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Abstract.

For the numerical solution of stochastic differential equations an economical Runge–
Kutta scheme of second order in the weak sense is proposed. Numerical stability is
studied and some examples are presented to support the theoretical results.
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1 Introduction.

In recent years much attention has been devoted to stochastic differential
equations (SDEs) due to their application in many fields, including biology,
economics and finance. Unfortunately, in many cases analytic solutions are not
available, thus numerical methods are needed to approximate them. In this paper
we consider an Itô SDE [8]

dXt = a(t,Xt)dt+ b(t,Xt)dWt t0 ≤ t ≤ T

Xt0 = X0
(1.1)

where W = {Wt, 0 ≤ t ≤ T} denotes a standard Wiener process. The functions
a and b are the drift and the diffusion coefficients respectively, and we assume
that they are defined and measurable in [t0, T ] × R and satisfy both Lipschitz
and linear growth bound conditions in x. These requirements ensure existence
and uniqueness of solution of the SDE (1.1).
Numerical methods for the solution of SDEs are recursive schemes where tra-
jectories of solutions are computed at discrete points. In previous works (see [8],
which includes also an extensive bibliography) several numerical methods for
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the solution of (1.1) have been proposed. In [3] the authors gave an overview of
methods of Runge–Kutta type for SDEs studied until then. In [2] the numer-
ical solution of SDEs by means of linear multistep formulae has been considered.
In [1] and [13] new classes of stochastic Runge–Kutta schemes were derived. They
are of second-order accuracy in the weak sense. The methods in [13] has been
obtained by generalizing the way to obtain deterministic Runge–Kutta methods
from Taylor approximations.

For deterministic equations it is known that the classic Runge–Kutta methods
are expensive in terms of function evaluations. Therefore the so-called pseudo
Runge–Kutta methods have been proposed (see [5] and the references therein).

In this paper we present an extension of pseudo Runge–Kutta methods for
SDEs, in particular of the pseudo Runge–Kutta methods autostarting or of III
species [5], which coincides, in the case of second order, with the economical
Runge–Kutta method [6].

In order to facilitate the reading of the work, in Section 2 we quote determin-
istic economical pseudo Runge–Kutta methods and in Section 3 stochastic weak
second-order Runge–Kutta methods. In Section 4 we propose the new method.
Numerical stability for the proposed method is studied in Section 5, where the
domains of stability are obtained and showed in some figures. In the last section
numerical examples are given which compare the proposed method to SME-A
presented in [13].

2 Pseudo Runge–Kutta scheme.

The deterministic pseudo Runge–Kutta method autostarting proposed in [5]
for the Cauchy problem X ′(t) = f(t,X), X(t0) = X0 is

⎧
⎪⎨

⎪⎩

Xn+1 = Xn + hn

s∑

i=0

biKi,n n = 0, 1, . . . , N − 1

X0 = X(t0)

(2.1)

where bi ∈ R, s is the number of the stages, hn = tn+1 − tn, and

Ki,n = f
(
tn + cihn, Xn + hn

( i−1∑

j=0

bijKj,n +
s∑

j=0

bijKj,n−1

))

ci =
i−1∑

j=0

bij +
s∑

j=0

bij i = 0, . . . , s
−1∑

j=0

b0j = b00.

(2.2)

The order p, that is the smallest natural number s.t.

‖xn+1 − x(tn+1)‖ ≤ kh
p
n, k ∈ R

is a function of s and it is known that s+ 1 ≤ p ≤ 2s.
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For s = 0, the simple formula has been derived in [4]:

{
Xn+1 = Xn + hnK0,n n = 0, 1, . . . , N − 1

X0 = X(t0)
(2.3)

K0,n = f

(

tn +
1

2
hn, Xn +

1

2
hnK0,n−1

)

K0,−1 = f(t0, X0).

(2.4)

This method has the same cost and the same interval of stability of Euler’s
classic method [7], but it has order two. It coincides with the economical second-
order Runge–Kutta method proposed in [6], which is obtained, for s = 2, from

⎧
⎪⎨

⎪⎩

Xn+1 = Xn + hn

s∑

i=2

biKi,n n = 0, 1, . . . , N − 1

X0 = X(t0)

(2.5)

Ki,n = f
(
tn + cihn, Xn + hn

( i−1∑

j=2

aijKj,n + ai1Ks,n−1
))

Ks,−1 = K1,0 = f(t0, X0).

(2.6)

where ci =
∑i−1
j=1 aij , i = 2, . . . , s, and

3 Stochastic second-order Runge–Kutta schemes.

The class of stochastic methods proposed in [13] for the solution of (1.1) have
the form

Xn+1 = Xn + (α1k0 + α2k1)∆ + s0Γ + s1Λ+ s2Υ(3.1)

with

k0 = a(tn, Xn)

s0 = b(tn, Xn)

k1 = a(tn + µ0∆, Xn + λ0k0∆+ s0L)

s1 = b(tn + ρ0∆, Xn + γ0k0∆+ s0M)

s2 = b(tn + ρ0∆, Xn + γ0k0∆+ s0N)

(3.2)

where ∆ = T−t0
N > 0 is the equidistant nonrandom step size, tn = t0 + n∆,

n = 0, 1, . . .N is the nth step point, lower-case Greek letters are parameters and
Γ,Λ,Υ, L,M,N are random variables of mean square order 12 .
Analogously with the deterministic case, the technique for obtaining the order
conditions consistes in matching the truncated stochastic expansion of the solu-
tion about a point with the Itô Taylor approximation of the exact solution [11].
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One of the second-order methods of this family is the so-calledMethod SME-A:

Xn+1 = Xn + k1∆+
1

4
(2s0 + s1 + s2)�Wn +

+
1

4
(s2 − s1)

(√
∆−

(�Wn)2√
∆

)(3.3)

with

s0 = b(tn, Xn)

k1 = a

(

tn +
1

2
∆, Xn +

1

2
k0∆+

(
2−
√
6

4
�Wn +

√
6

12

)

s0

)

s1 = b(tn +∆, Xn + k0∆+
√
∆s0)

s2 = b(tn +∆, Xn + k0∆−
√
∆s0).

(3.4)

4 An economical stochastic Runge–Kutta method.

As in the deterministic case, if we save one function call for each step by
using information from the previous step, we obtain an economical Runge–Kutta
method for SDEs.

Theorem 4.1. In accordance with the notation employed in the previous
paragraph (see also [13]), the following scheme is a second-order Runge–Kutta
type method (ESRK in what follows)

Xn+1 = Xn + k1,n∆+
1

4
(2s0 + s1 + s2t)�Wn +

+
1

4
(s2 − s1)

(√
∆−

(�Wn)2√
∆

)(4.1)

n = 1, 2, . . . , N , with

k1,0 = a(t0, X0)

s0 = b(tn, Xn)

k1,n = a

(

tn +
1

2
∆, Xn +

1

2
k1,n−1∆+

(
2−
√
6

4
�Wn +

√
6

12

)

s0

)

n ≥ 1

s1 = b(tn +∆, Xn + k1,n−1∆+
√
∆s0)

s2 = b(tn +∆, Xn + k1,n−1∆−
√
∆s0).

(4.2)

Proof. Using the truncated Taylor expansion of a process f(t+∆, Xt+�W )
in terms of ∆ and �X = Xt+∆ −Xt [8] for the expansion of a and b, it’s easy
to prove that

∆2k1,n−1�
(2)∆2a
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and

∆�Wnk1,n−1�
(2)∆�Wna

where the notationA�(2)B means that replacing the variableA byB in a second-
order approximation leads to an equivalent approximation.
Thus the ESRK approximation (4.1) and the simplified order two weak Taylor
scheme given by

Xn+1 = Xn + b�Wn + a∆+
1

2
bb01
(
(�Wn)

2 −∆
)

+
1

2

(

b10 + a b01 +
1

2
b2b02 + ba01

)

∆�Wn

+
1

2

(

a10 + aa01
1

2
b2a02

)

∆2

are 2-equivalent.

5 Stability regions.

In order to study the stability regions for ESRK we consider the Itô test
equation

dXt = λXtdt+ µXtdWt t > t0 λ, µ ∈ C(5.1)

with nonrandom initial conditions Xt0 = x0 ∈ R, x0 �= 0.

Definition 5.1. We say that a numerical solution {Xn}n∈IN generated by
a scheme with equidistant stepsize applied to test equation (5.1) is mean square
stable if limn→∞E[|Xn|2] = 0.

When we apply the scheme (4.1)–(4.2) to (5.1) we obtain the difference equa-
tions

{
Xn+1 = P (zn)Xn +Q(zn)k1,n−1

k1,n = LnXn +Mk1,n−1
(5.2)

with k1,−1 = 0, zn = λ∆+ µ�Wn and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (z0) = 1 + z0 +
µλ

2
∆�W0 +

µ

2

(
(�W0)

2 −∆
)

P (zn) = 1 + zn +∆λµ

(
2−
√
6

4
�Wn +

√
6

12

)

+
µ

2

(
(�Wn)

2 −∆
)

Q(zn) =
zn∆

2

Ln = λ+ λµ

(
2−
√
6

4
�Wn +

√
6

12

)

M =
λ∆

2
.

(5.3)
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If we put

un = [Xn, k1,n−1]
T

(5.2) takes the form

un+1 = Aun

where

A =

[
P (zn) Q(zn)
Ln M

]

.

When we calculate the components of the second moment of un, the following
one-step difference equation is obtained:

Yn+1 = ΩYn

where

Yn =

⎡

⎢
⎣

Y 1n
Y 2n
Y 3n

⎤

⎥
⎦ =

⎡

⎢
⎣

E
(
u1n
)2

E
(
u2n
)2

E
(
u1nu

2
n

)2

⎤

⎥
⎦

and Ω is the stability matrix.
Under the pth matrix norm ‖ · ‖p it is evident that limn→∞ ‖Yn‖= 0 if
‖Ω‖p < 1.
The entries of Ω can be determined by direct computation.

Theorem 5.1. When method (4.1)–(4.2) is applied to the test equation (5.1),
the stability matrix Ω is given by

A =

⎡

⎢
⎣

Ω11 Ω12 Ω13

Ω21 Ω22 Ω23
Ω31 Ω32 Ω33

⎤

⎥
⎦

where

Ω11 = 1 +

(

µ2 + 2λ+
λµ
√
6

)

∆+

(

λ2
(

1 +
µ

2
√
6

)2

+
µ2

4
(1 + 4λ− 2

√
6λ)

)

∆2

+

(
2−
√
6

4

)2

λ2µ2∆3

Ω12 =
µ2

4
∆3 +

λ2

4
∆4

Ω13 = (λ+ µ
2)∆2 +

(

λ+
2−
√
6

4
µ2 +

√
6

12
λµ

)

λ∆3

Ω21 = λ
2

(

1 +

√
6

12
µ

)2

+

(
2−
√
6

4

)2

λ2µ2∆

Ω22 =
λ2

4
∆2
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Ω23 = λ
2

(

1 +

√
6

12
µ

)

∆

Ω31 = λ

(

1 +

√
6

12
µ

)

+
λ

12

(

12λ+

(

2
√
6 +
µ

2

)

λµ+ 3(2−
√
6)µ2
)

+

(
2−
√
6

4

)2

λ2µ2∆2

Ω32 =
λ2

4
∆3

Ω33 =
λ

2
∆ + λ

(

λ+

√
6

12
λµ+

2−
√
6

8
µ2
)

∆2.

The scheme is stable in the mean square sense with respect to ‖ · ‖∞ if

max{A,B,C} < 1

where

A = |Ω11|+ |Ω12|+ |Ω13|

B = |Ω21|+ |Ω22|+ |Ω23|

C = |Ω31|+ |Ω32|+ |Ω33|

in which Ωij are as given in Theorem 5.1.
If we restrict attention to λ, µ ∈ R, the region of mean square stability of the
scheme can be obtained for several values of ∆ (Figure 5.1).

Figure 5.1: Mean square stability regions.

6 Numerical results and conclusions.

In this section, numerical results from the implementation of ESRK pro-
posed in this paper are compared to those from the implementation of method



506 F. COSTABILE AND A. NAPOLI

SME-A [13]. In Section 4 we said that in scheme (4.1)–(4.2) at each step we use
a function call of the previous step. Therefore the cost of ESRK is less than the
cost of SME-A method.
As test problems linear and nonlinear one-dimensional stochastic differential
equations for which the exact solution in terms of the Wiener process is known
have been taken. For each of the four examples the approximations are compute
and the results are compared with the exact solutions. All the computations
were done on a PC with Core 2 processor using Matlab and 5.000 independent
simulations were generated for stepsizes ∆ = 2−1, . . . , 2−5. The mean, the stand-
ard deviation of the errors and the computational work (the number of function
evaluation nfc) for each problem are summarized in Tables 6.1–6.4.

Example 6.1. Consider the linear SDE [13]

{
dXt = λXtdt+ µXtdWt

X0 = x0.
(6.1)

This problem is the Black–Scholes stochastic differential equation used in op-
tion pricing. It’s easy to estimate the exact value of the first moment E[Xt] =
x0e

λt, which was approximated at the point t = 2, when x0 = 1, λ = 1.5, µ = 0.5.
The obtained results are shown in Table 6.1.

Table 6.1: Error, standard deviation and computational work in the approximation of
E[X2] in (6.1).

ESRK SME-A

∆ error st. dev. nfc error st. dev. nfc

2−1 5.7110 9.2642 90000 7.6151 9.9280 100000
2−2 2.8151 13.3127 170000 4.9142 12.1125 200000
2−3 0.9778 14.0820 330000 2.2497 13.8907 400000
2−4 0.2429 16.6619 650000 1.1344 15.1384 800000
2−5 0.0960 15.4648 1290000 0.5752 15.1021 1600000

For all the considered values of the stepsize we can prove that the scheme is not
stable, in particular, for ∆ = 2−1, ‖Ω‖∞ ≈ 4.24 and for ∆ = 2−5, ‖Ω‖∞ ≈ 2.81.
If λ = −0.5, we can see from the first picture of Figure 5.1 that the method
is mean square stable. In fact for ∆ = 2−1, ‖Ω‖∞ ≈ 0.71 and at the point t = 2
we have

ESRK SME-A

∆ error st. dev. error st. dev.

2−1 0.0403 0.2246 0.0710 0.2451

and if λ = −0.5 and µ = 0.1, for ∆ = 2−1, ‖Ω‖∞ ≈ 0.65 and at the point t = 2
we have
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ESRK SME-A

∆ error st. dev. error st. dev.

2−1 0.0082 0.0447 0.0237 0.0508

Example 6.2. Consider now the nonlinear SDE [13, 12]

{
dXt =

(
1
3X

1
3
t + 6X

2
3
t

)
dt+X

2
3
t dWt

X0 = 1.
(6.2)

The solution is Xt = (2t + 1 +
Wt
3 )
3 and the exact value of the first moment is

E[Xt] = 28 at point t = 1. The obtained results are summarized in Table 6.2.

Table 6.2: Error, standard deviation and computational work in the approximation of
E[X1] in (6.2).

ESRK SME-A

∆ error st. dev. nfc error st. dev. nfc

2−1 6.5867 8.4364 50000 9.9445 11.2810 50000
2−2 3.2955 8.2595 90000 6.0137 9.0378 100000
2−3 1.3770 8.8112 170000 3.4208 8.5430 200000
2−4 0.5221 8.8029 330000 1.7712 8.5497 400000
2−5 0.2347 8.9725 650000 0.8990 8.7529 800000

Example 6.3. Consider the nonautonomous SDE [12]

{
dXt = (t+Xt)dt+ t

2dWt

X0 = 1.
(6.3)

Since it is linear, it’s easy to see that E[Xt] = 2e
2 − (1 + t), which was approxi-

mated at the point t = 2. The obtained results are shown in Table 6.3.

Table 6.3: Error and standard deviation in the approximation of E[X2] in (6.3).

ESRK SME-A

∆ error st. dev. nfc error st. dev. nfc

2−1 1.5226 4.0310 90000 2.7750 4.4232 100000
2−2 0.3161 3.6589 170000 1.3593 3.7129 200000
2−3 0.2567 3.8555 330000 0.9427 3.8241 400000
2−4 0.0724 3.8422 650000 0.3328 3.7739 800000
2−5 0.0440 3.9574 1290000 0.2625 3.9214 1600000
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Example 6.4. Our fourth test problem is the nonautonomous SDE [12]

{
dXt = (tXt + 10t)dt+ bdWt

X0 = 10
(6.4)

with constant diffusion coefficient b = 0.1. The exact value of the first moment
is E[Xt] = 20

√
e − 10, which was approximated at t = 1. The obtained results

are in Table 6.4.

Table 6.4: Error and standard deviation in the approximation of E[X2] in (6.4).

ESRK SME-A

∆ error st. dev. nfc error st. dev. nfc

2−1 1.5681 1.5701 50000 4.5857 4.5863 50000
2−2 0.5521 0.5628 90000 2.4919 2.4941 100000
2−3 0.1568 0.2060 170000 1.3025 1.3090 200000
2−4 0.0373 0.1438 330000 0.6639 0.6778 400000
2−5 0.0094 0.1386 650000 0.3374 0.3642 800000

Numerical results show that there are practically no numerical differences be-
tween the two methods, as far as the error concerns, but ESRK is more eco-
nomic. Therefore, the idea of pseudo Runge–Kutta and economical Runge–Kutta
methods is useful also in the solution of SDEs.

REFERENCES

1. M. I. Abukhaled and E. J. Allen, A class of second-order Runge–Kutta methods for
numerical solution of stochastic differential equations, Stochast. Anal. Appl., 16(6) (1998),
pp. 977–991.

2. L. Brugnano, K. Burrage, and P. M. Burrage, Adams-type methods for the numerical
solution of stochastic ordinary differential equations, BIT, 40(3) (2000), pp. 451–470.

3. K. Burrage and E. Platen, Runge–Kutta methods for stochastic differential equations,
Ann. Numer. Math., 1 (1994), pp. 63–78.

4. F. Costabile, Un metodo con ascisse Gaussiane per l’integrazione numerica dell’equazione
differenziale ordinaria, Rend. Mat. Roma, 4(6) (1973), pp. 1–16.

5. F. Costabile, A survey of pseudo Runge Kutta methods, Rend. Mat. Roma, 23(VII) (2003),
pp. 217–234.

6. F. Costabile, R. Caira, and M. I. Gualtieri, Economical Runge Kutta method, Rend. Mat.,
15(VII) (1995), pp. 57–77.

7. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Springer, Berlin, 1992.

8. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer, Berlin, 1992.

9. G. N. Milstein, A method of second order accuracy integration of stochastic differential
equations, Theory Probab. Appl., 23 (1978), pp. 396–401.

10. Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential
equations, SIAM J. Numer. Anal., 33 (1996), pp. 2254–2267.



ECONOMICAL RUNGE–KUTTA METHODS FOR SDEs 509

11. A. Tocino, Mean-square stability of second-order RungeKutta methods for stochastic dif-
ferential equations, J. Comput. Appl. Math., 175 (2005), pp. 355–367.

12. A. Tocino and R. Ardanuy, Runge–Kutta methods for numerical solution of stochastic
differential equations, J. Comput. Appl. Math., 138(2) (2002), pp. 219–241.

13. A. Tocino and J. Vigo-Aguiar, Weak second order conditions for stochastic Runge–Kutta
methods, SIAM J. Sci. Comput., 24(2) (2002), pp. 507–523.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


