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Abstract Consider a linear system A(p) · x = b(p), where the elements of the
matrix and the right-hand side vector depend linearly on a m-tuple of parameters
p = (p1, . . . , pm), the exact values of which are unknown but bounded within given
intervals. Apart from quantifier elimination, the only known general way of describ-
ing the solution set {x ∈ R

n | ∃p ∈ [p],A(p)x = b(p)} is a lengthy and non-unique
Fourier-Motzkin-type parameter elimination process that leads to a description of the
solution set by exponentially many inequalities. In this work we modify the param-
eter elimination process in a way that has a significant impact on the representation
of the inequalities describing the solution set and their number. An explicit minimal
description of the solution set to 2D parametric linear systems is derived. It gener-
alizes the Oettli-Prager theorem for non-parametric linear systems. The number of
the inequalities describing the solution set grows linearly with the number of the
parameters involved simultaneously in both equations of the system. The boundary
of any 2D parametric solution set is described by polynomial equations of at most
second degree. It is proven that when the general parameter elimination process is
applied to two equations of a system in higher dimension, some inequalities become
redundant.
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1 Introduction

Consider the linear algebraic system

A(p) · x = b(p), p = (p1, . . . , pm)�, (1.1)

aij (p) := aij,0 +
m∑

μ=1

aij,μpμ, bi(p) := bi,0 +
m∑

μ=1

bi,μpμ,

(1.2)
aij,μ, bi,μ ∈ R, μ = 0, . . . ,m, i, j = 1, . . . , n.

The only information that we have about the values of the parameters pμ, μ =
1, . . . ,m is that they lie within given intervals

p ∈ [p] = ([p]1, . . . , [p]m
)�

. (1.3)

Such systems are common in many engineering analysis or design problems [5, 6],
control engineering [1], robust Monte Carlo simulations [7], etc., where there are
complicated dependencies between the model parameters which are uncertain. The
uncertainty in the model parameters could originate from measurement imprecision,
round-off errors, and various other kinds of inexact knowledge. A set of solutions to
(1.1)–(1.3), called united parametric solution set, is

�p = �
(
A(p), b(p), [p]) := {

x ∈ R
n | ∃p ∈ [p],A(p)x = b(p)

}
. (1.4)

Denote by R
n,R

n×m the set of real vectors with n components and the set of real
n × m matrices, respectively. A real compact interval is [a] = [a, a ] := {a ∈ R | a ≤
a ≤ a}. By IR

n, IR
n×m we denote the sets of interval n-vectors and interval n × m

matrices, respectively. Interval vectors [b] = ([b]i ) = ([bi, bi]) ∈ IR
n and interval

matrices [A] = ([a]ij ) = ([aij , aij ]) ∈ IR
n×m are vectors and matrices, respectively,

with interval entries. For [a] = [a, a ], define mid-point ȧ := (a + a )/2 and radius
â := (a − a )/2. These functionals are applied to interval vectors and matrices com-
ponentwise.

The well-known non-parametric interval linear system [A]x = [b], which is the
most studied in the interval literature (cf. [8]), can be considered as a special case
of the parametric linear system with n2 + n independent parameters aij ∈ [a]ij ,
bi ∈ [b]i , i, j = 1, . . . , n. For a parametric system (1.1)–(1.3), the corresponding non-
parametric one with [A] = ([a]ij ) ∈ IR

n×n, [b] = ([b]i ) ∈ IR
n can be obtained as

[a]ij = aij

([p]) = aij,0 +
m∑

μ=1

aij,μ[p]μ, [b]i = bi

([p]) = bi,0 +
m∑

μ=1

bi,μ[p]μ.

The non-parametric solution set, called united solution set, is defined as

�
([A], [b]) := {

x ∈ R
n | ∃A ∈ [A],∃b ∈ [b],A · x = b

}
.
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This set is well studied with many results concerning its characterization and proper-
ties, see, e.g., [2, 8]. In particular, the Oettli-Prager theorem [9] describes this solution
set by the inequalities

|A(ṗ)x − b(ṗ)| ≤ Â
([p])|x| + b̂

([p]). (1.5)

Characterizing the solution set (1.4) by inequalities not involving the interval pa-
rameters is a fundamental problem of considerable practical importance. It is useful
for visualizing the solution set, exploring its properties and for computing componen-
twise boundaries. The description of the parametric solution set is related to quantifier
elimination which stimulated a tremendous amount of research. Since Tarski’s gen-
eral theory [13] is EXPSPACE-hard [4], a lot of research is devoted to special cases
with polynomial-time decidability. So far, the only known general way of describ-
ing the parametric solution set is a lengthy Fourier-Motzkin-type parameter elimina-
tion process presented in [3]. Several open questions concerning this process and the
maximal degree of the polynomials in the solution set describing inequalities are also
formulated therein.

In this work we introduce a modification of the parameter elimination that has a
significant impact on the representation of the inequalities describing the solution set
and their number. Based on the modified parameter elimination process, we study the
parameter elimination in 2-dimensional linear systems involving an arbitrary number
of parameters. Because the general parameter elimination is a long process leading to
an exponential number of characterizing inequalities, minimal explicit descriptions
of the parametric solution sets are of particular interest. By proving superfluous and
redundant character of some inequalities we derive a minimal explicit description
of 2D parametric solution sets. This also allows us to determine the shape of these
solution sets, i.e., the maximal degree of the polynomial equations describing the
solution set boundary. The explicit solution set characterization is illustrated on some
numerical examples and compared to descriptions obtained by other approaches.

2 Fourier-Motzkin-type elimination of parameters

The solution set (1.4) is characterized as follows, by a trivial set of inequalities

�p = {x ∈ R
n | ∃pμ ∈ R,μ = 1, . . . ,m : (2.1)–(2.2) hold},

where for i = 1, . . . , n

n∑

j=1

(
aij,0 +

m∑

μ=1

aij,μpμ

)
xj ≤ bi,0 +

m∑

μ=1

bi,μpμ ≤
n∑

j=1

(
aij,0 +

m∑

μ=1

aij,μpμ

)
xj ,

(2.1)

p−
μ ≤ pμ ≤ p+

μ , μ = 1, . . . ,m. (2.2)

Starting from such a description, Theorem 2.1 below shows how the parameters in
this set can be eliminated successively in order to obtain a new description not in-
volving pμ, μ = 1, . . . ,m.
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Theorem 2.1 (Alefeld et al. [3]) Let fλμ, gλ, λ = 1, . . . , k (≥ 2), μ = 1, . . . ,m,
be real-valued functions of x = (x1, . . . , xn)

� on some subset D ⊆ R
n. Assume

that there is a positive integer k1 < k such that: fλ1(x) �≡ 0 for all λ ∈ {1, . . . , k};
fλ1(x) ≥ 0 for all x ∈ D and all λ ∈ {1, . . . , k}; for each x ∈ D there is an index β∗ =
β∗(x) ∈ {1, . . . , k1} with fβ∗1(x) > 0 and an index γ ∗ = γ ∗(x) ∈ {k1 +1, . . . , k} with
fγ ∗1(x) > 0. For m parameters p1, . . . , pm varying in R and for x varying in D de-
fine the sets S1, S2 by

S1 := {
x ∈ D | ∃pμ ∈ R,μ = 1, . . . ,m : (2.3), (2.4) hold

}
,

S2 := {
x ∈ D | ∃pμ ∈ R,μ = 2, . . . ,m : (2.5) holds

}
,

where inequalities (2.3), (2.4) and (2.5), respectively, are given by

gβ(x) +
m∑

μ=2

fβμ(x)pμ ≤ fβ1(x)p1, β = 1, . . . , k1, (2.3)

fγ 1(x)p1 ≤ gγ (x) +
m∑

μ=2

fγμ(x)pμ, γ = k1 + 1, . . . , k (2.4)

and for β = 1, . . . , k1, γ = k1 + 1, . . . , k

gβ(x)fγ 1(x) +
m∑

μ=2

fβμ(x)fγ 1(x)pμ ≤ gγ (x)fβ1(x) +
m∑

μ=2

fγμ(x)fβ1(x)pμ. (2.5)

(Trivial inequalities such as 0 ≤ 0 can be omitted.) Then S1 = S2.

Theorem 2.1 defines the transition from inequalities (2.3), (2.4) to inequalities
(2.5), so that the parameter p1 does not occur in the set S2. This parameter elimination
process resembles the so-called Fourier-Motzkin elimination of variables, see, e.g.,
[12]. Its application based on the end-point inequalities (2.2) leads to a very large
number of solution set characterizing inequalities. Some illustrative examples can be
found in [2, 10].

A new classification of the parameters involved in a parametric linear system was
introduced in [10]. Therein the parameters were classified into three classes (zeroth,
first and second class) with respect to the way they participate in the equations of
the system. In this paper we consider only two classes of parameters by joining the
parameters of the zeroth and first class into the first class.

With the notations A••μ := (aij,μ) ∈ R
n×n, b•μ := (bi,μ) ∈ R

n, μ = 0, . . . ,m the
system (1.1) can be rewritten equivalently as

(
A••0 +

m∑

μ=1

pμA••μ

)
x = b•0 +

m∑

μ=1

pμb•μ.

For a matrix A ∈ R
n×n, Am• denotes the m-th row of A.
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Definition 2.1 A parameter pμ, 1 ≤ μ ≤ m, is of 1st class if it occurs in only one
equation of the system (1.1).

A parameter pμ is of 1st class iff b•μ − A••μx has only one nonzero component
(that is biμ − Ai•μx �= 0 for exactly one i, 1 ≤ i ≤ n). It does not matter how many
times a 1st class parameter occurs within an equation. For example, the parameters
b1 and b2 involved in the system from Example 5.1 are parameters of 1st class. An
efficient elimination procedure for parameters of 1st class was developed in [10]. An
explicit characterization of the solution set to parametric linear systems involving
only 1st class parameters is also given therein.

Definition 2.2 A parameter pμ, 1 ≤ μ ≤ m, is of 2nd class if it is involved in more
than one equation of the system (1.1).

A parameter pμ is of 2nd class iff the vector b•μ − A••μx has more than one
nonzero components. In this work, we study the elimination process involving 2nd
class parameters.

3 Modified elimination of parameters

The trivial set of characterizing inequalities (2.1), (2.2) can be rewritten equivalently
as

A••0x − b•0 +
m∑

μ=1

(A••μx − b•μ)pμ ≤ 0 ≤ A••0x − b•0 +
m∑

μ=1

(A••μx − b•μ)pμ,

(3.1)

ṗμ − p̂μ ≤ pμ ≤ ṗμ + p̂μ, μ = 1, . . . ,m, (3.2)

where the parameter characterizing inequalities (2.2) are replaced by the equivalent
inequalities (3.2). In the parameter elimination process we shall apply the following
relation

t ṗμ − |t |p̂μ ≤ tpμ ≤ t ṗμ + |t |p̂μ, for t ∈ R, (3.3)

without the necessity to consider the particular sign of t .
Denote fλ0(x) := Aλ•0x − bλ0, fλμ(x) := Aλ•μx − bλμ, λ = 1, . . . , n, which are

real-valued functions of x = (x1, . . . , xn)
�. Denote by M, M1, M2 three index sets

such that M := {1, . . . ,m} = M1 ∪ M2, M1 ∩ M2 = ∅, pμ is a parameter of 1st
class if pμ ∈ M1 and pμ is a parameter of 2nd class if pμ ∈ M2. For the elimina-
tion of each parameter of 1st class pk , k ∈ M1 the inequalities (3.1) are rewritten
equivalently as

A••0x − b•0 +
∑

μ∈M\{k}
(A••μx − b•μ)pμ ≤ −(A••kx − b•k)pk, (3.4)

−(A••kx − b•k)pk ≤ A••0x − b•0 +
∑

μ∈M\{k}
(A••μx − b•μ)pμ. (3.5)
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Then we apply Theorem 2.1 by combining the inequality (3.4) with the right side
inequality of (3.2) and by combining the inequality (3.5) with the left side inequal-
ity of (3.2). After multiplying the inequalities (3.2) by the corresponding coefficient
function fλk(x), the relation (3.3) is applied. In this way, we obtain the following
equivalent set of characterizing inequalities, where all 1st class parameters are elimi-
nated.

fi0(x) +
∑

μ∈M1

(fiμ(x)ṗμ − |fiμ(x)|p̂μ) +
∑

μ∈M2

fiμ(x)pμ ≤ 0, i = 1, . . . , n,

(3.6)

0 ≤ fi0(x) +
∑

μ∈M1

(fiμ(x)ṗμ + |fiμ(x)|p̂μ) +
∑

μ∈M2

fiμ(x)pμ, i = 1, . . . , n,

(3.7)

ṗμ − p̂μ ≤ pμ ≤ ṗμ + p̂μ, μ ∈ M2. (3.8)

We notice that the expression in the left side of inequality (3.6) and the expression
in the right side of inequality (3.7) differ only in the sign of the terms involving p̂μ.
Therefore we use a ∓ notation and rewrite equivalently the corresponding inequali-
ties (3.6), (3.7) as one inequality pair in a more compact form representing the two
expressions only on the left side of the inequality pair.

fi0(x) +
∑

μ∈M1

fiμ(x)ṗμ ∓
∑

μ∈M1

|fiμ(x)|p̂μ +
∑

μ∈M2

fiμ(x)pμ ≤ 0 ≤ · · · ,

i = 1, . . . , n, (3.9)

wherein “· · · ” denote the whole expression in the left side inequality with the bottom
sign of ∓. If M2 = ∅, (3.9) is equivalent to

|A(ṗ)x − b(ṗ)| ≤
m∑

μ=1

|A••μx − b•μ|p̂μ, (3.10)

which generalizes the Oettli-Prager characterization (1.5) to parametric systems in-
volving only 1st class parameters. This explicit description was derived in [10] and
compared to the characterization obtained by the original parameter elimination pro-
cess. This result shows that the elimination of 1st class parameters does not expand
the number of characterizing inequalities. The shape of the solution sets to systems
involving only 1st class parameters remain linear.

Let 1 ≤ Card(M1) < m. Starting from the inequalities (3.6)–(3.8), we eliminate
a 2nd class parameter pk , k ∈ M2. Let T be the index set of the inequality pairs
involving this parameter. By combining each inequality pair α ∈ T with the corre-
sponding parameter characterizing inequalities ṗk − p̂k ≤ pk ≤ ṗk + p̂k , we obtain
the so-called end-point characterizing inequalities. For T = {1, . . . , n}, these are

fi0(x) +
∑

μ∈M1∪{k}
(fiμ(x)ṗμ ∓ |fiμ(x)|p̂μ) +

∑

μ∈M2\{k}
fiμ(x)pμ ≤ 0 ≤ · · · ,

i = 1, . . . , n.
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For each α,β ∈ T , α < β , we have to eliminate pk from the following inequality
pairs

fα0(x) +
∑

μ∈M1

(fαμ(x)ṗμ ∓ |fαμ(x)|p̂μ) +
∑

μ∈M2\{k}
fαμ(x)pμ

≤ −fαk(x)pk ≤ · · · , (3.11)

fβ0(x) +
∑

μ∈M1

(fβμ(x)ṗμ ∓ |fβμ(x)|p̂μ) +
∑

μ∈M2\{k}
fβμ(x)pμ

≤ −fβk(x)pk ≤ · · · . (3.12)

In general fαk(x) and fβk(x) do not have a common factor.1 Thus, (3.11) multiplied
by fβk(x) gives

fα0(x)fβk(x) +
∑

μ∈M1

fαμ(x)fβk(x)ṗμ ∓ δ
∑

μ∈M1

|fαμ(x)|fβk(x)p̂μ

+
∑

μ∈M2\{k}
fαμ(x)fβk(x)pμ ≤ −fαk(x)fβk(x)pk ≤ · · · ,

wherein δ = {1 if fβk(x) ≥ 0,−1 otherwise}. The last inequality pair is equivalent to

fα0(x)fβk(x) +
∑

μ∈M1

(fαμ(x)fβk(x)ṗμ ∓ |fαμ(x)||fβk(x)|p̂μ)

+
∑

μ∈M2\{k}
fαμ(x)fβk(x)pμ ≤ −fαk(x)fβk(x)pk ≤ · · · . (3.13)

Similarly, the inequality pair (3.12) is multiplied by fαk(x). Combining the left side
of (3.13) with the right side of (3.12)∗fαk(x), and respectively the opposite inequality
sides, we get the following cross inequality pair

fα0(x)fβk(x) − fβ0(x)fαk(x) +
∑

μ∈M1

(fαμ(x)fβk(x) − fβμ(x)fαk(x))ṗμ

∓
∑

μ∈M1

(|fαμ(x)||fβk(x)| + |fβμ(x)||fαk(x)|)p̂μ

+
∑

μ∈M2\{k}
(fαμ(x)fβk(x) − fβμ(x)fαk(x))pμ ≤ 0 ≤ · · · (3.14)

for α,β ∈ T , α < β . We call the inequality pairs (3.14) “cross inequality pairs” to
distinguish them from the end-point characterizing inequalities.

1If the coefficient functions of a parameter in two inequalities have a common factor, each inequality is
multiplied by the quotient of the corresponding coefficient function and the greater common factor of both
functions, see [2, Corollary 1].
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Thus, by using the parameter inequalities (3.2), instead of the equivalent inequal-
ities (2.2), and the relations (3.3) we can give a new modified formulation of the
parameter elimination Theorem 2.1.

Theorem 3.1 Let gλ(x), fλν,1(x), fλν,2(x), fλμ(x), λ = 1, . . . , k (≥n) be real-
valued functions of x = (x1, . . . , xn)

� on some subset D ⊆ R
n. Assume that m1 − 1

parameters are eliminated, where m1 ≥ 1, and there exists a non-empty set T ⊆
{1, . . . , k} such that fλm1(x) �≡ 0 for all λ ∈ T . For the parameters pμ, μ =
m1, . . . ,m varying in R and for x varying in D define the sets S1, S2 by

S1 := {
x ∈ D | ∃pμ ∈ R,μ = m1, . . . ,m : (3.15), (3.16) hold

}
,

S2 := {
x ∈ D | ∃pμ ∈ R,μ = m1 + 1, . . . ,m : (3.17), (3.18), (3.19) hold

}
,

where inequalities (3.15), (3.16) and (3.17), (3.18), (3.19), respectively, are given by

gλ(x) +
m1−1∑

ν=1

fλν,1(x)ṗν ∓
m1−1∑

ν=1

fλν,2(x)p̂ν

+
m∑

μ=m1+1

fλμ(x)pμ ≤ −fλm1(x)pm1 ≤ · · · , λ = 1, . . . , k, (3.15)

ṗμ − p̂μ ≤ pμ ≤ ṗμ + p̂μ, μ = m1, . . . ,m, (3.16)

gλ(x) +
m1−1∑

ν=1

fλν,1(x)ṗν ∓
m1−1∑

ν=1

fλν,2(x)p̂ν + fλm1(x)ṗm1 ∓ |fλm1(x)|p̂m1

+
m∑

μ=m1+1

fλμ(x)pμ ≤ 0 ≤ · · · , λ = 1, . . . , k (3.17)

and for α,β ∈ T , α < β

gα(x)fβm1(x) − gβ(x)fαm1(x) +
m1−1∑

ν=1

(fβm1(x)fαν,1(x) − fαm1(x)fβν,1(x))ṗν

∓
m1−1∑

ν=1

(|fβm1(x)|fαν,2(x) + |fαm1(x)|fβν,2(x))p̂ν

+
m∑

μ=m1+1

(fαμ(x)fβm1(x) − fβμ(x)fαm1(x))pμ ≤ 0 ≤ · · · , (3.18)

ṗμ − p̂μ ≤ pμ ≤ ṗμ + p̂μ, μ = m1 + 1, . . . ,m. (3.19)

Then S1 = S2.

The proof of Theorem 3.1 is similar to that of Theorem 2.1 given in [3].
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Theorem 3.1 is more detailed in the characterizing inequalities than the original
Theorem 2.1 and involves explicitly the parameter inequalities (3.16), (3.19). This
allows weakening the requirements of Theorem 2.1, in particular not requiring pos-
itiveness of the parameter coefficient functions. Therefore, the modified parameter
elimination does not depend on a particular orthant. Besides, Theorem 3.1 gives a
compact representation of the characterizing inequalities. Due to the absolute values
of the expressions involved in these inequalities, the parametric solution set is de-
scribed by fewer inequalities than when applying Theorem 2.1. Note that the result-
ing inequalities (3.17) and (3.18) have the form (3.15) which allows the elimination
process to continue with the next parameters.

Although the number of solution set describing inequalities generated by Theo-
rem 3.1 is smaller than the number of inequalities generated by the application of
Theorem 2.1, this number grows exponentially with the number of 2nd class param-
eters involved simultaneously in the equations of a system. Neither Theorem 2.1 nor
Theorem 3.1 prescribe the order of parameter elimination. If all 1st class parameters
are eliminated before the elimination of the 2nd class parameters, the elimination of
1st class parameters does not generate cross inequalities. However, if a 2nd class pa-
rameter, say p2, is eliminated before the 1st class parameters pμ, μ ∈ M1 involved
in the equations containing p2, then pμ will be involved also in the cross inequality
pairs for p2. Thus, the elimination of these 1st class parameters pμ will be done as
the elimination of 2nd class parameters. This implies that two sets of characterizing
inequalities, generated by two different orders of parameter elimination, may contain
a different number of inequalities. Therefore, in the next section we consider in more
details the parameter elimination for 2D parametric linear systems.

4 Characterization of 2D solution sets

Consider a linear system (1.1)–(1.3), where A(p) ∈ R
2×2 and b(p) ∈ R

2 involve
m + s parameters. Without loss of generality we can re-number the parameters and
assume that the first m ≥ 1 parameters are of 2nd class while the next s ≥ 0 parame-
ters are of 1st class. The trivial inequalities explicitly characterizing the solution set
are

f0(x) +
m+s∑

μ=1

fμ(x)pμ ≤ 0 ≤ f0(x) +
m+s∑

μ=1

fμ(x)pμ, (4.1)

and for μ = 1, . . . ,m + s, ṗμ − p̂μ ≤ pμ ≤ ṗμ + p̂μ, (4.2)

where fλ(x) := (fλ1(x), fλ2(x))�, λ = 0, . . . ,m + s and fλi(x) := Ai•λx − biλ, i =
1,2. For simplicity of the exposition we first eliminate all 2nd class parameters.

Let m ≥ 2. After eliminating the first 2nd class parameter p1, we have the follow-
ing cross inequality pair

	0,1(x) +
m+s∑

μ=2

	μ,1(x)pμ ≤ 0 ≤ 	0,1(x) +
m+s∑

μ=2

	μ,1(x)pμ, (e1,2(1))
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where 	α,β(x) := fα,1(x)fβ,2(x) − fα,2(x)fβ,1(x), 	α,β(x) = −	β,α(x). From
now on we label the inequalities by (ei,j (u, . . . , v)), where the subscripts i, j denote
which inequalities are combined, while u, . . . , v denote the indices of the parameters
that are eliminated starting from the rightmost one. In what follows we shall omit the
argument of the functions 	 and f . Combining (4.1) with the parameter inequalities
(4.2) for p1 we get the following endpoint inequality pairs

f0,i + f1,i ṗ1 ∓ |f1,i |p̂1 +
m∑

μ=2

fμ,ipμ +
∑

ν∈N1

fν,1pν +
∑

ν∈N2

fν,2pν ≤ 0 ≤ · · · ,

(ei(1))

where i = 1,2, N1,N2 are the index sets of 1st class parameters involved in the
corresponding equations of the system, N1 ∩N2 = ∅, N1 ∪N2 = {m+ 1, . . . ,m+ s}.
The elimination of each successive parameter “updates” the latter endpoint inequality
pairs, and the hitherto existing cross inequality pairs, correspondingly. When all the
parameters are eliminated, the endpoint inequality pairs can equivalently be written
as a single inequality (3.10). Due to their simplicity, in what follows we shall not list
the updated endpoint inequalities.

The elimination of p2 updates (e1,2(1)) by combining it with the parameter in-
equalities for p2, thus yielding

	0,1 + 	μ,1ṗ2 ∓ |	μ,1|p̂2 +
m+s∑

μ=3

	μ,1pμ ≤ 0 ≤ · · · , (e1,2(2, 1̃))

and introduces three more cross inequality pairs.

	0,2 + 	1,2ṗ1 ∓ (|f1,1f2,2| + |f1,2f2,1|)p̂1 +
m∑

μ=3

	μ,2pμ

+
∑

ν∈N1

fν,1f2,2pν −
∑

ν∈N2

fν,2f2,1pν ≤ 0 ≤ · · · , (e1,2(2,1))

which can be written as2

∣∣∣∣∣	0,2 + 	1,2ṗ1 +
m+s∑

μ=3

	μ,2pμ

∣∣∣∣∣ ≤ (|f1,1f2,2| + |f1,2f2,1|)p̂1 (e1,2(2,1))

and for i = 1,2

f0,i	2,1 − f2,i	0,1 + f1,i	2,1ṗ1 ∓ |f1,i ||	2,1|p̂1

2The advantage of the modified parameter elimination is that cross inequality pairs can equivalently be
rewritten as single absolute value inequalities.



Explicit description of 2D parametric solution sets 189

+
m+s∑

μ=3

(fμ,i	2,1 − f2,i	μ,1)pμ ≤ 0 ≤ · · · . (ei,(1,2)(2,1))

After some simplification, the latter cross inequality pairs can be written as

|f1,i |
∣∣∣∣∣	0,2 + 	1,2ṗ1 +

m+s∑

μ=3

	μ,2pμ

∣∣∣∣∣ ≤ |f1,i ||	1,2|p̂1. (ei,(1,2)(2,1))

The inequalities (e1,(1,2)(2,1))/|f1,1| and (e2,(1,2)(2,1))/|f1,2| are equivalent. There-
fore one of them is superfluous. Since |	1,2| = |f1,1f2,2 − f1,2f2,1| ≤ |f1,1f2,2| +
|f1,2f2,1|, the right side of inequality e1,2(2,1) is greater than or equal to the
right sides of the inequalities (ei,(1,2)(2,1))/|f1,i |, i = 1,2. The relations between
these cross inequalities remain valid for all pμ ∈ [pμ], μ = 3, . . . ,m + s, after
the elimination of these parameters by combining (e1,2(2,1)), (ei,(1,2)(2,1))/|f1,i |,
i = 1,2 with the corresponding endpoint parameter inequalities (4.2). Therefore
the inequality (e1,2(2,1)) will not contribute to the boundary of the parametric
solution set and (e1,2(2,1)) is redundant.3 Thus, instead of considering three ad-
ditional cross inequalities (e1,2(2,1)), (ei,(1,2)(2,1)), i = 1,2, we continue the pa-
rameter elimination process considering only one additional cross inequality pair
e1,2(2̃,1) := (ei,(1,2)(2,1))/|f1,i |. After eliminating all the remaining parameters,
the two cross inequalities e1,2(2, 1̃) and e1,2(2̃,1) become

∣∣∣∣∣	0,k +
∑

μ∈Mk

	μ,kṗμ

∣∣∣∣∣ ≤
∑

μ∈Mk

|	μ,k|p̂μ, k = 1,2, (e(k)
1,2(2̃,1))

where Mμ := {1, . . . ,m + s} \ {μ} for 1 ≤ μ ≤ m.
By induction on the number of 2nd class parameters we shall prove that the elim-

ination of each such parameter expands the number of characterizing inequalities by
only one cross inequality. Let m − 1 parameters of 2nd class be eliminated and the
set of characterizing inequalities be

f0,i +
m−1∑

μ=1

(fμ,i ṗμ ∓ |fμ,i |p̂μ) +
∑

ν∈N1

fν,1pν

+
∑

ν∈N2

fν,2pν ≤ −fm,ipm ≤ · · · , i = 1,2, (ei(m − 1))

	0,k +
∑

μ∈Mm,μ �=k

(	μ,kṗμ ∓ |	μ,k|p̂μ) +
∑

ν∈N1

fν,1fk,2pν

−
∑

ν∈N2

fν,2fk,1pν ≤ −	m,kpm ≤ · · · , k ∈ Mm, (e(k)
1,2(m − 1))

3Inequalities which are equivalent are called superfluous, while the inequalities which do not contribute to
the boundary of the solution set are called redundant.
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where Mm = {1, . . . ,m−1} and, for simplicity, the inequalities are labeled ei(m−1),
e
(k)
1,2(m − 1) instead of ei(m − 1, . . . ,1), e

(k)
1,2(m − 1, . . . ,1) respectively.

Beside updating the above inequalities by combining them with the parameter
endpoint inequalities ṗm− p̂m ≤ pm ≤ ṗm+ p̂m, the elimination of pm introduces the
following additional cross inequalities. One cross inequality is obtained by combining
e1(m − 1) and e2(m − 1). After some simplification, it can be written as

∣∣∣∣∣	0,m +
m−1∑

μ=1

	μ,mṗμ +
∑

ν∈N1∪N2

	ν,mpν

∣∣∣∣∣ ≤
m−1∑

μ=1

(|fμ,1fm,2| + |fμ,2fm,1|)p̂μ.

(e(m)
1,2 (m))

By combining e1(m − 1) with every one of the inequalities e
(k)
1,2(m − 1), k ∈ Mm, we

obtain m − 1 additional cross inequalities. After some simplification and dividing by
(−fk,1), these inequalities become

∣∣∣∣∣	0,m +
m−1∑

μ=1

	μ,mṗμ +
∑

ν∈N1∪N2

	ν,mpν

∣∣∣∣∣

≤
m−1∑

μ=1,μ �=k

p̂μ(|fμ,1	m,k| + |fm,1	μ,k|)/|fk,1| + |	k,m|p̂k, k ∈ Mm.

(e(k)
1,(1,2)(m))

Similarly, by combining e2(m − 1) with every one of the inequalities e
(k)
1,2(m − 1),

k ∈ Mm, we obtain m− 1 additional cross inequalities. After some simplification and
dividing by (−fk,2), these inequalities become

∣∣∣∣∣	0,m +
m−1∑

μ=1

	μ,mṗμ +
∑

ν∈N1∪N2

	ν,mpν

∣∣∣∣∣

≤
m−1∑

μ=1,μ �=k

p̂μ(|fμ,2	m,k| + |fm,2	μ,k|)/|fk,2| + |	k,m|p̂k, k ∈ Mm.

(e(k)
2,(1,2)(m))

Finally, by combining every two of the inequalities e
(k)
1,2(m − 1), k ∈ Mm, we ob-

tain (m − 1)(m − 2)/2 additional cross inequalities. After some simplification and
dividing by 	α,β , the latter become∣∣∣∣∣	0,m +

∑

μ∈Mm

	μ,mṗμ +
∑

ν∈N1∪N2

	ν,mpν

∣∣∣∣∣

≤ |	α,m|p̂α + |	β,m|p̂β +
∑

μ∈Mm,μ �=α,β

p̂μ(|	μ,α	m,β | + |	μ,β	m,α|)/|	α,β |,

(e(α,β)

(1,2),(1,2)(m))

where α,β ∈ Mm, α < β .
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Consider the last set of cross inequalities (e(α,β)

(1,2),(1,2)(m)), α,β ∈ Mm, α < β . The
smallest right side of these inequalities is the right side of the following inequality

∣∣∣∣	0,m +
∑

μ∈Mm

	μ,mṗμ +
∑

ν∈N1∪N2

	ν,mpν

∣∣∣∣ ≤
∑

μ∈Mm

|	μ,m|p̂μ (e(1,2)(m̂))

obtained when

|	μ,α	m,β | + |	μ,β	m,α| = |	μ,α	m,β − 	μ,β	m,α| = |	α,β ||	μ,m|
for sign	μ,α	m,β �= sign	μ,β	m,α. (*)

We will prove that in the set of cross inequalities (e(α,β)

(1,2),(1,2)(m)), α,β ∈ Mm, α < β ,
there is at least one inequality (e(1,2)(m̂)).

Each triple of indices μ,α,β can be ordered in three different ways: μ < α < β ,
α < μ < β , α < β < μ. The three different orderings correspond to different cross
inequalities involving the expressions |	μ,α	m,β | + |	μ,β	m,α|. For each fixed μ,
two of the μ,α,β orderings imply (*) for the third μ,α,β ordering, since 	u,v =
−	v,u. We illustrate the last implication by the example m − 1 = 3, where the set of

cross inequalities (e(α,β)

(1,2),(1,2)(m)) consists of three inequalities having the following
right sides

|	1,m|p̂1 + |	2,m|p̂2 + (|	3,1	m,2| + |	3,2	m,1|)/|	1,2|, (e(1,2)
(1,2),(1,2)(m))

|	1,m|p̂1 + |	3,m|p̂3 + (|	2,1	m,3| + |	2,3	m,1|)/|	1,3|, (e(1,3)
(1,2),(1,2)(m))

|	2,m|p̂2 + |	3,m|p̂3 + (|	1,2	m,3| + |	1,3	m,2|)/|	2,3|. (e(2,3)
(1,2),(1,2)(m))

For μ = 1 that is (e(2,3)
(1,2),(1,2)(m)), the relation (*) follows from (e(1,2)

(1,2),(1,2)(m)) and

(e(1,3)
(1,2),(1,2)

(m)), where

sign(	3,1	m,2) = sign(	3,2	m,1) = −sign(	2,3	m,1),

sign(	2,1	m,3) = sign(	2,3	m,1)

imply sign(	3,1	m,2) �= sign(	2,1	m,3).
Since μ,α,β trace all combinations of indices in Mm, we have (e(1,2)(m̂)) for an

arbitrary large Mm. It is not difficult to see that the right sides of the inequalities
e
(m)
1,2 (m), e

(k)
1,(1,2)(m) and e

(k)
2,(1,2)(m) are greater than (or equal to) the right side of

e(1,2)(m̂). Thus, after the elimination of all pν , ν ∈ N1 ∪ N2, e(1,2)(m̂) becomes

∣∣∣∣∣	0,m +
m+s∑

μ=1,μ �=m

	μ,mṗμ

∣∣∣∣∣ ≤
m+s∑

μ=1,μ �=m

|	μ,m|p̂μ

and could contribute to the boundary of the parametric solution set, while all other
generated cross inequalities will be redundant or superfluous.
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Now, we prove that the elimination of 1st class parameters does not introduce any
cross inequalities. Without loss of generality, we assume that the system involves
m = 2 parameters of 2nd class p1,p2 which are eliminated. We eliminate two 1st
class parameters q1, q2 from the inequalities

f0,i +
2∑

μ=1

fμ,i ṗμ ∓
2∑

μ=1

|fμ,i |p̂μ +
{

g1,1q1, for i = 1

g2,2q2, for i = 2
≤ 0 ≤ · · · , (ei(2,1))

	0,1 + 	2,1ṗ2 ∓ |	2,1|p̂2 + g1,1f1,2q1 − g2,2f1,1q2 ≤ 0 ≤ · · · , (e1,2(1))

	0,2 + 	1,2ṗ1 ∓ |	1,2|p̂1 + g1,1f2,2q1 − g2,2f2,1q2 ≤ 0 ≤ · · · . (e1,2(2̃,1))

The elimination of q1 generates the following additional cross inequalities.

f0,1f1,2 − 	0,1 + f1,1f1,2ṗ1 ∓ |f1,1f1,2|p̂1

+ (f2,1f1,2 − 	2,1)ṗ2 ∓ (|f2,1f1,2| + |	2,1|)p̂2

+ g2,2f1,1q2 ≤ 0 ≤ · · · . (e1,(1,2)(1))

Since |f2,1f1,2|+|	2,1| = |f2,1f1,2|+|−	2,1| ≥ |f2,1f1,2 −	2,1| = |f1,1f2,2|, and
f0,1f1,2 − 	0,1 = f0,2f1,1 the polynomials defined in (e1,(1,2)(1))/f1,1 are less than,
respectively greater than, or equal to those defined in e2(2,1). Therefore (e1,(1,2)(1))

is redundant.
Similarly, the polynomials defined in the following additional cross inequality pair

f0,1f2,2 − 	0,2 + (f1,1f2,2 − 	1,2)ṗ1 ∓ (|f1,1f2,2| + |	1,2|)p̂1

+ f2,2f2,1ṗ2 ∓ |f2,2f2,1|p̂2 + g2,2f2,1q2 ≤ 0 ≤ · · · , (e1,(1,2)(2̃,1))

divided by f2,1, are outside those defined in e2(2,1) and therefore (e1,(1,2)(2̃,1)) is
also redundant.

The additional cross inequality

	0,1f2,2 − 	0,2f1,2 − 	1,2f1,2ṗ1 ∓ |	1,2f1,2|p̂1 + 	2,1f2,2ṗ2 ∓ |	2,1f2,2|p̂2

− (g2,2f1,1f2,2 − g2,2f2,1f1,2)q2 ≤ 0 ≤ · · · (e(1,2),(1,2)(2̃,1))

after simplifying the expressions becomes

−	1,2f0,2 − 	1,2f1,2ṗ1 ∓ |	1,2f1,2|p̂1

+ 	2,1f2,2ṗ2 ∓ |	2,1f2,2|p̂2 − g2,2	1,2q2 ≤ 0 ≤ · · · . (e(1,2),(1,2)(2̃,1))

Since the latter divided by −	1,2 is equivalent to e2(2,1), then (e(1,2),(1,2)(2̃,1)) is
superfluous.

Similarly, the elimination of q2 does not introduce other characterizing inequali-
ties.

Thus, we proved the following theorem.
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Theorem 4.1 For a 2-dimensional parametric linear system involving m + s pa-
rameters, such that pμ, μ ∈ M , Card(M) = m, are 2nd class parameters, x ∈
�(A(p), b(p), [p]) iff

|A(ṗ)x − b(ṗ)| ≤
m+s∑

μ=1

∣∣fμ(x)
∣∣p̂μ =

m+s∑

μ=1

|A••μx − b•μ|p̂μ, (4.3)

∣∣∣∣∣	0,i +
m+s∑

μ=1,μ �=i

	μ,i ṗμ

∣∣∣∣∣ ≤
m+s∑

μ=1,μ �=i

|	μ,i |p̂μ, i ∈ M, (4.4)

where 	α,β(x) := fα,1(x)fβ,2(x) − fα,2(x)fβ,1(x), fα(x) = (fα,1(x), fα,2(x))� is
the coefficient vector of the parameter pα , ṗα = (p

α
+ pα)/2, p̂α = (pα − p

α
)/2.

Theorem 4.1 gives an explicit unique representation of any 2D parametric solu-
tion set and generalizes the Oettli-Prager criterion (1.5) to arbitrary 2D parametric
systems.

The order of eliminating the parameters is not important. The theorem can be
proven if we first eliminate all 1st class parameters and then eliminate the 2nd class
parameters, the proof is given in the Appendix. Thus, we have the following corollary
about the order of eliminating 1st and 2nd class parameters.

Corollary 4.1 The order of eliminating 1st and 2nd class parameters can be ex-
changed. Whatever the order of parameter elimination, the elimination of 1st class
parameters does not generate characterizing cross inequalities.

Theorem 4.1 clarifies also how complicated a 2D parametric solution set involving
an arbitrary number of parameters can be. The shape of a 2D parametric solution
set depends on the cross-inequalities (4.4), in particular, on the maximal degree of
	μ,i(x), for μ = 0, . . . ,m + s, i ∈ M , μ �= i.

Corollary 4.2 The maximal degree of the polynomials in the inequalities character-
izing any 2D parametric solution set is two.

In some special cases the boundary of the parametric solution set may become
linear. Without proving the superfluous and redundant inequalities by Theorem 4.1,
the application of Theorem 3.1 to a 2D parametric system could possibly lead to
increasing the degree of the polynomials in the solution set characterizing inequalities
with the elimination of every 2nd class parameter.

The number of the inequalities describing a 2D parametric solution set grows lin-
early with the number of the involved 2nd class parameters. Without Theorem 4.1
proving the redundancy of inequalities, the application of Theorem 3.1 to a 2D para-
metric linear system involving m parameters of 2nd class would generate O(2m)

cross inequalities.
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5 Numerical examples

Example 5.1 Consider the following parametric system involving three 2nd class
parameters and two 1st class parameters

(
2p1 − 1 −p2
p2 + p3 2p1

)
x =

(
p3 + b1
p3 + b2

)
,

where p1 ∈ [1,2], p2 ∈ [−1,2], p3 ∈ [−2,2], b1 ∈ [0.9,1.1], b2 ∈ [0.9,1.1]. By The-
orem 4.1 the description of the parametric solution set is

|−1 + 2x1 − 0.5x2| ≤ 2.1 + |x1| + 1.5|x2|,
|−1 + 0.5x1 + 3x2| ≤ 0.1 + 2|x1 − 1| + 1.5|x1| + |x2|,
|2x1 − 2x2 − 2x1x2 + 0.5(−2x2

1 − 2x2
2)|

≤ 0.2|x1| + 2| − 2(x1 − 1)x1 − 2x2| + 0.2|x2| + 3| − x2
1 − x2

2 |,
|−x1 − x2 + 3(x2

1 + x2
2)| ≤ 0.1|x1| + 0.1|x2| + 2| − x1 + (x1 − 1)x2| + |x2

1 + x2
2 |,

|−x1 − (x1 − 1)x1 + 3((x1 − 1)x1 + x2) + 0.5(x1 − (x1 − 1)x2)|
≤ 0.1 + 0.1|1 − x1| + 3|(x1 − 1)x1 + x2| + 1.5|x1 − (x1 − 1)x2|.

Although the system contains three 2nd class parameters, the maximal degree of
the polynomials in the inequalities is two. We use the Mathematica� (v.6 and above)
function RegionPlot to visualize the solution set described by the above inequal-
ities. The filled region on Fig. 1 represents the parametric solution set. In order to
confirm the obtained results we draw the boundary of the parametric solution set by

Fig. 1 Solution set of the linear
system from Example 5.1
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the method of parametric plots developed in [11]. Both the filled region plot and the
boundary plot are presented on the same figure. We see that the two methods com-
pletely agree.

In the next examples we demonstrate the application of Theorem 4.1 to parametric
systems in higher dimensions.

Example 5.2 Let A ∈ R
3×3 be a Hankel matrix which is triangular with respect to

the counterdiagonal

A =
⎛

⎝
a1 a2 a3
a2 a3 0
a3 0 0

⎞

⎠ , b =
⎛

⎝
b1
b2
b3

⎞

⎠ , ai ∈ [ai], bi ∈ [bi], i = 1,2,3.

Since a1, bi , i = 1,2,3 are 1st class parameters, their elimination will not generate
any cross inequalities. The elimination of a2 generates e4 = e1,2(2) given below.
In the elimination of a3 by Theorem 2.1 we have to consider the cross inequalities
between each two inequality pairs involving a3. That is eα,β for every α,β ∈ T ,
α < β , where T = {e1, . . . , e4}. However, by Theorem 4.1, e1,2(3,2) is redundant
to e1,4(3,2)/f3,1 ≡ e2,4(3,2)/f3,2 =: e5. Thus, the above 3D system with Hankel
triangular matrix is described by the set of endpoint inequalities

∣∣∣∣∣

3∑

i=1

xi ȧi − ḃ1

∣∣∣∣∣ ≤
3∑

i=1

|xi |âi + b̂1,

∣∣∣∣∣

3∑

i=2

xi−1ȧi − ḃ2

∣∣∣∣∣ ≤
3∑

i=2

|xi−1|âi + b̂2,

|x1ȧ3 − ḃ3| ≤ |x1|â3 + b̂3

and the following cross inequalities

|x2
1 ȧ1 − x1ḃ1 + x2ḃ2 + (x1x3 − x2

2)ȧ3|
≤ x2

1 â1 + |x1|b̂1 + |x2|b̂2 + |x1x3 − x2
2 |â3, (e4)

|x1x2ȧ1 − x2ḃ1 + x3ḃ2 + (x2
2 − x1x3)ȧ2|

≤ |x1x2|â1 + |x2|b̂1 + |x3|b̂2 + |x1x3 − x2
2 |â2, (e5)

|x2
1 ȧ1 − x1ḃ1 + x3ḃ3 + x1x2ȧ2| ≤ x2

1 â1 + |x1|b̂1 + |x3|b̂3 + |x1x2|â2, (e1,3)

|x2
1 ȧ2 − x1ḃ2 + x2ḃ3| ≤ x2

1 â2 + |x1|b̂2 + |x2|b̂3, (e2,3)

|x3
1 ȧ1 − x2

1 ḃ1 + x1x2ḃ2 + (x1x3 − x2
2)b3|

≤ |x1|3â1 + x2
1 b̂1 + |x1x2|b̂2 + |x1x3 − x2

2 |b̂3. (e3,4)

The application of Theorem 4.1 to systems in higher dimensions will identify more
superfluous and redundant inequalities.
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Example 5.3 The system
⎛

⎝
d 0 0
s d 0
l s d

⎞

⎠x =
⎛

⎝
1
0
0

⎞

⎠ , d ∈ [1,2], s ∈ [−4,−2], l ∈ [−8,−4],

with a Toeplitz matrix is considered in [3], where the solution set

1/2 ≤ x1 ≤ 1, 2x2
1 ≤ x2 ≤ 4x2

1 , 4x3
1 ≤ x1x3 − x2

2 ≤ 8x3
1 (5.1)

is found by solving the parametric system. By applying elimination of the parameters
and Theorem 4.1, we obtain the following description of the parametric solution set

|3x1/2 − 1| ≤ |x1|/2, (e1)

|−3x1 + 3x2/2| ≤ |x1| + |x2|/2, (e2)

|−6x1 − 3x2 + 3x3/2| ≤ 2|x1| + |x2| + |x3|/2, (e3)

|3(x2
2 − x1x3)/2 + 6x2

1 | ≤ |x2
2 − x1x3|/2 + 2x2

1 , (e2,3(s))

|−x2 + 3x2
1 | ≤ x2

1 , (e1,2(d))

|x3 − 6x2
1 − 3x1x2| ≤ 2x2

1 + |x1x2|, (e1,3(d))

|x2
2 − x1x3 + 6x3

1 | ≤ 2x3
1 , (e1,(2,3)(d, s))

|3(x2
2 − x1x3) + 6x1x2| ≤ |x2

2 − x1x3| + 2|x1x2|, (e2,3(d))

which is equivalent to (5.1). It is not difficult to see that the boundary of the parametric
solution set is formed by e1, e1,2(d) and e1,(2,3)(d, s).

6 Conclusion

The proposed modified parameter elimination process simplifies the representation
of the inequalities describing the solution set. This facilitates the analytic derivations
and also the software implementation of the elimination process. The solution set
characterization does not depend on the particular orthants. It is presented by fewer
inequalities compared to the elimination initially proposed in [3].

The derived explicit description of 2D parametric solution sets involves a mini-
mal number of characterizing inequalities. The number of these inequalities grows
linearly with the number of 2nd class parameters involved in the system and does
not depend on the number of the involved 1st class parameters. The boundary of any
2D parametric solution set is described by polynomial equations of at most second
degree.

Theorem 4.1 implicitly specifies which are the superfluous or redundant inequal-
ities when the general elimination Theorem 3.1 is applied to two parametric equa-
tions. Since the elimination of 2nd class parameters from linear systems involving
more equations consists of parameter elimination applied to each pair of inequalities
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containing the parameter, Theorem 4.1 is important for and applicable to arbitrary
parametric systems. The above results serve as a background for further investiga-
tions on the description of particular or more general parametric solution sets.

Acknowledgements The author thanks both of the referees whose numerous remarks and overall sug-
gestions helped for improving the paper.

Appendix: Modifying the order of parameter elimination

Consider a 2D parametric linear system. Assume that the first m1 parameters, 0 ≤
m1 < m, are 1st class parameters which are eliminated from the (trivial) inequalities
(3.1) characterizing the parametric solution set. Then these inequalities have the form

f0,1 +
∑

ν∈N1

fν,1ṗν ∓
∑

ν∈N1

|fν,1|ṗν +
m∑

μ=m1+1

fμ,1pμ ≤ 0 ≤ · · · ,

f0,2 +
∑

ν∈N2

fν,2ṗν ∓
∑

ν∈N2

|fν,2|ṗν +
m∑

μ=m1+1

fμ,2pμ ≤ 0 ≤ · · · ,

where fλ(x) := (fλ1(x), fλ2(x))�, λ = 0, . . . ,m and fλi(x) := Ai•λx −biλ, i = 1,2.
Eliminating the first 2nd class parameter pm1+1 we get the following cross in-

equality pair.

f0,1fm1+1,2 − f0,2fm1+1,1 +
m1∑

ν=1

(fν,1fm1+1,2 − fν,2fm1+1,1)ṗν

∓
m1∑

ν=1

(|fν,1fm1+1,2| + |fν,2fm1+1,1|)p̂ν

+
m∑

μ=m1+2

(fμ,1fm1+1,2 − fμ,2fm1+1,1)pμ ≤ 0 ≤ · · · ,

that is

	0,m1+1 +
m1∑

ν=1

	ν,m1+1ṗν ∓
m1∑

ν=1

|δ	ν,m1+1|p̂ν +
m∑

μ=m1+2

	μ,m1+1pμ ≤ 0 ≤ · · · ,

(e1,2(1))

where δ = {1 if ν ∈ N1, −1 if ν ∈ N2}.
Eliminating pm1+2 we get three more cross inequality pairs. The first one is

	0,m1+2 +
m1+1∑

ν=1

	ν,m1+2ṗν ∓
m1∑

ν=1

|δ	ν,m1+2|p̂ν
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∓ (|fm1+1,1fm1+2,2| + |fm1+1,2fm1+2,1|)p̂m1+1

+
m∑

μ=m1+3

	μ,m1+2pμ ≤ 0 ≤ · · · , (e1,2(2))

which can be written as a single absolute value inequality

∣∣∣∣∣	0,m1+2 +
m∑

μ=1,μ �=m1+2

	μ,m1+2ṗμ

∣∣∣∣∣

≤
∑

ν∈N1∪N2

|δ	ν,m1+2|p̂ν + (|fm1+1,1fm1+2,2| + |fm1+1,2fm1+2,1|)p̂m1+1

+
m∑

μ=m1+3

|	μ,m1+2|p̂μ. (e1,2(2))

And from the inequalities

f0,2 +
∑

ν∈N2

fν,2ṗν ∓
∑

ν∈N2

|fν,2|ṗν + fm1+1,2ṗm1+1 ∓ |fm1+1,2|p̂m1+1

+
m∑

μ=m1+2

fμ,2pμ ≤ 0 ≤ · · · ,

	0,m1+1 +
m1∑

ν=1

	ν,m1+1ṗν ∓
m1∑

ν=1

|δ	ν,m1+1|p̂ν +
m∑

μ=m1+2

	μ,m1+1pμ ≤ 0 ≤ · · ·

we obtain the following cross inequality pair

f0,2	m1+2,m1+1 − 	0,m1+1fm1+2,2 −
∑

ν∈N1

	ν,m1+1fm1+2,2ṗν

∓
∑

ν∈N1

|	ν,m1+1fm1+2,2|p̂ν

+
∑

ν∈N2

(fν,2	m1+2,m1+1 − 	ν,m1+1fm1+2,2)ṗν

∓
∑

ν∈N2

(|fν,2	m1+2,m1+1| + | − 	ν,m1+1fm1+2,2|)p̂ν

+ fm1+1,2	m1+2,m1+1ṗm1+1 ∓ |fm1+1,2	m1+2,m1+1|p̂m1+1

+
m∑

μ=m1+3

(fμ,2	m1+2,m1+1 − 	μ,m1+1fm1+2,2)pμ ≤ 0 ≤ · · · . (e2,(1,2)(2,1))
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After simplifying the expressions and dividing by fm1+1,2 the last cross inequality
pair, written as one absolute value inequality, is

∣∣∣∣∣−	0,m1+2 −
m∑

μ=1,μ �=m1+2

	μ,m1+2ṗμ

∣∣∣∣∣

≤
∑

ν∈N1

|	ν,m1+2|p̂ν +
m∑

μ=m1+1,μ �=m1+2

|	μ,m1+2|p̂μ

+
∑

ν∈N2

|fν,2|(|	m1+2,m1+1| + |fm1+1,1fm1+2,2|)/|fm1+1,2|p̂ν .

(e2,(1,2)(2,1))

Now, we compare (e2,(1,2)(2,1)) and (e1,2(2)). The left sides of these inequalities are
the same since |a| = |−a| for any a. So, compare the right sides of these inequalities.
We shall prove that instead of (e2,(1,2)(2,1)) and (e1,2(2)) we can consider

∣∣∣∣∣	0,m1+2 +
m∑

μ=1,μ �=m1+2

	μ,m1+2ṗμ

∣∣∣∣∣ ≤
m∑

μ=1,μ �=m1+2

|	μ,m1+2|p̂μ. (e1,2(2̃))

Denote s12 := sign(fm1+1,2fm1+2,1), s11 := sign(fm1+1,1fm1+2,2), s	2,1 :=
sign(	m1+2,m1+1).

– If s12 �= s11, then |	m1+1,m1+2| = |fm1+1,1fm1+2,2| + |fm1+1,2fm1+2,1| and since

|	m1+2,m1+1| + |fm1+1,1fm1+2,2| ≥ |	m1+2,m1+1 + fm1+1,1fm1+2,2|
= |fm1+1,2fm1+2,1|,

|fν,2|(|	m1+2,m1+1| + |fm1+1,1fm1+2,2|)/|fm1+1,2|
≥ |fν,2||fm1+1,2fm1+2,1|/|fm1+1,2| = |−	ν,m1+2|

for every ν ∈ N2. Thus, we consider (e1,2(2)) which is equivalent to (e1,2(2̃)).
– If s12 = s11 and s	2,1 = s11, then we consider (e2,(1,2)(2,1)), where

|	m1+2,m1+1| + |fm1+1,1fm1+2,2| = |	m1+2,m1+1 + fm1+1,1fm1+2,2|
and |	m1+1,m1+2| ≤ |fm1+1,1fm1+2,2| + |fm1+1,2fm1+2,1|.

– The case s12 = s11 and s	2,1 = s11 follows from the first case above since s	2,1 =
−s	1,2 .

Similarly we prove that instead of (e1,(1,2)(2,1)) and (e1,2(2)) we can consider
(e1,2(2̃)).

By induction on the number of 2nd class parameters we prove that the order of
eliminating 1st and 2nd class parameters can be exchanged. Moreover, any order of
eliminating the parameters will generate the same system of characterizing inequali-
ties.
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