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Abstract The numerical solution of the Euler equations requires the treatment of
processes in different temporal scales. Sound waves propagate fast compared to ad-
vective processes. Based on a spatial discretisation on staggered grids, a multirate
time integration procedure is presented here generalising split-explicit Runge-Kutta
methods. The advective terms are integrated by a Runge-Kutta method with a macro
stepsize restricted by the CFL number. Sound wave terms are treated by small time
steps respecting the CFL restriction dictated by the speed of sound.

Split-explicit Runge-Kutta methods are generalised by the inclusion of fixed ten-
dencies of previous stages. The stability barrier for the acoustics equation is relaxed
by a factor of two.

Asymptotic order conditions for the low Mach case are given. The relation to
commutator-free exponential integrators is discussed. Stability is analysed for the
linear acoustic equation. Numerical tests are executed for the linear acoustics and the
nonlinear Euler equations.
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Atmospheric dynamics
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1 Introduction

The efficient numerical simulation of instationary processes in science and engineer-
ing where processes on different timescales are coupled requires time integration
procedures that deal with fast and slow components (or processes) in a different,
adapted way. This approach has become popular in the ODE community under the
name multirate time integration, see [8, 10, 20, 21].

In numerical weather prediction this approach is utilised under the name split-
explicit methods. The Euler equations of gas dynamics in 1D formulated as balance
equations of mass, momentum and energy admit wave solutions with three different
characteristic velocities: the advective velocity u and sound waves propagated with
velocities u ± cs . The stepsize of explicit integration methods is restricted by the
CFL number corresponding to the sound wave velocity |u| + cs . The pure advective
process allows much larger timesteps. Typical maximum advective velocities in the
lower to mid ranges of the troposphere are u ≈ 30 m/s which is about 1/10 of the
speed of sound. Thus, in those regions the Euler equations form a system where slow
and fast processes occur. We remark, that for a reliable numerical weather prediction
the dynamics in the tropopause have to be predicted as well. There, jet streams may
reach velocities of up to 1/3 of the velocity of sound.

There are several approaches to deal with the fast waves, see [6] for an overview.
Filtering of the basic equations completely eliminates or adds artificial damping to the
sound waves. Between the full Euler equations and hydrostatic models there are the
anelastic equations [14], pseudo-incompressible equations [5] and Boussineesq ap-
proximations [9] as non-hydrostatic models. Note, that these filtered equations may
influence the dispersion relation for large scale phenomena like gravity waves, see
[16]. Furthermore, filters can be applied to the spatial discretization via divergence
damping, see [24]. This paper deals with the third alternative—to design time inte-
gration methods that can deal efficiently with fast waves.

Split-explicit methods integrate the advection terms with a large timestep of a
Runge-Kutta- or multistep method where the stepsize is restricted by the CFL num-
ber of the advective velocity. The sound waves are treated by small time steps of a
simpler method respecting the CFL-condition of the fast waves. In [24, 25] a multi-
stage Runge-Kutta method in combination with forward-backward Euler is used.

When the stepsize for the fast waves tends to zero the fast wave equation is inte-
grated exactly. Given

y′(t) = f (y(t)) + g(y(t)), (1.1)

where f corresponds to the slow processes and g to the fast processes, we assume
that the equation y′ = f (c) + g(y) or more general y′ = c + g(y) can be solved
exactly. When g is linear, we arrive at the class of exponential integrators.

Splitting of the righthand-side in a (small) nonlinear part and a linear part y′ =
N(y) + Ly is the base of a variety of methods that have been developed in very
different application areas. The exact solution of y′ = c + Ay, y(0) = y0 is given by
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y(t) = exp(tA)y0 + tφ(tA)c, where φ(z) := (ez − 1)/z. The stability properties of
exact solutions can be maintained for numerical solutions by different approaches.
All these approaches require besides the approximation/evaluation of the exponential
function and the function φ additionally the discussion of local and global order of
accuracy of the methods.

First systematic investigations of higher order methods are given by Strehmel and
Weiner [22, 23]. In their methods—adaptive Runge-Kutta methods—the exponen-
tial function is approximated by a rational function with suitable stability proper-
ties, whereas the order of the underlying Runge-Kutta method is preserved. Lubich
and Hochbruck [11] use a Krylov-space approximation to the exponential function.
Hochbruck and Ostermann [12] use the matrix exponential itself in their methods.
Typical applications for these methods are either stiff problems or highly oscillatory
differential equations.

A more general approach to splitting methods is obtained in the setting of differ-
ential equations on manifolds. The righthand-side of the differential equation is given
by a vector field. For special vector fields it is assumed that the differential equation
is exactly solvable—this is exactly our assumption on the equation y′ = f (c)+g(y).
[15] give order conditions for a class of methods where multiple steps (exponentials)
at each stage are allowed.

When a step from tn to tn+1 is executed, the split-explicit methods of Wicker and
Skamarock [25] start the exact integration procedure always at yn. The exponential
integrators of Celledoni et al. [4] start at the point yn, too, but they allow for multiple
exponentials in each stage. By these multiple exponentials their methods also include
methods where the exact integration procedure starts at previously computed inner
stages Yni . Methods based on such an approach have been investigated in [13], too.
We generalise all these approaches by allowing for

– arbitrary starting points for the exact integration procedure based on previously
computed internal stages

– a more general constant term f (c) based on previously computed internal stages.

In order to make the method applicable to problems where the f - and g-terms in the
righthand-sides are balancing each other, we aim for a numerical approach where this
balance of f and g is respected (see next section, (2.3)). Unbalanced methods have
been constructed by Gassmann [7] where small time step integration with pure g-
terms is executed. These methods show improved stability properties compared with
the methods of Wicker and Skamarock.

The remainder unfolds as follows. In Sect. 2 we define the method and give some
basic properties. Section 3 is devoted to the derivation of order conditions. Stability
properties of the method with respect to the acoustics equation are derived in Sect. 4.
In Sect. 5 the construction of partitioned methods is outlined, and comparison with
existing methods with respect to their stability region is given. Numerical experi-
ments (Sect. 6) and conclusions end the paper.
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2 The method

Given the partitioned equation

y′(t) = f (y(t)) + g(y(t)), (2.1)

we assume that the equation y′ = c + g(y) where the tendencies c of the slow com-
ponents are fixed is solved exactly. By that assumption we split the otherwise rather
complicated investigation of order and stability into two steps. First, order and stabil-
ity properties of the multirate infinitesimal step method are investigated. Second, in a
practical implementation, the exact integration procedure is substituted by a numer-
ical integration procedure of sufficiently high order and sufficiently good stability
properties. The stability properties of the “finite step” version have to be reviewed
afterwards.

A Runge-Kutta method for the integration of y′ = F(y) uses internal stages of
type

Yni = yn + h
∑

j

aijF (Ynj ).

Such a stage can be interpreted as a method using exact integration of y′ = c via

Zni(0) = yn

Z′
ni(τ ) =

∑

j

aijF (Ynj )

Yni = Zni(h).

The version above starts the exact integration procedure always at yn. The methods
of Knoth and Wolke [13] start the procedure always at Yn,i−1. A generalisation of
both is

Zni(0) = yn + h
∑

j

αij aijF (Ynj )

Z′
ni(τ ) =

∑

j

(1 − αij )aijF (Ynj )

Yni = Zni(h),

where we start at some intermediate point.
We extend the concept above to a partitioned system with F = f + g where y′ =

c + g(y) can be solved exactly. In order to avoid the explicit evaluation of g we use
linear combinations of Ynj −yn instead of linear combinations of g-evaluations at the
internal stages. In each stage a variable Zni(τ ) is computed as the exact solution of
Z′(τ ) = c + g(Z(τ)).
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Definition 2.1 A Multirate Infinitesimal Step method (MIS) is given by internal
stages Yni defined by

Zni(0) = yn +
∑

j

αij (Ynj − yn) (2.2a)

∂

∂τ
Zni(τ ) = 1

h

∑

j

γij (Ynj − yn) +
∑

j

βij f (Ynj ) + dig(Zni(τ )) (2.2b)

Yni = Zni(h), (2.2c)

where the update formula is given as stage number s +1 via yn+1 = Yn,s+1. For i ≤ j

we have αij = βij = γij = 0. The method is balanced if

di =
∑

j

βij . (2.3)

Note, the first stage is Yn1 = yn as usual. By interpreting the update yn+1 as stage
s + 1, the stages and the final value yn+1 can be treated in a unified way. In this paper
we restrict ourselves to balanced methods.

The following abbreviations will be used below:

(α)ij = αij , (β)ij = βij , (γ )ij = γij ,

C = diag(c1, . . . , cs+1), D = diag(d1, . . . , ds+1), C̃ = diag(c̃1, . . . , c̃s+1),

Y = (Y T
n1, . . . , Y

T
n,s+1)

T , f (Y ) = (f (Yn1)
T , . . . , f (Y T

n,s+1))
T , etc.,

1 = (1, . . . ,1)T , R = (I − α − γ )−1, b̃T = eT
s+1RD, c̃ = αc.

In matrix notation a MIS method is given as

Z(0) = 1 ⊗ yn + (α ⊗ I )(Y − 1 ⊗ yn) (2.4a)

∂

∂τ
Z(τ) = 1

h
(γ ⊗ I )(Y − 1 ⊗ yn) + (β ⊗ I )f (Y ) + (D ⊗ I )g(Z(τ)) (2.4b)

Y = Z(h) (2.4c)

yn+1 = eT
s+1Y. (2.4d)

It is helpful to keep in touch with the explicit Runge-Kutta method that corresponds
to the case g = 0. We use again the (slightly nonstandard) notation that the new
approximation yn+1 is added as stage number s + 1, i.e. the Runge-Kutta method
is defined by a matrix A ∈ R

(s+1)×(s+1). Nodes are given by c = A1, where always
ss+1 = 1.

Theorem 2.1 When g = 0 the MIS method is equivalent to the application of an
s-stage Runge-Kutta method to the equation y′ = f (y)

Y = 1 ⊗ yn + h(A ⊗ I )f (Y ), yn+1 = Ys+1, (2.5)
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where the coefficient matrix A is given by

A = Rβ. (2.6)

The nodes are c = Rβ1 = RD1.

Proof Using the matrix notation above we obtain easily

Y = Z(h) = Z(0) + hZ′

= 1 ⊗ yn + ((α + γ ) ⊗ I )(Y − 1 ⊗ yn) + h(β ⊗ I )f (Y )

⇒ Y = 1 ⊗ yn + h(Rβ ⊗ I )f (Y ).

Therefore, the underlying explicit Runge-Kutta method has coefficient matrix A =
Rβ and nodes c = Rβ1 = RD1. �

3 Order conditions

For the special case g = 0 the classical order conditions for Runge-Kutta methods
are obtained. In order to reproduce these conditions we use the matrix A from (2.6)
instead of the coefficient matrix β in the order conditions. The numerical solution is
expanded in a Taylor series. To this end we view Zni as a function of τ and h, both.
We write shorthand

G(Yni)
(k) : = ∂k

∂hk

∣∣∣∣
h=0

G(Yni), G(Zni)
(k,l) := ∂k+l

∂τ k∂hl

∣∣∣∣
τ=h=0

G(Zni). (3.1)

We have easily

Y
(k)
ni =

k∑

l=0

(
k

l

)
Z

(l,k−l)
ni . (3.2)

The derivatives of Z are obtained as follows. Derivatives purely by h (type (0, l))
are obtained by differentiating the initial value (2.2a) of Zni . For derivatives of type
(1, l) we have to differentiate the righthand side of the differential equation (2.2b) l

times with respect to τ . For derivatives of type (k, l), k ≥ 2 the righthand side of the
differential equation (2.2b) is differentiated at least once with respect to τ—therefore
all τ -independent terms vanish. We end up with

Z
(0,l)
ni =

∑

j

αij Y
(l)
nj

Z
(1,l)
ni = 1

l + 1

∑

j

γijY
(l+1)
nj +

∑

j

βij f (Ynj )
(l) + dig(Zni)

(0,l)

Z
(k,l)
ni = dig(Zni)

(k−1,l), k ≥ 2
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or in matrix notation

Z(0,l) = αY (l) (3.3a)

Z(1,l) = 1

l + 1
(γ ⊗ I )Y (l+1) + (β ⊗ I )f (Y )(l) + (D ⊗ I )g(Z)(0,l) (3.3b)

Z(k,l) = (D ⊗ I )g(Z)(k−1,l), k ≥ 2. (3.3c)

Finally, the recursion for the derivatives of Y is given by

Y (k) =
k∑

l=1

(
k

l

)
(D ⊗ I )g(Z)(l−1,k−l)

+ ((α + γ ) ⊗ I )Y (k) + k(β ⊗ I )f (Y )(k−1) (3.4)

Y (k) =
k∑

l=1

(
k

l

)
(RD ⊗ I )g(Z)(l−1,k−l) + k(A ⊗ I )f (Y )(k−1).

The recursion is initialised by (where F = f + g)

Y (0) = Z(0,0) = 1 ⊗ yn (3.5a)

Y (1) = (RD1 ⊗ I )g + (A1 ⊗ I )f

= (c ⊗ I )F (3.5b)

Z(0,1) = (αc ⊗ I )F = c̃ ⊗ F (3.5c)

Z(1,0) = (γ c ⊗ I )F + (β1 ⊗ I )f + (D1 ⊗ I )g

= ((γ + R−1)c ⊗ I )F = ((I − α)c ⊗ I )F = (c − c̃) ⊗ F. (3.5d)

With (3.4) we obtain expansions for higher order derivatives of y

Y (2) = 2(A ⊗ I )f (Y )(1) + (RD ⊗ gy)(2Z(0,1) + Z(1,0))

= 2Ac ⊗ fyF + RD(c + c̃) ⊗ gyF

Z(0,2) = (α ⊗ I )Y (2)

Z(1,1) = 1/2(γ ⊗ I )Y (2) + βc ⊗ fyF + Dc̃ ⊗ gyF

Z(2,0) = (D ⊗ I )g(Z)(1,0) = D(c − c̃) ⊗ gyF.

We end up with the third-order derivative of Y

Y (3) = (RD ⊗ I )(3g(Z)(0,2) + 3g(Z)(1,1) + g(Z)(2,0)) + 3(A ⊗ I )f (Y )(2)

= 3RD(α + γ /2) ⊗ gyY
(2) + 3(A ⊗ I )fyY

(2)

+ 3RDβcgyfyF + 3Ac2 ⊗ fyy(F,F ) + RDD(c − c̃)gygyF

+ (3RD(c̃, c̃) + 3RD(c̃, c − c̃) + RD(c − c̃, c − c̃)) ⊗ gyy(F,F )
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= 3RD(I + α)Ac ⊗ gyfyF

+ [
3RD(α + γ /2)RD(c + c̃) + RDD(c + 2c̃)

] ⊗ gygyF

+ 6AAc ⊗ fyfyf + 3ARD(c + c̃)fygyF

+ 3Ac2 ⊗ fyy(f,f )

+ (RDc2 + RDc̃2 + RD(c, c̃)) ⊗ gyy(F,F ).

Comparing with the expansion of the exact solution we obtain the well-known clas-
sical order conditions for order three

bT 1 = 1, bT c = 1/2, bT c2 = 1/3, bT Ac = 1/6 (3.6)

and 1 additional order condition for order two

b̃T (c + c̃) = 1 (3.7)

and 4 additional order conditions for order three

b̃T (I + α)Ac = 1/3 (3.8)

3b̃T (α + γ /2)RD(c + c̃) + b̃T D(c + 2c̃) = 1 (3.9)

bT RD(c + c̃) = 1/3 (3.10)

b̃T (c2 + c̃2 + c · c̃) = 1. (3.11)

4 Interpretation as exponential integrator

Celledoni et al. [4] developed commutator free integrators. We give a short sketch of
the framework.

A differential equation on a differentiable manifold M is given by

y′(t) = v(y(t))|y(t) ,

where y(t) ∈ M and v(y) is a vector field on M , i.e. v maps the manifold into the
class of sufficiently smooth vector fields on M . Note, that y occurs twice on the
righthand-side because the vector field v(y) specifies tangent vectors v(y)|x at each
point x ∈ M .

Points on a n-dimensional manifold are defined with respect to local coordinate
systems, where each coordinate system (x1, . . . , xn) admits canonical vector fields
∂x1, . . . , ∂xn. There are two interpretations of the vector field ∂xi : it is either the
derivative of a curve x(t) ∈ M with

xj (t) =
{

xj (0) + t for j = i

const. for j 	= i

or the directional derivative ∂f
∂xi

of a smooth function f : M → R.
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Canonical vector fields are generalised by the concept of frames. A system of
frames F1, . . . ,Fd , d ≥ n, is a system of smooth vector fields that span the tangential
space T M|x at each point x ∈ M . The righthand side v(y) of the differential equation
is represented by frames via

v(y)|x =
d∑

i=1

vi(y, x) Fi |x .

The coefficients vi(y, x) are not uniquely determined in the case n < d . A complete
system of frames has the property that differential equations

x′(t) =
d∑

i=1

vi Fi |x(t)

with constant coefficients vi can be solved exactly. The exact solution is formally
given by the exponential of the vector field

x(t) = exp

(
t

n∑

i=1

viFi

)
x(0).

The concept of frames is easily extended to our application: on the differentiable
manifold R

n we choose d = n + 1 frames, where F1, . . . ,Fn span R
n and Fn+1 is

given by the function g:

Fi |x = ei = (
0 . . . 0 1 0 . . . 0

)T
, i = 1, . . . , n

Fn+1|x = g(x).

The righthand-side is evaluated at intermediate stages, the coefficients are frozen
to obtain a righthand-side spanned by the frames, and the solution operator (expo-
nential map) is applied to this vector field. We consider exponential integrators in the
form

Y1 = yn

Yi = exp

⎛

⎝h
∑

j

aij

∑

k

vk(Yj , Yj )Fk

⎞

⎠Yj(i), i = 2, . . . , s + 1,

yn+1 = Ys+1,

where the update formula has the same structure as the internal stages. The method
is explicit when aij = 0 for i ≤ j . Note, that in stage i the exact solution operator is
applied to a previously computed internal stage Yj(i).

The class of exponential integrators described above fits in our framework of MIS
methods by setting

γ = 0, αij =
{

1 for j = j (i)

0 otherwise,
βij = aij , di =

∑

j

aij .
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They further belong to the class of methods developed in [4] where the successive
application of multiple exponentials on the initial value yn is allowed.

Therefore, these methods form the common subset of the exponential integrators
of [4] and our methods. For further development in the class of commutator-free
exponential integrators with application to advection-diffusion problems, see [2, 3].
There, in contrast to our application, the advective processes are treated by exponen-
tial integrators.

5 Stability of methods designed for numerical weather prediction

The dynamic core of weather prediction codes requires the solution of the Euler equa-
tions. Phenomena on different time scales occur—sound waves propagate fast com-
pared to advective processes.

5.1 The stability function

We apply the method to the linear test problem

y′ = μy + λy,

i.e. f (y) = μy, g(y) = λy. The exact solution of the initial value problem

y′ = c + λy, y(0) = y0

is given by

y(t) = exp(λt)y0 + tφ(λt)c, φ(z) := (ez − 1)/z.

The amplification of the numerical solution yn+1 = R(hμ,hλ)yn is described by the
stability function R. In matrix notation R is derived via

Yn = exp(hλD)(1yn + α(Yn − 1yn)) + φ(hλD)(γ (Yn − 1yn) + hμβYn) (5.1)

R(hμ,hλ) = eT
s+1 (I − exp(hλD)α − φ(hλD)γ − hμφ(hλD)β)−1

× (exp(hλD)(I − α)1 − φ(hλD)γ1) . (5.2)

The stability function for an infinite number of small steps serves to evaluate multirate
methods a priori without specifying the number of small steps taken. Surely, for a
finite number of small steps used in a practical implementation the stability properties
of the method have to be reviewed.

5.2 Stability for linear acoustics

The simplest equation admitting both advection and propagation of sound waves are
the linearised acoustics equations in 1D

ut + Uux = −csπx

πt + Uπx = −csux,
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where cs = √
(γ − 1)cpθ is the speed of sound, γ = cp/cv and κ = R/cp are the adi-

abatic constants, cp, cv are the specific heat coefficients for expansion with constant
pressure/volume. The background state is given by a constant potential temperature
θ , reference pressure pref , and advection velocity U . π = cs/(γ − 1)(p/pref )κ is a
weighted perturbation Exner pressure. The system exhibits waves propagating with
velocities U ± cs .

Several established operating weather prediction codes use a spatial discretisation
based on staggered grids (Arakawa C-grid [1]), see ICON, WRF, [7, 17–19, 24, 25].
Advection is discretised by third (or higher) order upwind-differences, whereas the
terms responsible for sound waves are discretised by symmetric differences.

The procedures RK2/RK3 utilised in the WRF code use an underlying two/three-
stage Runge-Kutta method for the advection terms and the so-called forward-
backward Euler method for the integration of the sound waves.

Applying a von Neumann stability analysis, we substitute a wave with wave num-
ber k via u(t, x) = uk(t) exp(ikx), π(t, x) = πk(t) exp(ikx) in the acoustics equation
to obtain for constant wave number k on a grid of gridwidth �x, where subscript k is
omitted,

u′(t) = − U

�x
a(z)u(t) − cs

�x
s(z)π(t) (5.3)

π ′(t) = − U

�x
a(z)π(t) − cs

�x
s(z)u(t) (5.4)

with z = exp(ik�x) and the discretisations a(z) for advection (third order upwind)
and s(z) for symmetric differences on staggered grids for the sound waves are given
by

a(z) = 2z + 3 − 6z−1 + z−2

6

s(z) = √
z
−1 − √

z.

Equation (5.3) admits a diagonalisation where the sound wave term admits eigenval-
ues ±cs/�xs(z). In order to discuss stability of our methods for fixed Courant num-
bers CA = U�t/�x, CS = cs�t/�x with respect to advection velocity and speed of
sound, we have to investigate

Ra(CA,CS) : = max
k∈[0,π]

|R(CAa(eik),±CSs(eik))|.

The stability region S is then given by S := {(CA,CS) : Ra(CA,CS) ≤ 1}.
Finally, we will discuss the case when a finite number of small time steps is ap-

plied. Suppose, in stage i we apply ni small time steps with stepsize dih/ni to the
linear equation y′ = c + λy with initial value y(0) = y0.

When the small time step integrator is the explicit Euler method the stability func-
tion of the procedure is easily obtained. In case of ni = m small steps in each stage
we simply replace the exponential and the function φ in (5.1) by

exp(z,m) := (1 + z/m)m, φ(z,m) := (exp(z,m) − 1)/m.
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Also when different numbers of small steps are used in different stages, an explicit
representation of the stability function can be derived. Here, we use the forward-
backward Euler method. An explicit formula for the stability function becomes more
complicated because the components u,π are integrated by different formulas. Espe-
cially, the stability function can not be stated as a polynomial in CAa(z) and CSs(z).
In order to determine the stability regions, we preferred to set up the amplification
matrix for the system (by execution of the method) and to compute its eigenvalues.

5.3 Review of known methods

5.3.1 Wicker-Skamarock

The methods of Wicker and Skamarock [25] are given by α = γ = 0, so the small
time step integration starts always at time level tn. Their methods RK2 and RK3 are
given by the Butcher tableaus

0
1/2 1/2

0 1

0
1/3 1/3
1/2 0 1/2

0 0 1

.

Note, that RK2 has order 2, also for the time-split version, whereas RK3 has order
3 only for linear equations. Methods with α = γ = 0 have at most order 2 for the
time-split version (assuming exact integration of the fast process) because order con-
dition (3.8) reduces to

∑
i bici = 1/3 which contradicts the classical order condition∑

i bici = 1/2.

5.3.2 Knoth-Wolke methods

Knoth and Wolke [13] use γ = 0 and αi,i−1 = 1 for i = 2, . . . , s +1. Therefore, small
time step integration in stage i starts at the previously computed stage Yn,i−1.

The corresponding Butcher tableau of the underlying Runge-Kutta method (called
KW3 here) is given by

0
1/3 1/3
3/4 −3/16 15/16

1/6 3/10 8/15

.

5.3.3 Exponential integrators

We have implemented the method of order 3 based on the method of Heun with

α =

⎛

⎜⎜⎝

0
0 0
0 0 0
0 1 0 0

⎞

⎟⎟⎠ , γ = 0, A =

⎛

⎜⎜⎝

0
1/3 0
0 2/3 0

1/4 0 3/4 0

⎞

⎟⎟⎠ .

This method is denoted by CF3 in [15] and also in this paper.
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5.3.4 Simplified order conditions

Knoth and Wolke [13] and Owren [15] found no additional order conditions for or-
der 2, and one additional order condition for order 3. We generalise both methods
to

Definition 5.1 A method has property A if γ = 0, αij ∈ {0,1}, ∑
j αij ∈ {0,1}.

Theorem 5.1 Under property A there are no additional order conditions for order
two, and one additional order condition for order 3, namely (3.8).

Proof First, property A implies both

c̃k = αck and

D = C − C̃.

We have conditions (3.7) and (3.11) implied via

b̃T (c + c̃) = eT
s+1R(C − C̃)(c + c̃) = eT

s+1R(c2 − c̃2)

= eT
s+1(I − α)−1(I − α)c2 = c2

s+1 = 1

b̃T (c2 + cc̃ + c̃2) = eT
s+1R(C − C̃)(c2 + cc̃ + c̃2) = eT

s+1R(c3 − c̃3)

= eT
s+1(I − α)−1(I − α)c3 = c3

s+1 = 1.

Condition (3.9) is fulfilled via

3b̃T (α + γ /2)RD(c + c̃) + b̃T D(c + 2c̃)

= 3eT
s+1RDαc2 + eT

s+1RD(c2 + cc̃ − 2c̃2)

= eT
s+1RD(c2 + cc̃ + c̃2) = 1.

Finally, we have condition (3.10) fulfilled:

bT RD(c + c̃) = bT (I − α)−1(c2 − c̃2) = bT c2 = 1/3. �

For methods of order 3 with property A we have one additional order condition,
namely (3.8). This condition proves to be equivalent to the condition obtained in the
special case of the Knoth/Wolke methods (αi,i−1 = 1). The extra condition for third
order exponential integrators (condition (26b) from [15]) reads in our notation

∑

j

aKj cj + 1

2

∑

j

βs+1,j = 1

3
, (5.5)

where K is defined by αs+1,K = 1. Formula (5.5) proves easily equivalent to the
remaining order condition (3.8).
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5.4 Construction of partitioned methods

Our aim is to construct a three-stage method of order three. We parametrise the
method by c2, c3, α32, c̃4.

The underlying RK-method is completely determined by c2, c3, when the case
c2 = 2/3 is excluded.

By prescribing further α32 and c̃4 the remaining parameters are completely de-
termined. We have b̃T 1 = eT

4 RD1 = eT
4 RR−1c = 1 and b̃1 = 1. Therefore, b̃ is

determined by the latter restriction and order conditions (3.7) and (3.11). With
sij := αij + γij , we have s32 determined from condition (3.10). Then, we determine
s42, s43 from the values of b̃T . α43 is determined from condition (3.8). Finally, α42 is
determined from c̃ = αc.

It remains to satisfy condition (3.9). Eliminating all dependent parameters from
(3.9) yields a complex nonlinear equation in the 4 variables c2, c3, α32, c̃4 which has
to be solved numerically.

In order to find methods with improved stability properties, we followed two ap-
proaches:

– We used a genetic optimisation procedure, where we tried to find coefficient sets
where all coefficients are positive. This approach did not succeed.

– We determined several hundred coefficient sets satisfying the order conditions and
reviewed the stability regions by visual inspection. From that approach we obtained
several methods having improved stability properties compared with RK3. We
have chosen two of them for numerical experiments, namely MIS3A and MIS3B.

The coefficients are given with 16 digit accuracy in the appendix. The forward-
backward Euler method is applied as small time step integration procedure. Note,
that our methods have some slightly negative coefficients. Nevertheless, their stabil-
ity properties for the acoustics equation turned out to be favourable compared with
RK3 and other methods. Further, even in a nonlinear test example, where the stability
properties on a linear test equation serve only as heuristics, they turned out to allow
larger stepsizes than the established methods.

5.5 Stability regions

We give here an overview on the stability regions when the linear test equation is
given by the acoustics equation, discretised in space by third order upwind (advec-
tion) and central differences on a staggered grid (sound wave terms).

In order to analyse stability, it seems natural to favourise methods that have a large
stability region for an infinite number of small steps (MIS). Thus there is no small
time step size defined yet. The CFL number with respect to sound is therefore defined
with respect to the macro step size

CS = cs�t/�x, (5.6)

which is in contrast to the more common convention to display results with respect
to the small step CFL number C′

S = cs�τ/�x, see [7, 24, 25].
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Fig. 1 Stability regions for RK3 with exact integration (left) and stepsequence [2, 3, 6] (right). Axis are
CFL numbers with respect to macro step size �t

When methods with promising stability region for MIS are identified, the fi-
nite step case is investigated. In each stage i, i = 2, . . . , s, the number of forward-
backward Euler steps ni has to be fixed. We base a reasonable first guess on the as-
sumption that the (effective) small time step �τi = di/ni�t is restricted by the max-
imum CFL number 2 of the forward-backward Euler method. A save upper bound
for the CS -values inside the stability region (for MIS) is given by CS ≤ 12, see left
images in Figs. 1 to 6. We obtain

2 ≥ �τics/�x = di

ni

CS (5.7)

⇒ ni ≥ 6di. (5.8)

In case of RK3 this leads to the commonly used sequence [n2, n3, n4] = [2,3,6]. For
the first guess we check whether the stability region occupies most of the stability
region for the MIS case. Otherwise the values ni are increased.

The Figs. 1 to 6 show the stability regions of RK3, MIS3A, MIS3B, CF3, KW3.
The left hand images show stability for an infinite number of small time steps,
whereas the right hand images show stability for a fixed number of small time steps.
For convenience the lines CA = 1, CA = 1/6CS , CA = 1/12CS are drawn in all im-
ages. Assuming that advective velocities are bounded by μcS , we are interested in
methods being stable in the triangular region CA ≤ μCS , where μ is determined by
the speed of sound and typical advective velocities.

For fixed ratio U/cs ∈ {1/6,1/12} the stability restriction on the macro time step
CFL number CS = cs�t/�x is displayed in Table 1.

5.6 Divergence damping

Acoustic waves pose a severe restriction to the time step size for the simulation of
atmospheric dynamics by explicit methods. We want to point out that there are alter-
natives besides constructing methods where these restrictions are weakened.

Divergence damping is a simple but effective technique to combine sound wave
filtering with split-explicit methods. A diffusive term depending on the deviation of
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Fig. 2 Stability regions for MIS3A with exact integration (left) and stepsequence [3, 4, 6] (right). Axis
are CFL numbers with respect to macro step size �t

Fig. 3 Stability regions for MIS3Ba with exact integration (left) and stepsequence [2, 3, 4] (right). Axis
are CFL numbers with respect to macro step size �t

Table 1 Bounds on the macro time step CFL number for fixed ratio U/cs

Method U/cs = 1/6 U/cs = 1/12

RK3 3 3

MIS3A 3 6

MIS3Ba 4.5 4.5

MIS3Bb 6 6

CF3 2.3 2.4

KW3 2.5 2.3

divergence free flow is added to the balance of inertia. The stability barrier CS ≤ 3 for
RK3 can be broken by that approach. For a detailed description we refer to [24]. The
stability constraints for the fast and slow components are decoupled. The damping of
sound waves shifts the eigenvalues of the sound modes from the imaginary axis to the
left—thus the modulus of the exact amplification function is less than 1. Therefore,
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Fig. 4 Stability regions for MIS3Bb with exact integration (left) and stepsequence [4, 6, 8] (right). Axis
are CFL numbers with respect to macro step size �t

Fig. 5 Stability regions for CF3 with exact integration (left) and stepsequence [3, 6, 6] (right). Axis are
CFL numbers with respect to macro step size �t

there is more freedom for the construction of stable and consistent methods when
divergence damping is used. Nevertheless, the reason for the strong coupling in case
of undamped sound waves has not been explained in detail up to now.

For linear acoustics this reduces to the equations

ut + Uux = −csπx + νuxx

πt + Uπx = −csux,

with a diffusive parameter ν = α�x2/�τ , where �τ is the micro step size and α is a
parameter with a typical choice of α = 0.05. Unfortunately, the multirate infinitesimal
step analysis is not applicable to that type of filtering—each wave except the constant
wave (wavenumber k = 0) is wiped out of the solution.

Nevertheless, in order to have a fair comparison with the established RK3 method,
we display here stability regions with respect to divergence damping. We apply di-
vergence damping with α = 0.05. In order to determine the number of small steps to
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Fig. 6 Stability regions for KW3 with exact integration (left) and stepsequence [4, 5, 3] (right). Axis are
CFL numbers with respect to macro step size �t

Fig. 7 Stability regions for RK3 with divergence damping, α = 0.05, step sequences determined by
CS ≤ 12,24,36. Axis are CFL numbers with respect to macro step size �t

Fig. 8 Stability regions for MIS3A with divergence damping, α = 0.05, step sequences determined by
CS ≤ 12,24,36. Axis are CFL numbers with respect to macro step size �t

be taken we prescribe e maximal CFL number CS,max ∈ {12,24,36} and determine
ni by (5.7).

Below in Figs. 7 to 11 we display the stability regions for RK3, our methods
MIS3A and MIS3B as well as CF3 and KW3. The regions are displayed within
(CA,CS) ∈ [0,3] × [0,14] in case of CS,max ∈ {12,24} and within (CA,CS) ∈
[0,3] × [0,20] in case of CS,max = 36. In addition, the straight lines CA = 1,
CA = CS/4 and CA = CS/10 are displayed.

All methods except KW3 profit from the divergence damping. For KW3 the bound
with respect to advective CFL numbers is to restrictive. Our methods and RK3 are
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Fig. 9 Stability regions for MIS3B with divergence damping, α = 0.05, step sequences determined by
CS ≤ 12,24,36. Axis are CFL numbers with respect to macro step size �t

Fig. 10 Stability regions for CF3 with divergence damping, α = 0.05, step sequences determined by
CS ≤ 12,24,36. Axis are CFL numbers with respect to macro step size �t

Fig. 11 Stability regions for KW3 with divergence damping, α = 0.05, step sequences determined by
CS ≤ 12,24,36. Axis are CFL numbers with respect to macro step size �t

comparable, whereas our methods perform in the case where CS is limited by CS ≤
12 even without divergence damping as well as with divergence damping. RK3 needs
divergence damping to reach a stability region that covers the CS -axis up to CS ≈ 6.

6 Numerical experiments

We compare the methods MIS3A and MIS3B with RK3 [25], the exponential inte-
grator CF3 [4] and the method of Knoth/Wolke KW3 [13]. We compare accuracy
and stability for the linear acoustics equation, and show improved stability properties
even for a nonlinear example.
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Fig. 12 Error vs. CFL number for c/U = 12 (left) and c/U = 6 (right) for the acoustics equation

6.1 Tests on linear acoustics

The 1d linear acoustics problem described in Sect. 5.2 is considered. The problem
is spatially discretized in the interval [−2π,2π] on an Arakawa-C-grid [1] with 200
points with periodic boundary conditions. We choose the initial profile

u(0, x) =
{

(cosx + 1)2 for |x| ≤ π,

0 for |x| > π,
π(0, x) = 0.

The problem is solved for two different pairs (cS,U) = (1, 1
12 ) and (cS,U) = (1, 1

6 )

in [0, te]. The macro time steps �t are chosen such that the resulting macro time step
CFL numbers CS = cs�t/�x are in the range [1,7]. The end time te = 4π/U is
chosen in such a way, that the exact solution at t = te is identical to the initial profile
for the first time.

The error measured in the discrete L2-norm between the numerical solution and
the exact solution at t = te is plotted vs. the macro time step CFL number CS in
Fig. 12. We point out that the spatial grid remains fixed in our experiments—therefore
the numerical solution converges to the exact solution of the semidiscretised problem.
For small CFL numbers the error measured is just the difference between the exact
solution of the hyperbolic problem and the exact solution of the semidiscretised prob-
lem.

We plot the errors in the range [0,0.1] on a logarithmic scale. The maximum stable
CFL numbers are indicated by the first occurrence of solutions with an error larger
than 0.1. The theoretically predicted stability bounds on the macro time step CFL
numbers can be clearly identified to be between 2 and 3 for RK3, KW3, CF3. Our
methods MIS3A and MISBb have a stability bound of 6, whereas for MIS3Ba (using
half as much small time steps as MIS3Bb) the stability bound shrinks to 4.5.

Because the different methods use a different number of small time steps, it is
interesting to compare error vs. computational effort. Figure 13 shows the comparison
of the errors depending on the CPU time. The method CF3 seems to be best for higher
accuracies, but for moderate accuracies methods with relaxed stability restrictions
such as MIS3A, MIS3Bb have to preferred.
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Fig. 13 Error vs. CPU time for c/U = 12 (left) and c/U = 6 (right) for the acoustics equation

6.2 Euler equations

In addition experiments are performed with the proposed methods applied to the two–
dimensional nonlinear Euler equations

∂ρ

∂t
= −∂ρu

∂x
− ∂ρw

∂z
(6.1a)

∂ρu

∂t
= −∂ρuu

∂x
− ∂ρwu

∂z
− ∂p

∂(ρθ)

∂(ρθ)

∂x
(6.1b)

∂ρw

∂t
= −∂ρuw

∂x
− ∂ρww

∂z
− ∂p

∂(ρθ)

∂(ρθ)

∂z
− ρg (6.1c)

∂ρθ

∂t
= −∂ρuθ

∂x
− ∂ρwθ

∂z
(6.1d)

p = ρRθ(p/p0)
κ (6.1e)

in height coordinates without orography. Here u denotes the horizontal velocity, w the
vertical velocity, ρ the density, θ potential temperature, and p pressure. The primary
variables are

⎛

⎜⎜⎝

U

W

�

ρ

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

ρu

ρw

ρθ

ρ

⎞

⎟⎟⎠ .

The spatial discretization uses an Arakawa C-grid with periodic boundary conditions
in the horizontal and rigid boundary conditions w = 0 at z = 0 and z = H . Advection
terms are discretized by the above mentioned third order upwind method, the pressure
term by central differences and the gravity term is averaged from cell center to the
face position where the vertical wind component is located.

The example is a strongly numerical flow and describes a rising thermal in an
adiabatic atmosphere in a uniform horizontal flow of 20 m s−1 with pressure in hy-
drostatic balance. The initial and the final potential temperature perturbations are
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Table 2 Maximal possible time step for the above mentioned methods

Method RK3 KW3 CF3 MIS3A

Macro Time Step in s 0.9 0.5 0.5 1.6

Fig. 14 Thermal bubble at the beginning (left) and after 1000 s of simulations (right) for the RK3 method

displayed in Fig. 14. The thermal is transported laterally in a horizontally periodic
domain while rising upward by buoyancy.

The grid spacing is 125 m in both the x and z directions, and the domain is 20 km
wide and 10 km deep. The initial thermal has a radius of 2 km and is placed in the
center of the domain at a height of 2 km with a potential temperature excess of 2 K.
The solution is integrated for 1000 s, such that the rising thermal should be located in
the center of the domain and the solution should remain symmetric, see also Wicker
and Skamarock [24]. The terms represented in boldface in (6.1) are treated explicitly
in the time integration method and all other terms are part of the fast integration.

We have applied the methods RK3, KW3, CF3 and MIS3A to the problem. Diver-
gence damping is not applied. The macro time step �t has been chosen maximal such
that the final solution remains stable. All 4 methods show qualitatively correct solu-
tions for potential temperature and vertical velocities (displayed in Fig. 15) for this
benchmark problem. Whereas in the center region the vertical winds (up to 8 m s−1)
are positive, outside of the bubble air flows downwards. Symmetry of the solution is
preserved for all 4 methods. The maximal stepsizes are given in Table 2. The linear
stability analysis extends well to the nonlinear case—without divergence damping
our method MIS3A allows an almost doubled stepsize compared with RK3.

7 Summary and conclusion

We have generalised split-explicit Runge Kutta methods to the class of Multirate
Infinitesimal Step methods (MIS). These methods generalise, too, the class of com-
mutator free exponential integrators developed by [4]. Analysis of order and stability
is essentially based on the interpretation of the fast component integration procedure
being exact. Novel in the concept is the inclusion of previous tendencies (γ -terms)
into the righthand side of the fast integration procedure. This additional degree of
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Fig. 15 Contours of vertical wind after 1000 s of simulations for the four methods

freedom allows the construction of methods that allow a stepsize twice as large as for
standard partitioned Runge-Kutta methods as well as exponential integrators.

An open question is how to maintain the order of the method when a lower order
integration method is used for the fast process integration. In principle, an analysis
using asymptotic expansion of the global error of the fast process integration proce-
dure should give restrictions on the stepsize sequences allowed to maintain the order.

Appendix

Coefficients of method MIS3A:

α =
⎛

⎝
0.0
0.0 0.1262120947528743

0.0 0.9014049635455670 −0.1273518110241908

⎞

⎠ ,

β =
⎛

⎝
0.3798786885245902
0.0734109091499805 0.4330940089351694

−0.0982317605304536 −0.1550393152471826 1.0130284528345010

⎞

⎠ ,

γ =
⎛

⎝
0.0
0.0 0.1499085134212641

0.0 0.3225318330936224 −0.2401749994875805

⎞

⎠ ,

A =
⎛

⎝
0.3798786885245902
0.1783032436577844 0.4330940089351694

0.3011845221683809 −0.3142129750028820 1.0130284528345010

⎞

⎠ .
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Coefficients of method MIS3B:

α =
⎛

⎝
0.0
0.0 0.0567447894712588

0.0 0.5984205948350817 −0.0761105269067489

⎞

⎠ ,

β =
⎛

⎝
0.4197138394323076
0.0494103174250211 0.5761341869014835

−0.2304896605104612 0.4282028054551005 0.6892421263984294

⎞

⎠ ,

γ =
⎛

⎝
0.0
0.0 0.0784430572133444

0.0 0.6791817901685916 −0.5441329940536196

⎞

⎠ ,

A =
⎛

⎝
0.4197138394323076
0.1061505276016020 0.5761341869014835
0.2398985647758853 0.0708593088256853 0.6892421263984294

⎞

⎠ .
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