is V0 = −75, m0 = 0.5, h0 = 0.5 and n0 = 0.5. The
parameter values for the voltage equation are taken to be as in [4]

on the parameter values A, B and C. In the Hodgkin-Huxley model these parameters
vary at every time step, and so the interval within which the solutions to the gat-
ing variable equations remain will also differ. Since the membrane potential remains
bounded it is possible to calculate the range of values for ε that satisfy condition
(4.9) within these voltage limits. Taking the minimum of these ε values, we are able
to use a fixed value of ε in the numerical solution to the Hodgkin-Hulxey model,
and so the interval within which the approximations lie will not vary over or between
simulations.

Figure 4 shows a typical solution to this model where the SDEs for the variables,
m, h and n are solved using the BISS method. Incorporating the Wright-Fisher for-
mulation into the Hodgkin-Huxley model adds a level of complexity as the transition
rates are changing at each time step due to the voltage dependence. However, the
BISS method still ensures that numerical solutions remain within [0,1] as shown in
Fig. 4 while the Euler-Maruyama method utilises the resampling of the Wiener incre-
ment modification a maximum of 44 times in any of the one million simulations to
ensure approximations lie within this interval.

8 Conclusion

In this paper we proposed a new numerical technique, the BISS method, that pre-
serves the boundaries of the analytic solution to the Wright-Fisher model with muta-
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tion, and the ion channel model modification (2.3). The idea is to split the equation
into a SDE, consisting only of the diffusion coefficient and an ODE. The SDE is then
solved using the BIM where the control functions are chosen so that the approxima-
tion remains within [0,1] providing the solution at the previous time step is a distance
ε away from the boundary. This ε is then determined as a function of the discretisation
time step so that the approximation to the ODE always lies within the restricted inter-
val [ε,1 − ε]. Therefore the numerical solution remains within [0,1] with probability
1 for all time. Strong convergence of this scheme was proved and numerical experi-
ments suggest that the order of convergence is 1/2 for both the one dimensional and
multidimensional systems. Solutions obtained using the BISS scheme were then com-
pared with the Euler-Maruyama method where the Wiener increment is resampled to
ensure solutions remain within [0,1]. The BISS method was also used to solve the
equations describing the ion channel dynamics in the Hodgkin-Huxley model where
there is the added complication that the parameter values in the model change at each
time step due to the voltage dependence. In this paper we have focused on the appli-
cation of the BISS method to the Wright-Fisher model, however this method could
also be applied to other problems in order to preserve the boundaries of solutions to
SDEs.
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