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Abstract The focus of this article lies on the bistability of multistep methods ap-
plied to stochastic ordinary differential equations. Here bistability is understood in
the sense of F. Stummel and leads to two-sided estimates of the strong error of con-
vergence. It is shown that bistability can be characterized by Dahlquist’s strong root
condition. The main ingredient of the stability analysis is a stochastic version of Spi-
jker’s norm.

We use our results to discuss the maximum order of convergence for higher order
schemes. In particular, we are concerned with the stochastic theta method, BDF2-
Maruyama and higher order Itô-Taylor schemes.
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1 Introduction

In numerical analysis of differential equations the term stability is mainly used in
two different ways. On the one hand, one is interested in the long time behavior of
the numerical approximation of differential equations. Here the time interval is very
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large or unbounded. This problem is connected to the term A-stability which is due to
G. Dahlquist [9]. For stochastic ordinary differential equations this kind of stability
is studied in [4, 5, 14, 15].

In this paper, on the other hand, we are interested in the behavior of numerical
schemes under small disturbances such as round off errors or deviations in initial data.
Together with consistency, stability is one cornerstone of the convergence theory of
numerical schemes for differential equations on finite time intervals. In particular, we
refer to the Lax equivalence theorem [23].

The main result of this article is a characterization of bistability for multistep
methods for stochastic ordinary differential equations (SODEs). Here bistability is
understood in the sense of [3, 32] and embedded into a unifying theory to analyze the
strong error of convergence, i.e., in the L2-norm. For a bistable multistep method the
error of convergence can be estimated from above and below by the local truncation
error. Hence, a bistable scheme is convergent if and only if it is consistent.

Using our notion of consistency, stability and convergence we derive sharper ver-
sions of well-known results concerning the convergence of onestep schemes [21, 25,
26] and multistep methods [6]. In particular, we are concerned with three standard
schemes, namely the stochastic theta method, higher order Itô-Taylor schemes and
the BDF2-Maruyama method. But our analysis applies to a wide range of stochastic
onestep and multistep methods, e.g., all stochastic linear multistep methods men-
tioned in [6].

As in the previous work [3], which is only concerned with the stochastic theta
method, we are using a suitable stochastic version of the deterministic Spijker norm
(see [29, 30], [31, Chap. 2.2], [13, Chap. III.8]) to define the local truncation error. In
analogy to the deterministic case [12] this turns out to be the main ingredient in the
proof of bistability.

Altogether we end up with a unifying theory which is able to analyze strong con-
vergence for a huge class of multistep methods under the usual Lipschitz assump-
tions. In contrast to the previous work [3] we measure the strong error with the
sharper norm where the maximum occurs inside the expectation (see (1.4) below).
Moreover, we use the two-sided error estimates to prove the maximum order of con-
vergence and extend a known result [8] for Euler-Maruyama type methods to higher
order schemes.

We stress that we consider the concept of strong convergence in the L2-sense in-
stead of the notion of weak convergence [21, 25, 26]. The strong convergence of a
numerical scheme gives a good pathwise approximation of the SODE. There exists a
variety of applications where the weak convergence is not sufficient, e.g., in filtering
problems or estimating hitting times (cf. [21, Chap. 9.2]). Moreover, Giles [10, 11]
showed that the strong convergence is also essential for developing efficient multi-
level Monte Carlo methods, which are applied to problems where the weak error is
considered.

Finally, we also note that further numerical stability concepts have been developed
for multistep methods [6], for stochastic differential algebraic equations [34] and
stochastic delay equations [2, 7].

In the following we give a more technical outline of the paper. We are interested
in the numerical approximation of R

d -valued stochastic processes X, which satisfy
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an ordinary Itô stochastic differential equation [1, 24, 27] of the form

dX(t) = b0(t,X(t))dt +
m∑

r=1

br(t,X(t))dWr(t), t ∈ [0, T ],

X(0) = X0.

(1.1)

The drift and diffusion coefficient functions br : [0, T ]×R
d → R

d , r = 0, . . . ,m, are
assumed to be measurable. The processes Wr , r = 1, . . . ,m, are real and indepen-
dent standard Brownian motions on a given complete probability space (�, F ,P ),
adapted to the filtration (F t )t∈[0,T ] which fulfills the usual conditions (i.e., the filtra-
tion is right-continuous and each F t contains all sets A ∈ F with P(A) = 0).

In addition, we assume that the following usual assumptions [1, 24, 27] hold:

(A1) The initial value X0 is an F 0-measurable and R
d -valued random variable sat-

isfying

E(|X0|2) < ∞.

(A2) There exists a constant K > 0 such that

|br(t, x)| ≤ K(1 + |x|) and |br(t, x) − br(t, y)| ≤ K|x − y|
for all x, y ∈ R

d , t ∈ [0, T ] and r = 0, . . . ,m.

Here we denote by E the expectation with respect to P and by | · | the Euclidean
norm in R

d . Assumptions (A1) and (A2) are sufficient to assure the existence and
uniqueness of a strong Itô solution to (1.1) (see [1, 24, 27]), i.e., there exists a unique,
P -a.s. continuous and (F t )t∈[0,T ]-adapted process X which satisfies

X(t) = X0 +
∫ t

0
b0(s,X(s))ds +

m∑

r=1

∫ t

0
br(s,X(s))dWr(s) (1.2)

P -a.s. for all t ∈ [0, T ] and

E
(∫ T

0
|X(s)|2ds

)
< ∞.

Let us remark, that Assumption (A2) turns out to be too restrictive for many ap-
plications. In [16] the authors consider Euler-Maruyama type schemes under one-
sided Lipschitz and polynomial growth conditions on the drift b0 and estimates on
the higher moments of the solution. However, in the same situation without the esti-
mates on the higher moments the Euler-Maruyama approximation does not converge
in general as it is shown in [17]. It remains an open question if these results can also
be reproduced by the methods developed in this article.

Next, we introduce a general form of a stochastic k-step method which we use for
the characterization of bistability. For simplicity we consider an equidistant step size
h = T

N
for N ∈ N and the time grid

τh = {ti = ih | i = 0, . . . ,N} .
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Note that our analysis for onestep methods is not restricted to equidistant time grids
(cf. [3] for the stochastic theta method).

We are concerned with stochastic k-step methods written as

Yi = X̃i, for i = 0, . . . , k − 1,

k∑

j=0

ajYi+j−k = �h(ti , Yi−k, . . . , Yi, (I
ti+j−k
α )α∈A,j=1,...,k),

for i = k, . . . ,N,

(1.3)

where a1, . . . , ak ∈ R, ak �= 0 and the initial values X̃i , i = 0, . . . , k − 1, are F ti -
measurable, square integrable random variables. In order to compute the approxima-
tion Yi of the solution X(ti) the increment function �h depends on the time ti ∈ τh,
a family of stochastic increments (I

ti+j−k
α )α∈A,j=1,...,k , the k predecessors of Yi and,

in the case of an implicit multistep method, it also depends on Yi itself. In the next
section we give more details on �h.

A special case of a k-step method is the Euler-Maruyama scheme: k = 1,

Y0 = X0,

Yi − Yi−1 = hb0(ti−1, Yi−1) +
m∑

r=1

br(ti−1, Yi−1)I
ti
(r), for i = 1, . . . ,N,

with the stochastic increments I
ti
(r) = Wr(ti) − Wr(ti−1). In [21, Theorem 10.2.2] it

is shown that the Euler-Maruyama scheme converges at least with order γ = 1
2 in the

strong sense, i.e., there exists a constant C > 0 such that

(
E
(

max
0≤i≤N

|X(ti) − Yi |2
)) 1

2 ≤ Chγ ,

where X is the unique solution to (1.1). In [8] J.M.C. Clark and R.J. Cameron have
shown that, in general, γ = 1

2 is also the maximum rate of convergence for the Euler-
Maruyama scheme (and for any method which only uses the Brownian motion at grid
points).

In order to derive similar results for k-step methods we write (1.3) as an operator
equation AhXh = 0, where the—in general nonlinear—operator Ah acts on the set of
adapted grid functions. This is done for the general form (1.3) and for the stochas-
tic theta method, the Itô-Taylor schemes and BDF2-Maruyama in Sect. 2. Now, the
strong convergence is written in terms of the norm

‖Yh‖0,h =
(

E
(

max
0≤i≤N

|Yh(ti)|2
)) 1

2
. (1.4)
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On the other side, the local truncation error is measured by the following stochastic
version of Spijker’s norm

‖Yh‖−1,h =
k−1∑

j=0

‖Yh(tj )‖L2(�) +
(

E

(
max

k≤i≤N

∣∣∣∣∣

i∑

j=k

Yh(tj )

∣∣∣∣∣

2)) 1
2

. (1.5)

In the analysis of deterministic multistep methods it is well-known that Spijker’s
norm leads to optimal stability properties [12]. In this paper we will show, that under
some conditions the following bistability inequality

C1‖AhYh − AhZh‖−1,h ≤ ‖Yh − Zh‖0,h ≤ C2‖AhYh − AhZh‖−1,h (1.6)

is equivalent to Dahlquist’s strong root condition. We refer to Sect. 3 for a precise
formulation of our results and to Sect. 4 for the proof of the bistability inequality.

If we apply the bistability inequality to the restriction rE
h X of the unique solution

X to the time grid τh and the grid function Xh, which is generated by the k-step
method (1.3), i.e., AhXh = 0, we obtain the two-sided error estimate

C1‖Ahr
E
h X‖−1,h ≤ ‖rE

h X − Xh‖0,h ≤ C2‖Ahr
E
h X‖−1,h

for all multistep methods which satisfy Dahlquist’s strong root condition. In Sect. 5
we derive upper bounds for the local truncation error ‖Ahr

E
h X‖−1,h of the stochastic

theta method, the higher order Itô-Taylor schemes and the BDF2-Maruyama scheme
in terms of the step size h. In Sect. 6 we use the left-hand side of the two-sided error
estimate to discuss the maximum order of convergence for these k-step methods.

2 Numerical schemes

In this section we rewrite the general k-step method (1.3) as an operator equation
AhXh = 0 and introduce the corresponding spaces and norms. The operator formu-
lation is motivated by the discrete approximation theory [32]. Our notion of consis-
tency, stability and convergence will be formulated in terms of the operator Ah. At
the end of this section we present some well-known numerical schemes, which will
be analyzed in more detail in the sequel of this paper.

Given a time grid τh we define the set G h := G(τh,L
2(�, F ,R

d)) to be the space
of all adapted and L2(�) := L2(�, F ,P ;R

d)-valued grid functions. That is, for Yh ∈
G h, the random variables Yh(ti) are square-integrable and F ti -measurable for all ti ∈
τh. Next, we endow G h with the norms (1.4) and (1.5) and we denote the Banach
spaces (G h,‖ · ‖0,h) and (G h,‖ · ‖−1,h) by Eh and Fh, respectively.

Now the operator Ah : Eh → Fh representing the k-step method (1.3) is given by

[AhYh](ti ) = Yh(ti) − X̃i (2.1)
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for 0 ≤ i ≤ k − 1 and by

[AhYh](ti) =
k∑

j=0

ajYh(ti+j−k)

− �h(ti , Yh(ti−k), . . . , Yh(ti), (I
ti+j−k
α )α∈A,j=1,...,k) (2.2)

for k ≤ i ≤ N and Yh ∈ Eh. Please note, that the initial values X̃i ∈ L2(�, F ti , P ;R
d)

of the k-step method are incorporated into the definition of Ah. Clearly, if a grid func-
tion Xh is generated by the k-step method (1.3) then AhXh = 0.

Next, we turn to the stochastic increments (I
ti+j−k
α )α∈A,j=1,...,k and to the incre-

ment function �h. Let A be a nonempty, finite set of multi-indices α = (j1, . . . , j�),
where ji ∈ {0, . . . ,m} for i = 1, . . . , �. By � = �(α) ∈ N we denote the length of α.
For α = (j1, . . . , j�) ∈ A the stochastic increment I

ti
α is given by the �-fold iterated

stochastic Itô-integral

I ti
α =
∫ ti

ti−1

∫ s1

ti−1

· · ·
∫ s�−1

ti−1

dWj1(s�) · · ·dWj�(s1),

with dW 0(s) = ds. For example, we have I
ti
(0) = ti − ti−1 = h and I

ti
(r) = Wr(ti) −

Wr(ti−1) ∈ F ti for r > 0.
For Ah to be well-defined the increment function �h needs to satisfy

�h(ti, Yh(ti−k), . . . , Yh(ti), (I
ti+j−k
α )α∈A,j=1,...,k) ∈ L2(�, F ti , P ;R

d) (2.3)

for all Yh ∈ Eh and ti ∈ τh. In the following we will introduce three different numer-
ical schemes and show that (2.3) is fulfilled in each case.

Example 2.1 (Stochastic theta method) Let θ ∈ [0,1]. For a time grid τh the stochas-
tic theta method (STM) is given by the recursion

Y0 = X̃0,

Yi − Yi−1 = h
(
(1 − θ)b0(ti−1, Yi−1) + θb0(ti , Yi)

)
+

m∑

r=1

br(ti−1, Yi−1)I
ti
(r),

(2.4)

for 1 ≤ i ≤ N .
Obviously, the STM is a onestep method (k = 1) and one can choose A :=

{(r) | r = 0, . . . ,m}. For a given grid function Yh ∈ Eh the corresponding increment
function �ST M

h is defined by

�ST M
h (ti , Yh(ti−1), Yh(ti), (I

ti
α )α∈A)

= h
(
(1 − θ)b0(ti−1, Yh(ti−1)) + θb0(ti , Yh(ti))

)
+

m∑

r=1

br(ti−1, Yh(ti−1))I
ti
(r).
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By assumption (A2) the random variable �ST M
h (ti , Yh(ti−1), Yh(ti), (I

ti
α )α∈A) is

square- integrable and F ti -measurable.
For the choice θ = 0 one gets the classic Euler-Maruyama scheme. Unlike the de-

terministic case, the STM converges in general for every choice of θ with the order
γ = 1

2 (see the next section). An important application of the STM is the approxima-
tion of stiff stochastic differential equations (see [15]).

Example 2.2 (BDF2-Maruyama) As a prototype for drift-linear k-step methods we
consider the BDF2-Maruyama scheme [6] which is given by

Y0 = X̃0, Y1 = X̃1,

Yi − 4

3
Yi−1 + 1

3
Yi−2 = h

2

3
b0(ti , Yi) +

m∑

r=1

br(ti−1, Yi−1)I
ti
(r)

− 1

3

m∑

r=1

br(ti−2, Yi−2)I
ti−1
(r) , 2 ≤ i ≤ N. (2.5)

As before, one can choose A := {(r) | r = 0, . . . ,m}. The increment function �BDF
h

of the 2-step method takes the form

�BDF
h (ti , Yh(ti−2), Yh(ti−1), Yh(ti), (I

ti+j−2
α )α∈A,j=1,2)

= h
2

3
b0(ti , Yh(ti)) +

m∑

r=1

br(ti−1, Yh(ti−1))I
ti
(r) − 1

3

m∑

r=1

br(ti−2, Yh(ti−2))I
ti−1
(r)

for grid functions Yh ∈ Eh and all ti ∈ τh. Again, by the linear growth condition
(A2), the random variable �BDF

h (ti , Yh(ti−2), Yh(ti−1), Yh(ti), (I
ti+j−2
α )α∈A,j=1,2) is

square-integrable and F ti -measurable. Hence, the associated operator ABDF
h : Eh →

Fh is well-defined.
It turns out that the BDF2-Maruyama scheme also converges with the strong order

γ = 1
2 . In the deterministic case, linear multistep methods usually are of higher order

than the Euler method. Therefore, one expects a better approximation of the dominat-
ing drift term in systems with small noise and the approximation error is significantly
smaller than the error of the Euler-Maruyama scheme. We refer to [6] for a detailed
discussion.

Now we turn to the higher order Itô-Taylor schemes which are based on an iter-
ated application of Itô’s formula to the integrands of (1.2), provided that all appearing
integrals and derivatives exist. We refer to the books [21, 25, 26] for a rigorous deriva-
tion.

Example 2.3 (Itô-Taylor scheme) As in [21, Chap. 5.4], for γ ∈ {n
2 |n ∈ N}, we con-

sider the finite set of multi-indices

Aγ =
{
α = (j1, . . . , j�) |1 ≤ �(α) + n(α) ≤ 2γ or �(α) = n(α) = γ + 1

2

}
,
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where we write n(α) ∈ N for the number of components of α which are equal to 0.
The Itô-Taylor scheme of order γ is given by

Y0 = X̃0,

Yi − Yi−1 =
∑

α∈Aγ

fα(ti−1, Yi−1)I
ti
α , 1 ≤ i ≤ N. (2.6)

Here, for α = (j1, . . . , j�), the coefficient functions fα : [0, T ] × R
d → R

d are de-
fined by

fα(t, x) = (Lj1 · · ·Lj�f )(t, x),

where f : [0, T ] × R
d → R

d is the projection with respect to the second coordinate,
i.e., f (t, x) = x. The Lr are differential operators of the form

L0 = ∂

∂t
+

d∑

i=1

b0,i ∂

∂xi

+ 1

2

d∑

i,j=1

m∑

r=1

br,ibr,j ∂2

∂xi∂xj

,

Lr =
d∑

i=1

br,i ∂

∂xi

, r = 1, . . . ,m,

where br,i denotes the i-th component of the coefficient function br for i = 1, . . . , d

and r = 0, . . . ,m.
If we choose γ = 1

2 then the set A 1
2

consists of all multi-indices of length 1,

i.e., A 1
2

= {(0), (1), . . . , (m)}, and the coefficient functions fα simplify to the drift
and diffusion coefficient functions of the SODE (1.1). Thus the Itô-Taylor scheme of
order 1

2 is the well-known Euler-Maruyama scheme. One also easily checks that the
choice γ = 1 leads to the Milstein method.

The associated increment function �IT S
h is given by

�IT S
h (ti , Yh(ti−1), Yh(ti), (I

ti
α )α∈Aγ

) =
∑

α∈Aγ

fα(ti−1, Yh(ti−1))I
ti
α

where Yh ∈ Eh. Under the following additional assumption the increment function is
well-defined:

(A3) The assumptions of Theorem 5.5.1 in [21], (i.e., the coefficient functions br

of the SODE (1.1) are sufficiently smooth such that the functions fα and the
Itô-Taylor expansion exists up to the order γ ) are satisfied and for all α ∈ Aγ

there exists a constant Lα > 0 such that

|fα(t, x) − fα(t, y)| ≤ Lα|x − y| and |fα(t, x)| ≤ Lα(1 + |x|)

for all x, y ∈ R
d and t ∈ [0, T ].
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We refer to [28, 33] for methods to approximate iterated stochastic integrals I
ti
α . In

practice higher order schemes often turn out to be costly and this may outweigh
the advantage of the higher order of convergence. Nevertheless, in many important
applications the diffusion coefficients have some special properties which allow to
simplify the Itô-Taylor schemes in a way that the use of iterated stochastic integrals
can be avoided. We refer to the corresponding discussions in [21, Chap. 5.8].

3 Definitions and main results

In this section we introduce our notions of consistency and (numerical) bistability of
a multistep method which are motivated by the work of Stummel [32]. For a com-
parison to related notions in the literature and for a more detailed embedding into
the abstract theory of discrete approximations we refer to [3] and [22], respectively.
In the second part of this section we give a precise formulation of our assumptions,
the characterization of the bistability of a multistep method and the two-sided error
estimates. We start with the definition of a consistent multistep method.

Definition 3.1 The multistep method (Ah)h>0 is called consistent of order γ > 0,
if there exist a constant C > 0 and an upper step size bound h > 0, such that the
estimate

‖Ahr
E
h X‖−1,h ≤ Chγ (3.1)

holds for all grids τh with h ≤ h, where rE
h X denotes the restriction of the exact

solution X of (1.1) to the time grid τh.

The left-hand side of (3.1) is called local truncation error or consistency error
and uses our stochastic version of Spijker’s norm (1.5). The standard procedure of
eliminating convergence errors by successive triangle inequalities from local errors
(see “Lady Windemere’s fan” diagram in [13]) is not sharp enough to produce two-
sided error estimates. Next, we come to the definition of bistability.

Definition 3.2 The multistep method (Ah)h>0 is called bistable with respect to the
norms ‖ · ‖0,h, ‖ · ‖−1,h, if there exist constants C1,C2 > 0 and an upper step size
bound h > 0, such that the operators Ah : Eh → Fh are bijective and the estimate

C1‖AhYh − AhZh‖−1,h ≤ ‖Yh − Zh‖0,h ≤ C2‖AhYh − AhZh‖−1,h (3.2)

holds for all Yh,Zh ∈ Eh and all grids τh with h ≤ h.

If only the right-hand side inequality in (3.2) is true we say that the multistep
method is stable. As we will see below, consistency and stability are sufficient for the
convergence of the multistep method (Ah)h>0.
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Definition 3.3 The multistep method (Ah)h>0 is called convergent of order γ > 0,
if there exist a constant C > 0 and an upper step size bound h > 0, such that the
operators Ah : Eh → Fh are bijective and the estimate

‖Xh − rE
h X‖0,h ≤ Chγ

holds for all time grids τh with h ≤ h. Here Xh and rE
h X denote the solution to

AhXh = 0 and the restriction of the exact solution X to the time grid τh, respectively.

A bistable multistep method can be characterized by Dahlquist’s strong root con-
dition. The characteristic polynomial ρ of the k-step method (1.3) is given by

ρ(z) =
k∑

j=0

aj z
j , z ∈ C.

The strong root condition reads as follows:

Strong root condition If z ∈ C with ρ(z) = 0, then either |z| < 1 or z = 1 is a simple
root of ρ.

In [6] the authors showed for a different pair of norms that the usual root condition
(all roots of ρ lie within the unit circle and all roots with modulus 1 are of multiplicity
1) is necessary and sufficient for the stability of a stochastic multistep method. But,
as we will see in the next section, the usual root condition is not sharp enough to
characterize bistability.

For our stability theorem we also need the following Lipschitz-type assumptions
on the increment function �h.

(S1) There exists L > 0 such that for all j = k, . . . ,N , Z ∈ L2(�, F tj , P ;R
d) and

Yh ∈ G h

∥∥∥�h(tj , Yh(tj−k), . . . , Yh(tj−1), Yh(tj ), (I
tj+i−k
α )α∈A,i=1,...,k)

−�h(tj , Yh(tj−k), . . . , Yh(tj−1), Yh(tj ) + Z, (I
tj+i−k
α )α∈A,i=1,...,k)

∥∥∥
L2(�)

≤ Lh‖Z‖L2(�).

(S2) There exists L > 0 such that for all j = k, . . . ,N , Yh,Zh ∈ G h

E

(
max
k≤i≤j

∣∣∣∣∣

i∑

η=k

[
�h(tη, Yh(tη−k), . . . , Yh(tη), (I

tη+l−k
α )α∈A,l=1,...,k)

− �h(tη,Zh(tη−k), . . . ,Zh(tη), (I
tη+l−k
α )α∈A,l=1,...,k)

]
∣∣∣∣∣

2)

≤ Lh

j∑

η=0

E
(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)
.
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Now we are in the position to formulate our first main result.

Theorem 3.1 (Characterization of bistability) Assume that the multistep method
(Ah)h>0 satisfies ρ(1) = 0, ak �= 0 and the Lipschitz assumptions (S1), (S2). Then

(Ah)h>0 is bistable

if and only if

(Ah)h>0 satisfies the strong root condition.

The proof of Theorem 3.1 is deferred to Sect. 4. The next theorem makes use of
the bistability inequality (3.2).

Theorem 3.2 Assume that the multistep method (Ah)h>0 is bistable. Then for γ > 0

(Ah)h>0 is consistent of order γ

if and only if

(Ah)h>0 is convergent of order γ.

Moreover, there exist constants C1,C2 > 0 and an upper step size bound h > 0 such
that the two-sided error estimate

C1‖Ahr
E
h X‖−1,h ≤ ‖Xh − rE

h X‖0,h ≤ C2‖Ahr
E
h X‖−1,h (3.3)

holds for all h < h, where Xh ∈ Eh solves AhXh = 0 and rE
h X denotes the restriction

of the exact solution X to the time grid τh.

Proof Since (Ah)h>0 is bistable there exist an upper step size bound h > 0 such that
the operators Ah : Eh → Fh are bijective for all h < h. Thus, there exists a unique
grid function Xh ∈ Eh such that AhXh = 0. Applying the bistability inequality (3.2)
to Xh and the restriction rE

h X yields the two-sided error estimate (3.3). The first
statement of the theorem is now evident. �

The rest of this section is devoted to the three approximation schemes which were
introduced in Sect. 2. The first theorem is concerned with the bistability of these
methods and will also be proved in the next section.

Theorem 3.3

(i) Under the assumptions (A1) and (A2) the stochastic theta method and the BDF2-
Maruyama scheme are bistable.

(ii) Under the assumptions (A1), (A2) and (A3) the Itô-Taylor schemes are bistable.

The next theorem deals with the consistency of the approximation schemes and
is based on the following additional assumptions. Here we use the notation of the
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remainder set B(Aγ ) of the Itô-Taylor expansion (cf. [21, Chap. 5.4]) which is given
by

B(Aγ ) = {α = (j1, j2, . . . , j�) | j1 = 0, . . . ,m, α /∈ Aγ , (j2, . . . , j�) ∈ Aγ }.
(C1) The initial values are consistent of order γ , i.e., there exist a constant C > 0

and h > 0 such that for all h ≤ h

max
0≤i≤k−1

‖X(ti) − X̃i‖L2(�) ≤ Chγ .

(C2) There exists a constant K > 0 such that

|br(t, x) − br(s, x)| ≤ K(1 + |x|)√|t − s|

for all x ∈ R
d , t, s ∈ [0, T ].

(C3) For all α ∈ B(Aγ ) we have

∫ T

0
E
(
|fα(s,X(s))|2

)
ds < ∞.

The assumption (C2) is already used in [21, Theorem 10.2.2] to prove convergence
of the Euler-Maruyama scheme. The assumption (C3) is fulfilled if all coefficient
functions fα , α ∈ B(Aγ ), satisfy a linear growth condition. Now we formulate the
consistency theorem.

Theorem 3.4

(i) Under the assumptions (A1), (A2), (C1) and (C2) the stochastic theta method
and BDF2-Maruyama are consistent of order γ = 1

2 .
(ii) Under the assumptions (A1), (A2), (A3), (C1) and (C3) the Itô-Taylor scheme of

order γ is consistent of order γ .

The proof is deferred to Sect. 5. From Theorems 3.2, 3.3 and 3.4 one immediately
obtains the following result:

Corollary 3.1

(i) Under the assumptions (A1), (A2), (C1) and (C2) the stochastic theta method
and BDF2-Maruyama are convergent of order γ = 1

2 .
(ii) Under the assumptions (A1), (A2), (A3), (C1) and (C3) the Itô-Taylor scheme of

order γ is convergent of order γ .

Moreover, in both cases, the two-sided error estimate (3.3) is valid.

Remark 3.1 By our choice of the norm (1.4) the convergence in Definition 3.3 and
Corollary 3.1 is understood in the L2-sense. In particular, the numerical solution Xh

of the equation AhXh = 0 converges uniformly at each grid point to the restriction of
the exact solution X. The L2-convergence implies a good pathwise approximation for
each sample path ω ∈ �. In addition to this notion of strong convergence we mention
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the concepts of (numerical) weak convergence (see [21, 25, 26]) and of pathwise
convergence (see [18–20]) which, however, are not considered in this paper.

Remark 3.2 One can use a slightly different pair of norms where the maximum occurs
outside the expectation, i.e., |||Vh|||0,h := maxti∈τh

‖Xh(ti) − X(ti)‖L2(�), and obtains
similar results. For the stochastic theta method a proof is given in [3].

Remark 3.3 In our approach we work with grid functions only. According to [21,
Chap. 10.6] one can interpolate the numerical approximation to an adapted, contin-
uous stochastic process Xh : [0, T ] → R

d such that Xh(t) converges uniformly in t

to the exact solution X(t) with the same order that holds at the grids points.

4 Characterization of bistability

In this section we prove the Theorems 3.1 and 3.3. The proofs are done in several
steps, each in an own subsection. First we show that the numerical schemes from
Sect. 2 fulfill the strong root condition and the stability assumptions (S1), (S2). Hence
Theorem 3.3 directly follows from Theorem 3.1.

Next we show that the operator Ah of the general k-step method (1.3) is invertible
under assumption (S1). In the third subsection we write the k-step method as a sum
of a linear operator and the increment function. We show that the k-step method is
bistable if and only if the linear operator is bistable. Finally, in the last subsection,
we show that the linear operator is bistable if and only if Dahlquist’s strong root
condition is satisfied.

In the last two subsections we apply techniques used by R.D. Grigorieff [12] for a
similar analysis of deterministic multistep methods.

4.1 Proof of Theorem 3.3

In this subsection we show that under the given assumptions the stochastic theta
method, the BDF2-Maruyama scheme and the Itô-Taylor scheme of order γ satisfy
the stability assumptions (S1), (S2) and the strong root condition. Thus Theorem 3.3
follows from Theorem 3.1.

By the definitions of the operators AST M
h , ABDF

h and AIT S
h the conditions ρ(1) =

0, ak �= 0 and the strong root condition are satisfied in each case (the roots of the
characteristic polynomial of the BDF2-Maruyama scheme are z1 = 1, z2 = 1

3 ). Thus
it remains to prove the stability assumptions (S1), (S2).

First we do this for the stochastic theta method (2.4). Let Yh ∈ G h, j = 1, . . . ,N

and Z ∈ L2(�, F tj , P ;R
d), then by the Lipschitz-assumption (A2)

∥∥∥�ST M
h (tj , Yh(tj−1), Yh(tj ), (I

tj
(r))r=0,...,m)

−�ST M
h (tj , Yh(tj−1), Yh(tj ) + Z, (I

tj
(r))r=0,...,m)

∥∥∥
L2(�)

=
∥∥∥hθ
(
b0(tj , Yh(tj )) − b0(tj , Yh(tj ) + Z)

)∥∥∥
L2(�)

≤ Lh‖Z‖L2(�),
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where L = θK . This proves (S1) for the stochastic theta method. By the inequality
(a + b + c)2 ≤ 3(a2 + b2 + c2) we obtain for (S2)

E

(
max

1≤i≤j

∣∣∣∣∣

i∑

η=1

(
�ST M

h (tη, Yh(tη−1), Yh(tη), (I
tη
(r)

)r=0,...,m)

−�ST M
h (tη,Zh(tη−1),Zh(tη), (I

tη
(r))r=0,...,m)

)∣∣∣∣∣

2)

≤ 3E

⎛

⎜⎝ max
1≤i≤j

∣∣∣∣∣∣

i∑

η=1

h(1 − θ)
(
b0(tη−1, Yh(tη−1)) − b0(tη−1,Zh(tη−1))

)
∣∣∣∣∣∣

2
⎞

⎟⎠

+ 3E

⎛

⎜⎝ max
1≤i≤j

∣∣∣∣∣∣

i∑

η=1

hθ
(
b0(tη, Yh(tη)) − b0(tη,Zh(tη))

)
∣∣∣∣∣∣

2
⎞

⎟⎠

+ 3E

⎛

⎜⎝ max
1≤i≤j

∣∣∣∣∣∣

i∑

η=1

m∑

r=1

(
br(tη−1, Yh(tη−1)) − br(tη−1,Zh(tη−1))

)
I

tη
(r)

∣∣∣∣∣∣

2
⎞

⎟⎠

=: T1 + T2 + T3.

We estimate the three summands separately. For T1 Jensen’s inequality and the
Lipschitz-assumption (A2) yield

T1 ≤ 3E

⎛

⎝ max
1≤i≤j

ih2(1 − θ)2
i∑

η=1

∣∣∣b0(tη−1, Yh(tη−1)) − b0(tη−1,Zh(tη−1))

∣∣∣
2

⎞

⎠

≤ 3(1 − θ)2T

j∑

η=1

hE
(∣∣∣b0(tη−1, Yh(tη−1)) − b0(tη−1,Zh(tη−1))

∣∣∣
2
)

≤ 3(1 − θ)2T K2h

j∑

η=1

E
(∣∣Yh(tη−1) − Zh(tη−1)

∣∣2
)

≤ Lh

j∑

η=0

E
(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

,

where the constant L > 0 only depends on θ , T and K . The term T2 is estimated
analogously. By the martingale property of the stochastic Itô-integrals we are allowed
to apply Doob’s martingale inequality to term T3. Then we use E(|I tη

(r)|2) = h and



Characterization of bistability for stochastic multistep methods 123

finish the estimate by

T3 ≤ 12E

⎛

⎜⎝

∣∣∣∣∣∣

j∑

η=1

m∑

r=1

(
br(tη−1, Yh(tη−1)) − br(tη−1,Zh(tη−1))

)
I

tη
(r)

∣∣∣∣∣∣

2
⎞

⎟⎠

≤ 12
j∑

η=1

m∑

r=1

hK2E
(∣∣Yh(tη−1) − Zh(tη−1)

∣∣2
)

≤ Lh

j∑

η=0

E
(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

.

Here the constant L > 0 depends on m and K . Altogether we have shown that the
stochastic theta method satisfies assumption (S2).

The BDF2-Maruyama scheme can be written as a linear combination of two
stochastic theta methods with different parameter values for θ , i.e.,

Yi − 4

3
Yi−1 + 1

3
Yi−2 − 2h

3
b0(ti , Yi) −

m∑

r=1

br(ti−1, Yi−1)I
ti
(r)

+ 1

3

m∑

r=1

br(ti−2, Yi−2)I
ti−1
(r)

= Yi − Yi−1 − 2h

3
b0(ti−1, Yi−1) − h

3
b0(ti−1, Yi−1) −

m∑

r=1

br(ti−1, Yi−1))I
ti
(r)

− 1

3

[
Yi−1 − Yi−2 − hb0(ti−1, Yi−1) −

m∑

r=1

br(ti−2, Yi−2)I
ti−1
(r)

]
. (4.1)

Hence we can separate both parts of the scheme and prove the assertion as in the case
of the stochastic theta method.

The Itô-Taylor schemes are explicit onestep methods and (S1) is clearly satisfied.
It remains to prove (S2) for the Itô-Taylor scheme of order γ . For Yh,Zh ∈ G h and
j = 1, . . . ,N we compute

E

⎛

⎝ max
1≤i≤j

∣∣∣∣∣∣

i∑

η=1

(
�IT S

h (tη, Yh(tη−1), Yh(tη), (I
tη
α )α∈Aγ

)

−�IT S
h (tη,Zh(tη−1),Zh(tη), (I

tη
α )α∈Aγ

)
)
∣∣∣∣∣∣

2
⎞

⎟⎠
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= E

⎛

⎜⎝ max
1≤i≤j

∣∣∣∣∣∣∣

i∑

η=1

∑

α∈Aγ

[
fα(tη−1, Yh(tη−1)) − fα(tη−1,Zh(tη−1))

]
I

tη
α

∣∣∣∣∣∣∣

2⎞

⎟⎠

≤ |Aγ |
∑

α∈Aγ

E

⎛

⎜⎝ max
1≤i≤j

∣∣∣∣∣∣

i∑

η=1

[
fα(tη−1, Yh(tη−1)) − fα(tη−1,Zh(tη−1))

]
I

tη
α

∣∣∣∣∣∣

2
⎞

⎟⎠ .

Since |Aγ | < ∞ it is sufficient to estimate each summand separately. For all multi-

indices α ∈ Aγ of the form α = (0, . . . ,0), i.e., �(α) = n(α), we have I
tη
α =

1
�(α)!h

�(α). In this case we apply Jensen’s inequality and the Lipschitz-assumption
(A3) and estimate the summand by

E

⎛

⎜⎝ max
1≤i≤j

∣∣∣∣∣∣

i∑

η=1

[
fα(tη−1, Yh(tη−1)) − fα(tη−1,Zh(tη−1))

]
I

tη
α

∣∣∣∣∣∣

2
⎞

⎟⎠

≤ T

(�(α)!)2
h2�(α)−1

j∑

η=1

E
(∣∣fα(tη−1, Yh(tη−1)) − fα(tη−1,Zh(tη−1))

∣∣2
)

≤ T

(�(α)!)2
Lαh2�(α)−1

j∑

η=1

E
(∣∣Yh(tη−1) − Zh(tη−1)

∣∣2
)

≤ T

(�(α)!)2
Lαh2�(α)−1

j∑

η=0

E
(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

.

For multi-indices α ∈ Aγ with �(α) �= n(α) we have E(I
tη
α |F tη−1) = 0 with proba-

bility 1 (cf. Lemma 5.7.1 in [21]) and there exists a constant C such that E(|I tη
α |2) ≤

Ch�(α)+n(α) (cf. Lemma 5.7.2 in [21] or Lemma 5.1 below). Hence, under the given
assumptions, the stochastic process (Si)i=0,...,N with

Si :=
i∑

η=1

(
fα(tη−1, Yh(tη−1)) − fα(tη−1,Zh(tη−1))

)
I

tη
α

is a discrete, square-integrable martingale. Once again we apply Doob’s martingale
inequality and obtain

E
(

max
1≤i≤j

|Si |2
)

≤ 4E
(∣∣Sj

∣∣2
)

= 4
j∑

η=1

E
(∣∣∣
[
fα(tη−1, Yh(tη−1)) − fα(tη−1,Zh(tη−1))

]
I

tη
α

∣∣∣
2
)
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≤ 4CLα

j∑

η=1

h�(α)+n(α)E
(∣∣Yh(tη−1) − Zh(tη−1)

∣∣2
)

≤ 4CLαh�(α)+n(α)

j∑

η=0

E
(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

.

Since �(α) + n(α) ≥ 1 we have shown (S2) for the Itô-Taylor scheme of order γ .

4.2 Invertibility of Ah

In this subsection we begin the proof of Theorem 3.1 by discussing the invertibility of
the operator Ah : Eh → Fh of the general k-step method (1.3). The following lemma
summarizes our result.

Lemma 4.1 Under the assumptions (S1) and ak �= 0 there exists an upper step size
bound h > 0 such that the operators Ah : Eh → Fh are bijective for all h < h.

Proof Let Yh ∈ Fh. The equation AhXh = Yh is written in terms of grid functions,
hence we have to solve a system of equations of the form

[AhXh](ti) = Yh(ti) (4.2)

for all ti ∈ τh. We show that this equation is uniquely solvable for ti ∈ τh if the solu-
tion is already uniquely determined for all tj ∈ τh with j < i.

For 0 ≤ i ≤ k − 1 we have [AhXh](ti) = Xh(ti) − X̃i , where X̃i denotes
the i-th initial value of the multistep method. Hence Xh(ti) := X̃i + Yh(ti) ∈
L2(�, F ti , P ;R

d) is the unique solution of (4.2) for 0 ≤ i ≤ k − 1.
Next assume that for j ≥ k a unique and adapted grid function (Xh(ti))0≤i≤j−1 is

known such that (4.2) holds for all 0 ≤ i < j . Now the equation [AhXh](tj ) = Yh(tj )

is equivalently written in fixed point form as

Xh(tj ) = Fh(tj ,Xh(tj )),

where Fh(tj , ·) : L2(�, F tj , P ;R
d) → L2(�, F tj , P ;R

d) is given by

Fh(tj ,Z) = 1

ak

(
Yh(tj ) −

k−1∑

i=0

aiXh(tj+i−k)

+ �h(tj ,Xh(tj−k), . . . ,Xh(tj−1),Z, (I
tj+η−k
α )α∈A,η=1,...,k)

)

for Z ∈ L2(�, F tj , P ;R
d). By assumption (S1) we get

∥∥∥Fh(tj ,Z) − Fh(tj , Z̃)

∥∥∥
L2(�)

≤ Lh
1

ak

∥∥∥Z − Z̃

∥∥∥
L2(�)

.
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Hence, for h small enough, Fh(tj , ·) is a contraction in L2(�, F tj , P ;R
d) and there

exists a unique fixed point, which we denote by Xh(tj ).
By induction we obtain a unique and adapted grid function Xh on the whole time

grid τh which solves AhXh = Yh. Therefore the operator Ah is invertible under as-
sumption (S1). �

4.3 Reduction to the linear part

An important step for the characterization of a bistable multistep method is to realize
that the bistability only depends on the linear part of the operator Ah as long as the
remainder part satisfies a Lipschitz condition. By the linear part we mean the operator
Lh : Eh → Fh which is given by

[LhYh](ti) =
{

Yh(ti), for 0 ≤ i ≤ k − 1,∑k
j=0 ajYh(ti+j−k), for k ≤ i ≤ N.

(4.3)

The residual operator is denoted by Th := Ah − Lh. The goal of this subsection is
to prove the following lemma which is a generalization of a corresponding result for
deterministic multistep methods [12].

Lemma 4.2 Under the assumptions (S1), (S2) and ak �= 0 the multistep method
(Ah)h>0 is bistable if and only if the sequence of operators (Lh)h>0 is bistable.

For the proof we need the following discrete Gronwall-lemma.

Lemma 4.3 Consider constants γ1, γ2 ≥ 0 and a real sequence (xj )j=0,...,N , N ∈ N,
with

xj ≤ γ1 + γ2

j−1∑

η=0

xη

for all j = 0, . . . ,N . Then xj ≤ γ1e
jγ2 for all j = 0, . . . ,N .

Proof of Lemma 4.2 Note that by assumption ak �= 0 and Lemma 4.1 it is clear that
there exists an upper step size bound h > 0 such that the operators Ah and Lh are
both bijective for all h < h. Hence we only have to show that (3.2) holds for one
operator if and only if it holds for the other one.

First we assume that the bistability inequality (3.2) holds for the operator Lh. As
a start we prove that the estimate

(
E
(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
)) 1

2

≤ C2

[
k−1∑

i=0

‖Yh(ti) − Zh(ti)‖L2(�)
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+
(

E

(
max
k≤i≤j

∣∣∣∣∣

i∑

η=k

(
LhYh(tη) − LhZh(tη)

)
∣∣∣∣∣

2)) 1
2
]

(4.4)

is valid for all h < h, Yh,Zh ∈ Eh and all 0 ≤ j ≤ N . For the proof we fix a step size
h < h, a grid function Yh ∈ Eh and 0 ≤ j ≤ N arbitrary. For every Zh ∈ Eh there
exists a unique solution Xh ∈ Eh to the difference equation

[LhXh](ti) =
{ [LhZh](ti), for 0 ≤ i ≤ j,

[LhYh](ti), for j + 1 ≤ i ≤ N,

since Lh is bijective for all h < h. As in Sect. 4.2 one shows that Xh(ti) = Zh(ti) for
all i ≤ j . By (3.2) we obtain

(
E
(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
)) 1

2

=
(

E
(

max
0≤i≤j

|Yh(ti) − Xh(ti)|2
)) 1

2

≤ ‖Yh − Xh‖0,h

≤ C2 ‖LhYh − LhXh‖−1,h

= C2

⎡

⎣
k−1∑

i=0

‖Yh(ti) − Zh(ti)‖L2 +
(

E

(
max
k≤i≤j

∣∣∣∣∣

i∑

η=k

(LhYh(tη) − LhZh(tη))

∣∣∣∣∣

2)) 1
2
⎤

⎦

which proves the estimate (4.4). By inserting Lh = Ah − Th into (4.4) we get

(
E
(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
)) 1

2

≤ C2

[
k−1∑

i=0

‖Yh(ti) − Zh(ti)‖L2

+
(

E

(
max
k≤i≤j

∣∣∣∣∣

i∑

η=k

(
AhYh(tη) − ThYh(tη) − AhZh(tη) + ThZh(tη)

)
∣∣∣∣∣

2)) 1
2
⎤

⎦

≤ C2

⎡

⎣‖AhYh − AhZh‖−1,h +
(

E

(
max
k≤i≤j

∣∣∣∣∣

i∑

η=k

(
ThYh(tη) − ThZh(tη)

)
∣∣∣∣∣

2)) 1
2
⎤

⎦ .
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For the second summand assumption (S2) yields

E

(
max
k≤i≤j

∣∣∣∣∣

i∑

η=k

(ThYh(tη) − ThZh(tη))

∣∣∣∣∣

2)

= E

(
max
k≤i≤j

∣∣∣∣∣

i∑

η=k

(
�h(tη, Yh(tη−k), . . . , Yh(tη), (I

tη+l−k
α )α∈A,l=1,...,k)

−�h(tη,Zh(tη−k), . . . ,Zh(tη), (I
tη+l−k
α )α∈A,l=1,...,k)

)∣∣∣∣∣

2)

≤ Lh

j∑

η=0

E
(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)

. (4.5)

Thus

(1 − 2C2Lh)E
(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
)

≤ 2C2

⎡

⎣‖AhYh − AhZh‖2−1,h + Lh

j−1∑

η=0

E
(

max
0≤i≤η

|Yh(ti) − Zh(ti)|2
)⎤

⎦ .

From Lemma 4.3 and for all h < min(h, 1
4C2L

) we derive the estimate

E
(

max
0≤i≤j

|Yh(ti) − Zh(ti)|2
)

≤ 2C2

1 − 2C2Lh
‖AhYh − AhZh‖2−1,h e

j2C2Lh

1−2C2Lh

≤ 4C2 ‖AhYh − AhZh‖2−1,h e4T C2L.

Since Yh ∈ Eh and 0 ≤ j ≤ N were chosen arbitrary the operator Ah is stable for all
h < min(h, 1

4C2L
), i.e., there exists a constant C̃2 independent of h such that

‖Yh − Zh‖0,h ≤ C̃2‖AhYh − AhZh‖−1,h

holds for all Yh,Zh ∈ Eh. Further we compute

‖AhYh − AhZh‖−1,h

≤ ‖LhYh − LhZh‖−1,h +
(

E

(
max

k≤j≤N

∣∣∣∣∣

j∑

i=k

[ThYh(ti) − ThZh(ti)]

∣∣∣∣∣

2)) 1
2

≤
(

1

C1
+√L(T + 1)

)
‖Yh − Zh‖0,h,

where we used Ah = Lh + Th, the left-hand side of the bistability inequality (3.2) for
Lh and the estimate (4.5). Altogether we have shown the bistability of the operators
(Ah)h>0.
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By interchanging the role of the operators (Ah)h>0 and (Lh)h>0 appropriately one
proves the bistability of (Lh)h>0 analogously. �

4.4 Bistability of the linear part

In this subsection we deal with the missing link between Lemma 4.2 and Theo-
rem 3.1. Thus we have to show the following result:

Lemma 4.4 Under the assumptions ρ(1) = 0, ak �= 0 the sequence of operators
(Lh)h>0 is bistable if and only if Dahlquist’s strong root condition is satisfied.

By the assumption ρ(1) = 0 we can write

ρ(z) = ρ∗(z)(z − 1),

where ρ∗(z) =∑k−1
j=0 a∗

j zj is a polynomial of degree k − 1 with a∗
k−1 �= 0. We intro-

duce the operator L∗
h : Eh → Fh defined by

[L∗
hYh](ti) =

{
Yh(ti), for 0 ≤ i ≤ k − 2,∑k−1

j=0 a∗
j Yh(ti+j−k+1), for k − 1 ≤ i ≤ N.

(4.6)

Note that ρ∗ is the characteristic polynomial of the multistep method (L∗
h)h<0. More-

over, we have

LhYh(ti) = L∗
hYh(ti) − L∗

hYh(ti−1) (4.7)

for all i = k, . . . ,N . The following result will be useful for the proof of Lemma 4.4:

Lemma 4.5 Under the assumptions ρ(1) = 0, ak �= 0 the sequence of linear opera-
tors (Lh)h>0 is bistable if and only if there exist constants λ1, λ2 > 0 such that the
inequalities

λ1‖Yh‖0,h ≤
k−1∑

j=0

‖Yh(tj )‖L2 + 2

(
E
(

max
k−1≤j≤N

∣∣L∗
hYh(tj )

∣∣2
)) 1

2 ≤ λ2‖Yh‖0,h

(4.8)

hold for all h > 0 and Yh ∈ Eh.

Proof By the linearity of the operators (Lh)h>0 the bistability inequality (3.2) is
written as

C1‖Yh‖0,h ≤ ‖LhYh‖−1,h ≤ C2‖Yh‖0,h

for Yh ∈ Eh. The relationship (4.7) gives

‖LhYh‖−1,h =
k−1∑

j=0

‖Yh(tj )‖L2 +
⎛

⎜⎝E

⎛

⎜⎝ max
k≤j≤N

∣∣∣∣∣∣

j∑

i=k

LhYh(ti)

∣∣∣∣∣∣

2
⎞

⎟⎠

⎞

⎟⎠

1
2
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=
k−1∑

j=0

‖Yh(tj )‖L2 +
(

E
(

max
k≤j≤N

∣∣L∗
hYh(tj ) − L∗

hYh(tk−1)
∣∣2
)) 1

2

≤
k−1∑

j=0

‖Yh(tj )‖L2 + 2

(
E
(

max
k−1≤j≤N

∣∣L∗
hYh(tj )

∣∣2
)) 1

2

.

Conversely, we have

L∗
hYh(tj ) =

j∑

i=k

LhYh(ti) + L∗
hYh(tk−1),

which we use to obtain

k−1∑

j=0

‖Yh(tj )‖L2 + 2

(
E
(

max
k−1≤j≤N

∣∣L∗
hYh(tj )

∣∣2
)) 1

2

=
k−1∑

j=0

‖Yh(tj )‖L2 + 2

(
E

(
max

k−1≤j≤N

∣∣∣∣∣

j∑

i=k

LhYh(ti) + L∗
hYh(tk−1)

∣∣∣∣∣

2)) 1
2

≤ 2

(
E

(
max

k≤j≤N

∣∣∣∣∣

j∑

i=k

LhYh(ti)

∣∣∣∣∣

2)) 1
2

+
k−1∑

j=0

(1 + 2|a∗
j |)‖Yh(tj )‖L2

≤ 2

(
1 +

k−1∑

j=0

|a∗
j |
)

‖LhYh‖−1,h.
�

In the next step we collect results on difference equations written in terms of
L2-valued grid functions. For Zh ∈ G h the unique solution Yh ∈ G h to the equation
L∗

hYh = Zh is given by

Yh(ti) =
k−2∑

η=0

v
η
i Zh(tη) +

N∑

η=k−1

w
η
i Zh(tη), (4.9)

where for η = 0, . . . , k − 2 the real sequence (v
η
i )i=0,...,N solves the homogeneous

difference equations

k−1∑

j=0

a∗
j v

η
i−k+1+j = 0, i = k − 1, . . . ,N,

v
η
i = δi,η, i = 0, . . . , k − 2,

(4.10)
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for η = 0, . . . , k − 2 and the real sequence (w
η
i )i=0,...,N solves the inhomogeneous

difference equations

k−1∑

j=0

a∗
j w

η
i−k+1+j = δi,η, i = k − 1, . . . ,N,

w
η
i = 0, i = 0, . . . , k − 2,

(4.11)

for η = k − 1, . . . ,N with δi,j = 0 for i �= j and δi,i = 1. It is well-known how the
solutions to the linear difference equations (4.10), (4.11) can be expressed by the
roots of the characteristic polynomial ρ∗(z) =∑k−1

j=0 a∗
j zj .

Let ζi ∈ C, i = 1, . . . , s, be the pairwise distinct roots of ρ∗ with multiplicity
ki ≥ 1 (k1 +· · ·+ks = k−1). A fundamental system of solutions to the homogeneous
difference equation (4.10) is given by

u
i,κ
j =
⎛

⎝
j∏

ν=j−κ+1

ν

⎞

⎠ ζ
j−κ
i , i = 1, . . . , s, κ = 1, . . . , ki, j = 0, . . . ,N,

where
∏

∅ = 1. All solutions (v
η
j )j=0,...,N to (4.10) can be written as

v
η
j =

s∑

i=1

ki∑

κ=1

c
η
i,κu

i,κ
j ,

where the coefficients c
η
i,κ ∈ C are uniquely determined by the initial values (in par-

ticular, they are independent of N ).
Now consider the real-valued solution (xi)i=0,...,N to the homogeneous difference

equation

k−1∑

j=0

a∗
j xi−k+1+j = 0, i = k − 1, . . . ,N,

xi = 0, xk−2 = 1
a∗
k−1

, i = 0, . . . , k − 3.

For i < 0 we define xi := 0. Then we have

w
η
i = xi−η+k−2 (4.12)

for the solution to (4.11), since

k−1∑

j=0

a∗
j w

η
i−k+1+j =

k−1∑

j=0

a∗
j xi+j−η−1 = δi,η.

Note that (xi)i=0,...,N solves a homogeneous difference equation. Hence it also has a
representation as a linear combination of the fundamental solutions (u

i,κ
j )j=1,...,N .
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Remark 4.1 Under the usual root condition one can prove that the fundamental so-
lutions to the homogeneous difference equation (4.10) are uniformly bounded for all
N ∈ N. This is sufficient to show that the solution Yh ∈ G h to LhYh = Zh satisfies

‖Yh‖0,h ≤ C‖Zh‖0,h

for a constant C > 0 which is independent of h. From this result one derives the
stability of the operators (Lh)h>0 but for a different pair of norms (cf. [12] for deter-
ministic multistep methods).

Proof of Lemma 4.4 By Lemma 4.5 it remains to show that the inequalities (4.8) hold
if and only if the strong version of Dahlquist’s root condition holds.

We first prove that the strong root condition is sufficient for the inequalities (4.8) to
be true. Let Yh ∈ Eh denote the solution to L∗

hYh = Zh ∈ Fh. Using the representation
(4.9) gives

‖Yh‖0,h ≤
k−2∑

η=0

(
E
(

max
0≤i≤N

∣∣vη
i Zh(tη)

∣∣2
)) 1

2 +
(

E

(
max

0≤i≤N

∣∣∣∣∣

N∑

η=k−1

w
η
i Zh(tη)

∣∣∣∣∣

2)) 1
2

≤
k−2∑

η=0

max
0≤i≤N

|vη
i |‖Zh(tη)‖L2 +

⎛

⎜⎝E

⎛

⎜⎝ max
0≤i≤N

⎡

⎣
N∑

η=k−1

|wη
i | ∣∣Zh(tη)

∣∣

⎤

⎦
2
⎞

⎟⎠

⎞

⎟⎠

1
2

≤
(

max
0≤η≤k−2

max
0≤i≤N

|vη
i |
) k−2∑

j=0

∥∥Zh(tj )
∥∥

L2

+ max
0≤i≤N

(
N∑

η=k−1

|wη
i |
)(

E
(

max
k−1≤η≤N

∣∣Zh(tη)
∣∣2
)) 1

2

≤ CN

⎡

⎣
k−2∑

j=0

∥∥Yh(tj )
∥∥

L2 + 2

(
E
(

max
k−1≤η≤N

∣∣L∗
hYh(tη)

∣∣2
)) 1

2

⎤

⎦ ,

where the constant CN is given by

CN := max
0≤η≤k−2

max
0≤i≤N

|vη
i | + 1

2
max

0≤i≤N

N∑

η=k−1

|wη
i |.

The first part of the inequalities (4.8) is proved if we can show

sup
N∈N

CN < ∞. (4.13)

But under the strong root condition all roots of ρ∗ satisfy |ζi | ≤ r0 < 1 for i =
1, . . . , s. Hence there exists a constant C > 0 such that

|ui,κ
j | ≤ Cr

j

0 , j = 0, . . . ,N, (4.14)



Characterization of bistability for stochastic multistep methods 133

for all i = 1, . . . , s and κ = 1, . . . , ki . Since (v
η
j )j=0,...,N and (xj )j=0,...,N are finite

linear combinations of the fundamental system (u
i,κ
j )j=0,...,N the estimate (4.14) is

also valid for these sequences. By the relation (4.12) we compute

N∑

η=k−1

|wη
i | =

N∑

η=k−1

|xi−η+k−2| =
i+k−1∑

η=k−1

|xi−η+k−1| ≤ C

i∑

η=0

r
η
0 < C

1

1 − r0
< ∞,

where we used xi = 0 for i < 0. Altogether this proves (4.13).
The right hand side of (4.8) follows directly from

k−1∑

j=0

∥∥Yh(tj )
∥∥

L2 + 2

(
E
(

max
k−1≤η≤N

∣∣L∗
hYh(tη)

∣∣2
)) 1

2

≤ k‖Yh‖0,h + 2

(
E

(
max

k−1≤η≤N

[
k−1∑

j=0

|a∗
j | ∣∣Yh(tη−k+1+j )

∣∣
]2)) 1

2

≤
(

k + 2
k−1∑

j=0

|a∗
j |
)

‖Yh‖0,h .

Consequently, the strong root condition is sufficient for the inequalities (4.8) and for
the bistability of the operators Lh.

Conversely, assume that the inequalities (4.8) hold for all h > 0 and Yh ∈ Eh and
that ρ does not satisfy the strong root condition, i.e., there exists ζ ∈ C with ρ∗(ζ ) =
0 and |ζ | ≥ 1.

First, we focus on the case |ζ | = 1. Define zj = j (ζ j + ζ
j
) ∈ R and let Yh(tj ) :=

zjY for Y ∈ L2(�, F t0,P ;R
d). Then Yh ∈ Eh and if we apply L∗

h to Yh we get

L∗
hYh(tj ) =

k−1∑

η=0

a∗
ηYh(tη+j−k+1) =

k−1∑

η=0

a∗
η(η + j − k + 1)

(
ζ η+j−k+1 + ζ

η+j−k+1
)

= −ζ j−k+1ρ∗(ζ ) + ζ j−k+2 d

dz
ρ∗(ζ ) − ζ

j−k+1
ρ∗(ζ ) + ζ

j−k+2 d

dz
ρ∗(ζ ).

Since ρ∗ is a real polynomial we also have ρ∗(ζ ) = 0 and thus

max
k−1≤j≤N

|L∗
hYh(tj )| ≤

∣∣∣∣
d

dz
ρ∗(ζ )

∣∣∣∣+
∣∣∣∣

d

dz
ρ∗(ζ )

∣∣∣∣< ∞.

Combining this with (4.8) gives us

λ1‖Yh‖0,h ≤
k−1∑

j=0

‖Yh(tj )‖L2 + 2

(
E
(

max
k−1≤j≤N

∣∣L∗
hYh(tj )

∣∣2
)) 1

2

< ∞
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for λ1 > 0. On the other hand we have

lim
h→0

‖Yh‖0,h = ∞

which contradicts (4.8).
The case |ζ | > 1 also contradicts (4.8) by using zj = ζ j + ζ

j ∈ R for j ∈ N0. �

5 Consistency

The aim of this section is to prove Theorem 3.4. We deal with each numerical scheme
in a separate subsection.

5.1 Consistency of the stochastic theta method

The consistency of the stochastic theta method is proved by the same arguments as in
[3]. Here we only have to deal with the additional difficulty that the maximum occurs
inside the expectation. But following the estimates in [3] line by line we see that
this fact causes nowhere a problem in the estimate of the drift approximation. Since
the stochastic integrals, which appear in the diffusion approximation, are martingales
we are allowed to apply Doob’s martingale inequality. After this additional step one
proceeds as in [3].

5.2 Consistency of the BDF2-Maruyama method

Under the assumptions (A1), (A2), (C1) and (C2) the consistency of the BDF2-
Maruyama method is proved very similar as in the case of the stochastic theta method.
Again we use the fact, that the BDF2-Maruyama method can be written as a linear
combination of two STMs with different parameter values (4.1). Then both parts are
estimated by the same arguments as for the STM.

5.3 Consistency of higher order Itô-Taylor schemes

In this subsection we prove the consistency of the Itô-Taylor schemes. Choose γ ∈
{n

2 |n ∈ N} such that assumptions (A1), (A2), (A3), (C1) and (C3) are satisfied. For
the estimate we need the following result on Itô-Taylor expansions from [21].

Theorem 5.1 Under the assumptions (A1), (A2), (A3) the Itô-Taylor expansion

X(ti) = X(ti−1) +
∑

α∈Aγ

fα(ti−1,X(ti−1))I
ti
α +

∑

α∈B(Aγ )

Iα[fα(·,X(·))]titi−1
,

holds for all i = 1, . . . ,N , where for α = (j1, . . . , j�) ∈ B(Aγ )

Iα[fα(·,X(·))]titi−1
=
∫ ti

ti−1

∫ s1

ti−1

· · ·
∫ s�−1

ti−1

fα(s�,X(s�))dWj1(s�) · · ·dWj�(s1).
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For the proof we refer to Theorem 5.5.1 in [21]. Now the local truncation error of
the Itô-Taylor scheme of order γ takes the form

‖AIT S
h rE

h X‖−1,h = ‖X(0) − X̃0‖L2 +
⎛

⎜⎝E

⎛

⎜⎝ max
1≤i≤N

∣∣∣∣∣∣

i∑

j=1

[AIT S
h rE

h X](tj )
∣∣∣∣∣∣

2
⎞

⎟⎠

⎞

⎟⎠

1
2

.

Again, by assumption (C1), the initial value X̃0 is assumed to be sufficiently consis-
tent. Thus we are only concerned with the second summand

⎛

⎜⎝E

⎛

⎜⎝ max
1≤i≤N

∣∣∣∣∣∣

i∑

j=1

[AIT S
h rE

h X](tj )]
∣∣∣∣∣∣

2
⎞

⎟⎠

⎞

⎟⎠

1
2

=
(

E

(
max

1≤i≤N

∣∣∣∣∣

i∑

j=1

[
X(ti) −

∑

α∈Aγ

fα(tj−1,X(tj−1))I
tj
α

]∣∣∣∣∣

2)) 1
2

=
(

E

(
max

1≤i≤N

∣∣∣∣∣

i∑

j=1

[ ∑

α∈B(Aγ )

Iα[fα(·,X(·))]tjtj−1

]∣∣∣∣∣

2)) 1
2

≤
∑

α∈B(Aγ )

⎛

⎜⎝E

⎛

⎜⎝ max
1≤i≤N

∣∣∣∣∣∣

i∑

j=1

Iα[fα(·,X(·))]tjtj−1

∣∣∣∣∣∣

2
⎞

⎟⎠

⎞

⎟⎠

1
2

,

where we applied Theorem 5.1 and the triangle inequality. Since the remainder set
B(Aγ ) is finite (cf. [21, Chap. 5.4]) it is enough to estimate each summand sep-
arately. First we consider all multi-indices α ∈ B(Aγ ) with � = �(α) = n(α), i.e.,
α = (0, . . . ,0). For these multi-indices one computes

E

⎛

⎜⎝ max
1≤i≤N

∣∣∣∣∣∣

i∑

j=1

Iα

[
fα(·,X(·))]tj

tj−1

∣∣∣∣∣∣

2
⎞

⎟⎠

= E

⎛

⎜⎝ max
1≤i≤N

∣∣∣∣∣∣

i∑

j=1

∫ tj

tj−1

∫ s1

tj−1

· · ·
∫ s�−1

tj−1

fα(s�,X(s�))ds� · · ·ds1

∣∣∣∣∣∣

2
⎞

⎟⎠

= E

⎛

⎜⎝ max
1≤i≤N

∣∣∣∣∣∣

i∑

j=1

1

(� − 1)!
∫ tj

tj−1

fα(s,X(s))(tj − s)�−1ds

∣∣∣∣∣∣

2
⎞

⎟⎠

≤
(

1

(� − 1)!
)2

E

⎛

⎝ max
1≤i≤N

⎡

⎣ih
i∑

j=1

∫ tj

tj−1

|fα(s,X(s))|2|tj − s|2(�−1)ds

⎤

⎦

⎞

⎠ ,
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where we used Jensen’s inequality in the last step. We complete the estimate by

≤
(

1

(� − 1)!
)2

T

N∑

j=1

∫ tj

tj−1

E
(
|fα(s,X(s))|2

)
ds h2�−2

=
(

1

(� − 1)!
)2

T

∫ T

0
E
(
|fα(s,X(s))|2

)
ds h2�−2.

By assumption (C3) the integral is finite and by the definitions of Aγ and B(Aγ ) we
have α ∈ B(Aγ ) with �(α) = n(α) only if � = �(α) = γ + 1 or � = �(α) = γ + 3

2 .
Hence h2�−2 = O(hγ ), which is also the order of the complete term.

Thus it remains to estimate the summands with all indices α ∈ B(Aγ ) such that

n(α) < �(α). In this case note that E(Iα[fα(·,X(·))]tjtj−1
| F ti ) = 0 for all i < j (cf.

Lemma 5.7.1 in [21]). Therefore (Si)i=1,...,N with Si =∑i
j=1 Iα[fα(·,X(·))]tjtj−1

is a
discrete martingale. Furthermore, by Lemma 5.1 below, we have the following esti-
mate of the second moment:

E
(∣∣∣Iα

[
fα(·,X(·))]tj

tj−1

∣∣∣
2
)

≤ h�(α)+n(α)−1
∫ tj

tj−1

E
(
|fα(u,X(u))|2

)
du

for all j = 1, . . . ,N . Thus we are allowed to apply Doob’s martingale inequality and
obtain

E

⎛

⎜⎝ max
1≤i≤N

∣∣∣∣∣∣

i∑

j=1

Iα

[
fα(·,X(·))]tj

tj−1

∣∣∣∣∣∣

2
⎞

⎟⎠≤ 4E

⎛

⎜⎝

∣∣∣∣∣∣

N∑

j=1

Iα

[
fα(·,X(·))]tj

tj−1

∣∣∣∣∣∣

2
⎞

⎟⎠

= 4
N∑

j=1

E
(∣∣∣Iα

[
fα(·,X(·))]tj

tj−1

∣∣∣
2
)

≤ 4
∫ T

0
E
(
|fα(u,X(u))|2

)
du h�(α)+n(α)−1,

where we used the martingale property of the stochastic integrals and Lemma 5.1.
Also in this case we have �(α)+n(α)− 1 ≥ 2γ by the definitions of Aγ and B(Aγ ).
Hence under the given assumptions the Itô-Taylor scheme of order γ is consistent of
order γ .

Lemma 5.1 Assume that the stochastic process f : [0, T ] → R
d is stochastically

integrable with respect to the iterated Itô-integral Iα . If
∫ t

s

E
(
|f (u)|2

)
du < ∞

for all 0 ≤ s < t ≤ T then

E
(∣∣∣Iα

[
f (·)]t

s

∣∣∣
2
)

≤
∫ t

s

E
(
|f (u)|2

)
du (t − s)�(α)+n(α)−1
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for all 0 ≤ s < t ≤ T and all multi-indices α.

Proof The proof is similar to the proofs of Lemmas 2.1 and 2.2 in [25] and done by
an inductive argument. If �(α) = 1 and hence α = (j1), then the estimate holds with
equality in the case j1 �= 0 by the Itô-isometry. If j1 = 0, then the estimate is just
Jensen’s inequality.

Let �(α) > 1 with α = (j1, . . . , j�). First consider the case j� = 0. Then by
Jensen’s inequality

E
(∣∣∣Iα

[
f (·)]t

s

∣∣∣
2
)

= E

(∣∣∣∣
∫ t

s

∫ s1

s

· · ·
∫ s�−1

s

f (s�)dWj1(s�) · · ·dWj�(s1)

∣∣∣∣
2
)

≤ (t − s)

∫ t

s

E

(∣∣∣∣
∫ s1

s

· · ·
∫ s�−1

s

f (s�)dWj1(s�) · · ·dWj�−1(s2)

∣∣∣∣
2
)

ds1

= (t − s)

∫ t

s

E
(∣∣Iα̃

[
f (·)]s1

s

∣∣2
)

ds1,

where α̃ = (j1, . . . , j�−1) with �(α̃) = �(α) − 1 and n(α̃) = n(α) − 1. By the induc-
tion hypothesis we get

E
(∣∣Iα̃

[
f (·)]s1

s

∣∣2
)

≤
∫ s1

s

E
(
|f (u)|2

)
du (s1 − s)�(α̃)+n(α̃)−1

≤
∫ t

s

E
(
|f (u)|2

)
du (t − s)�(α)+n(α)−3.

Therefore

E
(∣∣∣Iα

[
f (·)]t

s

∣∣∣
2
)

≤ (t − s)

∫ t

s

∫ t

s

E
(
|f (u)|2

)
du (t − s)�(α)+n(α)−3ds1

=
∫ t

s

E
(
|f (u)|2

)
du (t − s)�(α)+n(α)−1.

If j� �= 0 the Itô-isometry gives

E
(∣∣∣Iα

[
f (·)]t

s

∣∣∣
2
)

=
∫ t

s

E
(∣∣Iα̃

[
f (·)]s1

s

∣∣2
)

ds1.

After applying the induction hypothesis one uses n(α̃) = n(α) to obtain the same
order. �

6 Maximum order of convergence

In this section we extend a well-known result from J.M.C. Clark and R.J. Cameron
[8]: They constructed an example to show that, in general, a numerical scheme has the
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maximum order of convergence 1
2 if it only uses the increments Wr(ti) − Wr(ti−1)

of the driving Wiener processes.
With the same example this result follows in a natural way for the stochastic theta

method and BDF2-Maruyama from the two-sided error estimate (3.3). This is demon-
strated in [3]. Here, we present a generalization of Clark and Cameron’s example to
treat the higher order Itô-Taylor schemes.

Theorem 6.1 In general, the maximum order of convergence of the Itô-Taylor scheme
of order γ is equal to γ .

Proof Let γ = n
2 and consider the (n + 1)-dimensional SODE

dX1(t) = dW 1(t), dX2(t) = X1(t)dW 2(t), . . . , dXn+1(t) = Xn(t)dWn+1(t),

(6.1)
X(0) = 0 ∈ R

n+1

which has the solution

X1(t) = W 1(t) = I(1)[1]t0, X2(t) = I(1,2)[1]t0, . . . , Xn+1(t) = I(1,...,n+1)[1]t0, (6.2)

where we used the notation from Theorem 5.1. First one checks that the first n com-
ponents are exactly approximated by the Itô-Taylor scheme of order n

2 . In order to
keep the notation simple we only show this for the Milstein scheme (n = 2) which is
written as

Xh(0) = 0 ∈ R
3,

Xh(ti) = Xh(ti−1) +
⎛

⎜⎝
I

ti
(1)

Xh,1(ti−1)I
ti
(2) + I

ti
(1,2)

Xh,2(ti−1)I
ti
(3) + Xh,1(ti−1)I

ti
(2,3)

⎞

⎟⎠ .

For the first component we have

X1(tj ) = I(1)[1]tj0 = W 1(tj ) =
j∑

i=1

W 1(ti) − W 1(ti−1) =
j∑

i=1

I
ti
(1) = Xh,1(tj ).

For the second component we get

X2(tj ) = I(1,2)[1]tj0 = I(1,2)[1]tj−1
0 +

∫ tj

tj−1

W 1(s)dW 2(s)

= I(1,2)[1]tj−1
0 + W 1(tj−1)I

tj
(2) +
∫ tj

tj−1

W 1(s) − W 1(tj−1)dW 2(s)

= I(1,2)[1]tj−1
0 + Xh,1(tj−1)I

tj
(2) + I

tj
(1,2).



Characterization of bistability for stochastic multistep methods 139

Now, an inductive argument yields X2(tj ) = Xh,2(tj ) for all j = 0, . . . ,N . For the
last component we compute

X3(tj ) = X3(tj−1) + X2(tj−1)I
tj
(3)

+ X1(tj−1)I
tj
(2,3)

+ I
tj
(1,2,3)

which shows that the local truncation error of the Milstein method takes the form

‖AIT S
h rE

h X‖2−1,h = E

(
max

1≤i≤N

∣∣∣∣∣

i∑

j=1

I
tj
(1,2,3)

∣∣∣∣∣

2)
.

For the general Itô-Taylor scheme of order γ = n
2 , one can prove analogously

‖AIT S
h rE

h X‖2−1,h = E

(
max

1≤i≤N

∣∣∣∣∣

i∑

j=1

I
tj
(1,...,n+1)

∣∣∣∣∣

2)
.

By using the martingale property and the Itô-isometry we arrive at the lower bound

‖AIT S
h rE

h X‖−1,h ≥
(

T

(n + 1)!
) 1

2

hγ . �
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