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Abstract We present a multivariate extension to Clenshaw-Curtis quadrature based
on Sloan’s hyperinterpolation theory. At the centre of it, a cubature rule for integrals
with Chebyshev weight function is needed. We introduce so called Chebyshev lattices
as a generalising framework for the multitude of point sets that have been discussed in
this context. This framework provides a uniform notation that extends easily to higher
dimensions. In this paper we describe many known point sets as Chebyshev lattices.

In the introduction we briefly explain how convergence results from hyperinterpo-
lation can be used in this context. After introducing Chebyshev lattices and the as-
sociated cubature rules, we show how most of the two- and three-dimensional point
sets in this context can be described with this notation. The not so commonly known
blending formulae from Godzina, which explicitly describe point sets in any number
of dimensions, also fit in perfectly.
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1 Introduction

Chebyshev polynomials are widely used for approximations in one dimension be-
cause the Chebyshev series of a function often rapidly converge. Once such an ap-
proximation is obtained, it can be used in the contexts of interpolation and numerical
integration. The latter leads to so called interpolating quadrature rules (see e.g. [15]).

In the multivariate case, it is more difficult to find an approximation which in-
terpolates the function at a specified number of points. The interpolation operation
can therefore be replaced by a projection of the given function onto the polynomial
function space. If the number of points exceeds the degrees of freedom in the func-
tion space, this approximation will generally not satisfy the interpolation criteria.
It is therefore not an interpolation, but a hyperinterpolation, a concept introduced by
Sloan in [12].

We are interested in approximating multivariate functions f on the s-dimensional
cube Cs := [−1,1]s by a polynomial of degree n. By P s

n we denote the vector space
of all polynomials of degree at most n in s dimension. We use product Chebyshev
polynomials T̂h that have a degree |h| := ∑s

r=1 |hr | and are defined as T̂h(x) :=
∏s

r=1 T̂hr (xr ) where T̂0(x) := 1 and T̂h(x) := √
2 Th(x) = √

2 cos(h arccos(x)). As
a basis for P s

n we will use these normalised product Chebyshev polynomials T̂n :=
{T̂h(x), |h| ≤ n}. They are known to be orthogonal on the domain Cs with respect
to the following continuous scalar product with Chebyshev weight function ω(x) :=
π−s

∏s
r=1(1 − x2

r )− 1
2 :

〈f1, f2〉ω :=
∫

Cs

f1(x) f2(x)ω(x)dx.

Indeed, due to the product structure this breaks down to product of univariate inte-
grals:

〈T̂h1, T̂h2〉ω =
s∏

r=1

∫ 1

−1
T̂h1,r

(xr ) T̂h2,r
(xr )ω(xr)dxr =

{
0 if h1 �= h2,

1 if h1 = h2.

An approximation of f will be obtained by projecting the function f onto T̂n:

P s
n [f ] :=

∑

h,|h|≤n

αh T̂h where αh := 〈f, T̂h〉ω.

Here αh can be seen as a Fourier coefficient of f in the Chebyshev basis of P s
n. In

practice, instead of evaluating the integrals from the continuous scalar product, one
might use a cubature rule with nodes x� and corresponding weights w� to approxi-
mate

αh ≈
∑

�

w� f (x�) T̂h(x�)︸ ︷︷ ︸
g(x�)

. (1)

Actually, it is this cubature rule for the integral with Chebyshev weight function that
will be the main topic of this paper. This is similar to what was studied in [14].
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The algebraic degree of cubature rule (1), i.e., the degree for which all polynomials
up to that degree are approximated exactly with this weighted sum, is chosen to be 2n.
The above rule must thus be exact for all functions g(x) with degrees up to 2n, which
can be ensured by verifying the rule for all polynomials from the basis, formally

∀ T̂h ∈ T s
2n :

∑

�

w� T̂h(x�) =
∫

Cs

T̂h(x)ω(x)dx. (2)

The degree 2n of this rule might seem excessive. However, this is necessary to ensure
exactness for all f ∈ P s

n in (1), thus leading to an equality instead of an approxima-
tion. Based on such a cubature rule, a discrete scalar product can be introduced as
follows

〈f1, f2〉L :=
∑

�

w� f1(x�) f2(x�). (3)

The final step in the derivation of a hyperinterpolation formula is the cubature rule
based projection that uses the discrete scalar product instead of the continuous one

Ls
n[f ] :=

∑

h,|h|≤n

ah T̂h where ah := 〈f, T̂h〉L, (4)

for which the following theorem can be used.

Theorem 1 Given a function f that is continuous in Cs , let Ls
n[f ] ∈ P s

n be de-
fined by (4), where the discrete inner product (3) has cubature points x� ∈ Cs and
weights w� > 0 and satisfies (2). If En[f ] = infψ∈P s

n
‖f − ψ‖∞, the best uniform

approximation of the function f by an element from the polynomial space P s
n, and

V = ∫
Cs

ω(x)dx is the measure of the domain then ‖Ls
n[f ]‖2 ≤ √

V ‖f ‖∞ and

‖Ls
n[f ] − f ‖2 ≤ 2

√
V En[f ]. The latter of these approximation errors reduces to

zero as the degree n goes to infinity:

‖Ls
n[f ] − f ‖2 → 0 as n → ∞.

Proof See [12]. �

Theorem 1 guaranties that the approximation Ls
n[f ] converges to f as the degree

n increases. Now, because the integrals of T̂h are known analytically, also the integral
approximations based on Ls

n[f ] will converge to the exact integral

Qn[f ] :=
∫

Cs

Ls
n[f ]dx =

∑

h,|h|≤n

ah

∫

Cs

T̂h(x)dx
n→∞−−−→

∫

Cs

f (x)dx =: I [f ].

It is thus guarantied that approximating the Fourier coefficients with a cubature rule
of sufficiently high degree leads to a converging function approximation and thus a
converging integral approximation. It is known that this cubature rule is stable [14]
in the sense that for n → ∞, the sum of the absolute value of the weights is finite.
Even more, this limit equals the volume of the domain Cs .
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Note that, due to the weight function ω(x) in the continuous scalar product, this
inner cubature rule uses a Chebyshev weighted setting. It should not be confused with
the outer cubature rule that approximates the integral with constant weight function.

Details on the cubature rule from (1) were deferred on purpose. This rule approx-
imates an integral with a Chebyshev weight function and is in fact the main topic of
this paper. Section 2 will introduce a general framework for describing points and
corresponding cubature rules for this Chebyshev weighted setting based on lattices.
Sections 3 through 5 then show how most of the known point sets in two, three and
s dimensions, can be described using this formalism. Section 6 finally concludes this
paper and gives some remarks on future research directions in this context.

2 Chebyshev lattice rules

2.1 Motivation for the rule structure selection

The construction of cubature rules for approximating integrals over Cs with the
Chebyshev weight function,

I [f ] :=
∫

Cs

f (x)ω(x)dx ≈
∑

�

f (x�)w� =: Q[f ], (5)

received a lot of attention, especially in two dimensions, see, e.g., [3, 9, 11, 16]. It is
the only known example of a centrally symmetric integral for which cubature rules
of arbitrary algebraic degree are known that attain Möller’s lower bound [2, 8, 9].
Furthermore, for a given degree, these rules are not unique. For degree n = 11 it was
illustrated that there is an infinite number of rules [16] (see also Sect. 3.4).

For several of the known cubature rules, the coordinates of most points are extrema
of Chebyshev polynomials, hence a selection of points of a non-uniform grid. An ad-
vantage is that these points are known explicitly, but the grid-like structure reduces
the number of distinct component values. This is typically something that one wants
to avoid. Not only because for certain functions identical component values might
not contain much new information about the function, but mainly due to the explo-
sive growth of the number of points as the number of dimensions goes up. Our aim
is to construct rules that do not have this disadvantage, are not limited to two/three
dimensions and can be represented compactly, similar to traditional lattice rules [13].

2.2 Chebyshev lattices

Following [13], an integration lattice Λ ⊂ R
s is a discrete subset which is closed un-

der addition and subtraction and contains Z
s . Points from this subset can be described

as linear combination of k = rank(Λ) linear independent generating vectors gj ∈ R
s

for j = 1, . . . , k. If we assume that Λ is an integration lattice, gj ’s components are
rational numbers. Writing them as an integer fraction gj = zj

dj
where zj ∈ Z

s and
dj ∈ Z, results in the so called canonical form. Using curly braces {·} only to denote
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the set of points,1 leads to a very compact notation of these integration lattice

Λ =
{

�1 z1

d1
+ · · · + �k zk

dk

+ zΔ

dΔ

, with �1, . . . , �k ∈ Z

}

.

We have included an additional offset vector zΔ in this notation. This allows us to
represent point sets that do not contain the origin. Unless stated otherwise, zΔ is
assumed to be a zero vector 0 and Λ will then contain the origin.

A component-wise mapping x = cos(π y ), defined as xr = cos(π yr) for r =
1, . . . , s, reduces the entire space R

s into a closed2 hypercube Cs . Using a closed
hypercube, the usual requirement for periodic functions is no longer necessary. Trans-
forming the points from Λ with this leads to a family of point sets we have named
Chebyshev lattices.

Definition 1 A s-dimensional rank-k Chebyshev lattice (CL) is described by the s-
dimensional non-zero integer generating vectors z1, . . . , zk and zΔ, positive integer
denominators d1, . . . , dk and dΔ. It can be written as a set satisfying

χ =
{

cos

(

π

(
�1 z1

d1
+ · · · + �k zk

dk

+ zΔ

dΔ

))

, with �1, . . . , �k ∈ Z

}

⊂ Cs.

In one dimension and for odd degrees n, a denominator d1 = n+1
2 and generating

vector z1 = [a] (where a is relative prime to (n + 1)) describes a Chebyshev lattice
which corresponds to the extrema of Chebyshev polynomials. In two and three di-
mensions, specific generators lead to point sets that are already presented in literature
and were discussed recently. In Sects. 3 through 5, we will show that most of them fit
into our Chebyshev lattice-framework.

2.3 Chebyshev lattice rule

For a cubature rule based on a Chebyshev lattice, the points x� must be assigned a cer-
tain weight w�. Using φ (‘condition’) that evaluates to 1 if the condition is satisfied,
0 if not, a cubature rule based on this point set can be introduced as follows.

Definition 2 A Chebyshev lattice rule is a cubature rule, Q[f ] from (5), with nodes
x� from a Chebyshev lattice and weights w� defined as

w� = w̃�

W̃
, where w̃� =

s∏

r=1

(
1

2

)φ(|x�,r |=1)

and W̃ =
∑

�

w̃�. (6)

This weighting scheme uses equal weights for inner points and halves the weight
for each component that is on the boundary: the weight is divided by the number of

1In a lattice context, {·} usually denotes taking components values modulo 1, but not here.
2This also differs from the usual setting where the entire space is reduced to an open hypercube [0,1)s

using a ‘modulo 1’ operation and functions are assumed to be periodic.
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neighbouring regions it is sharing its weight with. In three dimension for example,
points on the faces have half, points on edges a quarter and points on the vertices
one eight of the weight of the inner points. The normalisation constant is needed to
ensure the exactness of the cubature rule for a constant function.

3 Relation with known two-dimensional cubature rules

3.1 Morrow-Patterson points as full-rank Chebyshev lattice

It is easy to show that the Morrow-Patterson point set [9] for degrees n = 4ν − 3 fit
into the Chebyshev lattice rule framework from Sect. 2: it corresponds to a rank-2
Chebyshev lattice rule. For n = 4ν − 1 however, a nonzero offset zΔ will be needed
because [1,1], the cosine mapped origin, is not part of the point set (see Fig. 2(a).
This clarifies the need for the offset vector zΔ in Definition 1. As mentioned before,
several of the projections onto the coordinate axes coincide, as shown in Fig. 2(a).

The Morrow-Patterson cubature rule and its corresponding Chebyshev lattice no-
tations are summarised in Table 1. This is the first in a series of tables that lists the
generating vectors zj , offset vector zΔ, denominators dj and dΔ and the number of
points N as function of the degree n. For the two-dimensional point sets, they also
give the number of distinct projections onto the coordinate axes and information on
the symmetry of the set, using the same notation as in, e.g., [3] and summarised in
Fig. 1.

3.2 The Padua points, a rank-1 Chebyshev lattice

The Padua points can be formalised by a generating curve [1], as illustrated in
Fig. 2(b). Considering the fourth family (the other families would result in a rotated

Fig. 1 Overview of the symmetries that can be observed in two dimensional point sets. At the bottom are
some named groups where the checkmarks indicate which symmetries are included

Table 1 Morrow-Patterson cubature rule in the Chebyshev lattice rule formalism

n z1 z2 zΔ d1, d2, dΔ N #x,#y-proj Sym.

4ν − 3 [1,1] [0,2] [0,0] 2ν − 1 2ν2 2ν S2

4ν − 1 [1,1] [0,2] [0,1] 2ν 2ν (ν + 1) 2ν + 1 D4
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Fig. 2 Illustration of two-dimensional point sets of degree n = 11 (4ν − 1 type with ν = 3)

Table 2 Padua cubature rule described as Chebyshev lattice rule for odd degrees n

n z1 d1 N #x-proj #y-proj Sym.

4ν − 3 [2ν − 1,2ν] 2ν (2ν − 1) ν (2ν + 1) 2ν + 1 2ν Sx

4ν − 1 [2ν,2ν + 1] 2ν (2ν + 1) (ν + 1) (2ν + 1) 2ν + 2 2ν + 1 Sy

and/or reflected lattice) and an integer μ, this curve can be written parametrically as

γ4(t) = [cos ((μ + 1) t) , cos ((μ + 2) t)] where t ∈ [0,π] . (7)

The corresponding Padua points are equidistant sampled points of this curve γ4(t)

{

γ4

(
�1 π

d1

)}

with

{
�1 = 0, . . . , d1,

d1 = (μ + 1)(μ + 2).
(8)

Due to the construction, the sampled points coincide with the self intersections of the
curve γ4(t) (plus the remaining boundary points). Therefore, the number of Padua
points is less than d1 from (8), namely N = 1

2 (μ + 2)(μ + 3). Note that projections
onto the coordinate axes are not distinct: several points have equal component values.
The Padua cubature rule, with weights from Definition 2, has a degree n = 2μ + 1.

This Padua point set is a rank-1 Chebyshev lattice with z1 = [μ + 1,μ + 2] and
d1 = (μ + 1)(μ + 2) as summarised in Table 2, where the two general forms, n =
4ν − 3 and n = 4ν − 1, are separated to show the difference in symmetry properties.

3.3 Minimal D4-invariant cubature formulae

In [3] cubature rules of degrees n = 4ν − 1 and different symmetry properties are
discussed. Using α = − 1

2 , these correspond to the Chebyshev weighted integrals that
are considered here. It is easy to see in Fig. 3(a) that, except for the diagonals, these
rules can be described by a Chebyshev lattice rule. It yields the same generators as
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Table 3 Minimal D4 invariant cubature formulae [3] and best fitting Chebyshev lattice

(a) D4 invariant formulae

n N #x,#y-proj Sym.

3 4 2 D4

7 12 7 D4

4ν − 1 2ν (ν + 1) 4ν + 1 D4

(b) Chebyshev lattice resembling the point set from (a) as much as possible

n z1 z2 d1, d2 N #x,#y-proj Sym.

4ν − 1 [1,1] [0,2] 2ν 2ν (ν + 1) + 1 2ν + 1 D4

the Morrow-Patterson-set (see Table 1), but without the shift. The remaining points
are to be found as zeros of a known polynomial of degree 2ν.

Note that the nearest Chebyshev lattice, as shown in Table 3, has only one extra
point, thus leading to a near-minimal rule. The disadvantage of the extra point in the
Chebyshev lattice is however often compensated by the explicit expression for the
weights in Definition 2. They are known in advance and require far less work than
the linear system that needs to be solved to determine the weights for the point sets
in [3].

3.4 Three degree 11, fully symmetric cubature rules on a square

Using bifurcation analysis of the non-linear equations that characterise a degree
n = 11 rotation invariant cubature rule on the square C2 for the Chebyshev weight
function, three fully symmetrical cubature rules were found in [16]. These point sets
are shown in Fig. 3, together with the nearest Chebyshev lattice that could be found.
It is clear from this figure that they have several points in common. Solution ‘b’ is an
example of the D4-invariant rules from Sect. 3.3 while solution ‘c’ is the Morrow-
Patterson point set already discussed in Sect. 3.1. These degree n = 11 formulae and
accompanying Chebyshev lattices are shown in Fig. 3 and summarised in Tables 1, 3
and 4.

The unexpected structure of the points that are not shared, the cross and circle
structure in Fig. 3, can be explained. It turns out that for solution ‘b’ and its Cheby-
shev lattice are instances of a parametrized point set with 28 points. For two special
values of the parameter, some of these points coincide, leading to these two sets with
less than 28 points. For solution ‘d’ and the best fitting Chebyshev lattice, a similar
parameterised point set can be found. For the same parameter values as for solution
‘b’, the two point sets from Fig. 3(c) are found.

3.5 Discrete Fourier analysis

Using discrete Fourier analysis on a rhombus in [6], a point set for integrals with
Chebyshev weight function is derived. Degrees n = 4ν − 3 lead to the Morrow-
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Fig. 3 The three fully symmetric point sets originating from bifurcation analysis [16], shown as red circles
(◦), and the best fitting Chebyshev lattices drawn with blue crosses (×)

Table 4 Degree n = 11 cubature rule [16] (solution ‘d’) and best fitting Chebyshev lattice

(a) solution ‘d’

n N #x,#y-proj Sym.

11 24 13 D4

(b) Chebyshev lattice resembling the above points sets as much as possible

n z1 z2 zΔ d1, d2, dΔ N #x,#y-proj Sym.

11 [1,1] [0,2] [0,1] 7 24 7 D4

Patterson point set, while for degrees n = 4ν − 1, this results in the D4 invariant
rule obtained in [3] and mentioned in Sect. 3.3.

4 Relation with known three-dimensional cubature rules

4.1 Noskov

The first note of a explicit three-dimensional cubature rule for integrals with Cheby-
shev weight function is presented in [10, Example 4]. This paper briefly describes a
cubature rule with n = 4ν − 1 that can be reformulated as the Chebyshev lattice from
Table 5.

4.2 3-D Morrow-Patterson extension: rank-3 Chebyshev lattice

In [7], a three-dimensional point set similar to the Morrow-Patterson points is pre-
sented. It extends the idea of the Cartesian product of Chebyshev-Lobatto points
Cm = {cos jπ

m
, j = 0, . . . ,m} with odd (O) and even (E) indices j to three vari-

ables.
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Table 5 The three-dimensional rule as described in [10]

ν z1 z2 z3 zΔ d1, d2, d3, dΔ N

4ν − 1 [1,1,1] [2,0,0] [0,0,2] [1,0,0] 2ν 2ν3 + 3ν2 + ν

Table 6 Description of the 3-D extension to Morrow-Patterson [7] with Chebyshev lattice rules as func-
tion of the degree n. Only the (E,E,E) and (E,E,O) configuration are given, the others are identical,
up to a coordinate change. If a point (x, y, z) is in the set, so are the ones described, where p

xyz
i

is the i-th
component of a permutation of the variables in superscript. The last column lists the number of symme-
tries, 48 can be considered to be fully symmetric

(a) (E,E,E)-configuration

n z1 z2 z3 d1, d2, d3 N Symmetries #

4ν − 3 [1,1,1] [0,2,0] [0,0,2] 2ν − 1 2ν3 ±(p
xyz
1 ,p

xyz
2 ,p

xyz
3 ) 12

4ν − 1 [1,1,1] [0,2,0] [0,0,2] 2ν ν3 + (ν + 1)3 (±p
xyz
1 ,±p

xyz
2 ,±p

xyz
3 ) 48

(b) (E,E,O)-configuration

n z1 z2 z3 zΔ d1, d2, d3, dΔ N Symmetries #

4ν − 3 [1,1,1] [0,2,0] [0,0,2] [0,0,1] 2ν − 1 2ν3
±(p

xy
1 ,p

xy
2 , z)

±(−pxz
1 ,pxz

2 , y)

±(p
yz
1 ,−p

yz
2 , x)

}

12

4ν − 1 [1,1,1] [0,2,0] [0,0,2] [0,0,1] 2ν
ν (ν + 1)2

+ (ν + 1) ν2 (±p
xy
1 ,±p

xy
2 ,±z) 16

These point sets, with the weights from (2), can also be described by the Cheby-
shev lattice rule formalism as in Table 6. For some of the configurations, denoted by
(X,X,X) with X ∈ {O,E}, an offset vector is required.

Although these point sets were labeled ‘new’ in [7], except for the (E,E,E) con-
figuration with n = 4ν−1, these are examples of Noskov’s point set and, disregarding
coordinate changes and reflections, also blending formulae in three dimensions (see
Sect. 5). For degree n = 4ν − 1, the (E,E,E) configuration contains more points
than the ones found with the blending approach.

4.3 Discrete Fourier analysis

Similar to the two-dimensional point set, in [6] a three-dimensional point set is de-
rived. This is identical to the (E,E,E) configuration described in [7].

5 Higher-dimensional cubature rules: blending formula

The principle of blending, first used in [9], was explored further in [4] (part of this
work is published in [5]). The rules are derived from a blend of the nodes XA and
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XB coming from two (univariate) quadrature rules QA and QB

QA[f ] =
∑

l

wA
l f (xA

l ), QB [f ] =
∑

l

wB
l f (xB

l ). (9)

The s-dimensional cubature rule then uses the union of two blends of these nodes

XI = {
(xA

l1
, xB

l2
, xA

l3
, xB

l4
, . . .)

}
and XII = {

(xB
l1

, xA
l2
, xB

l3
, xA

l4
, . . .)

}
,

with suitable indexes lr from (9). The weights are combined in a similar fashion

W I =
{

1

2
wA

l1
wB

l2
wA

l3
wB

l4
· · ·

}

and W II =
{

1

2
wB

l1
wA

l2
wB

l3
wA

l4
· · ·

}

.

For degrees n = 4ν − 1, the two base quadrature rules use the zeros of the Cheby-
shev polynomial Tν(x) and Tν+1(x) − ρνTν−1(x) where ρ1 = 1

2 and ρν = 1
4 for

ν = 2,3, . . . . These zeros can be determined analytically, thus leading to the node
sets

XA =
{

cos

(

π
2l − 1

2ν

)

, l = 1, . . . , ν

}

, XB =
{

cos

(

π
2l

2ν

)

, l = 0, . . . , ν

}

.

Because these zeros are interleaved, the blended point set is a grid like point set
where only one of two neighbouring grid points is in the set. In two dimensions, this
resembles all white squares of a chess board. Note that because no corners are in the
blends, the Chebyshev lattice needs a nonzero zΔ.

Theorem 2 (Blending, degree n = 4ν −1) The s-dimensional Chebyshev lattice rule
with weights from (6) and generators, denominators and offset as follows

z1 =[1, 1, 1, 1 · · · 1, 1, 1],
z2 =[0, 2, 0, 0 · · · 0, 0, 0],
z3 =[0, 0, 2, 0 · · · 0, 0, 0],
...

. . .

zs−1 =[0, 0, 0, 0 · · · 0, 2, 0],
zs =[0, 0, 0, 0 · · · 0, 0, 2],

(10)

d1, . . . , ds = dΔ = 2ν, zΔ = [0,1,0,1, . . .],
describes a blending cubature rule of degree n = 4ν − 1. The number of points is

Ns
n = ν�s

2�(ν + 1)�s
2� + (ν + 1)�s

2�ν�s
2� =

{
2 [ν(ν + 1) ] s

2 , s even,

(2ν + 1) [ν(ν + 1) ] s−1
2 , s odd.

For degrees n = 4ν − 3, the nodes are chosen from the zeros of Tν+1 ± √
ρν Tν−1

XE =
{

cos

(

π
2l − 1

2ν − 1

)

, l = 1, . . . ,ν

}

, XF =
{

cos

(

π
2l − 2

2ν − 1

)

, l = 1, . . . ,ν

}

.
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Each of these sets has one end point of [−1,1], therefore some corners of Cs will be
included in the blended sets. The offset vector will thus only be nonzero to ensure that
the right corners are selected. Note that without offset, a rule with the same degree
is achieved, but some components are mirrored compared to the original blending
description.

Theorem 3 (Blending, degree n = 4ν −3) The s-dimensional Chebyshev lattice rule
with weights (6), generators (10), and denominators and offset as follows

d1, . . . , ds = dΔ = 2ν − 1, zΔ = [0, dΔ,0, dΔ, . . .],
describes a blending cubature rule of degree n = 4ν − 3. The number of points is

Ns
n = 2νs.

The degrees of the blending formulae in Theorems 2 and 3 was proven using ideal
theory [4], however, the Chebyshev lattice notation clearly shows how this breaks
down to the one-dimensional quadrature rules that were blended.

Proof To achieve this algebraic degree n, all polynomials from P s
n must be inte-

grated exactly. Due to the construction of the Chebyshev lattice, it is advisable to use
Chebyshev polynomials to show this. Formally, it boils down to proving that

∀Th ∈ T s
n : Q[Th] :=

∑

�

w� Th(x�) =
∫

[−1,1]s
Th(x)ω(x)dx =: I ! [Th] .

Due to the structure in the generators (10), points from the blending set depend only
on one or two components of the vector �, which becomes clear by writing a point as

x� =
[

cos

(

π
�1 + zΔ,1

d1

)

, cos

(

π
�1 + 2�2 + zΔ,2

d2

)

, . . . , cos

(

π
�1 + 2�s + zΔ,s

ds

)]

.

Consider now the approximation Q[Th], using the suitable ‘�’-indices, this becomes

Qh =
∑

�1

· · ·
∑

�s

w�

s∏

r=1

cos(hr arccos(x�,r )).

Now, the r-th component of x�, denoted by x�,r depends only on �1 and �r so, using
d1 = d2 = · · · = ds , the sums and the product can be reordered to

Qh =
∑

�1

w�1 cos

(
h1 π

d1
(�1 + zΔ,1)

) s∏

r=2

∑

�r

w�r cos

(
hr π

d1
(�1 + 2�r + zΔ,r )

)

.

The indexes �r were specified so that they do not produce duplicate points. The first,
�1 has a range [0, d1] and because zΔ,1 = 0 for all degrees, the offset component can
be removed there. For the other components of �, the integer parts inside the cosine
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can be re-indexed with m because (�1 + zΔ,r ) and (�1 + 2�r + zΔ,r ) have the same
parity. This allows us to specify explicit bounds for the integral approximation

Qh =
d1∑

�1=0

w�1 cos

(
h1 π

d1
�1

) s∏

r=2

qr with

qr =

⎧
⎪⎨

⎪⎩

∑� d1
2 �

m=0 w2m cos(hr π
d1

(2m)) for (�1 + zΔ,r ) even,

∑� d1−1
2 �

m=0 w2m+1 cos(hr π
d1

(2m + 1)) for (�1 + zΔ,r ) odd.

So far we haven’t mentioned anything about the weights, but their relative values
will be 1 or 1

2 depending on the position of one-dimensional points described with
the new index m. Depending on the parity of d1 (and thus the degree n), this leads to
four one-dimensional quadrature rules that, using a line under and/or above the sum
to indicate that the first and/or last term of the sum is halved, can be summarised as

n = 4ν − 1, d1 = 2ν n = 4ν − 3, d1 = 2ν − 1

(�1 + zΔ,r ) even
∑ν

m=0
cos

(
hr π
d1

(2m)
) ∑ν−1

m=0
cos

(
hr π
d1

(2m)
)

(�1 + zΔ,r ) odd
∑ν−1

m=0 cos
(

hr π
d1

(2m + 1)
) ∑ν−1

m=0
cos

(
hr π
d1

(2m + 1)
)

Now the cubature rule is decomposed into independent quadrature rules over the
different dimensions and it is not surprising that they are identical to the rules with
nodes XA, XB , XE and XF that were construct by Godzina [4]. As all those quadra-
ture rules have a degree n, the blended rule is exact for Chebyshev polynomials where
hr ≤ n for r = 1, . . . , s. This includes the polynomials with total degree up to n,
which concludes this proof. �

6 Conclusion and future work

In this paper we introduced Chebyshev lattices as a compact way to describe some
point sets that are known for (hyper-) interpolation and cubature. It clearly shows rela-
tions between known point sets and hints at higher dimensional generalisations. This
new framework also allows for systematic searches for “better” point sets through the
lattice description. These searches and the efficient FFT-enabled implementations of
multivariate Clenshaw-Curtis integration and interpolation are the subject of ongoing
research.
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