
BIT Numerical Mathematics (2008) 48: 51–59

Published online: 22 February 2008 – c© Springer 2008
DOI: 10.1007/s10543-008-0164-1

A NOTE ON THE EULER–MARUYAMA SCHEME
FOR STOCHASTIC DIFFERENTIAL EQUATIONS
WITH A DISCONTINUOUS MONOTONE DRIFT

COEFFICIENT�

NIKOLAOS HALIDIAS1 and PETER E. KLOEDEN2��

1Department of Statistics and Actuarial-Finance Mathematics, University of the Aegean,
Karlovassi 83200 Samos, Greece. e-mail: nick@aegean.gr

2Institut für Mathematik, Johann Wolfgang Goethe Universität, 60054 Frankfurt am Main,
Germany. e-mail: kloeden@math.uni-frankfurt.de

Abstract.

It is shown that the Euler–Maruyama scheme applied to a stochastic differential
equation with a discontinuous monotone drift coefficient, such as a Heaviside function,
and additive noise converges strongly to a solution of the stochastic differential equa-
tion with the same initial condition. The proof uses upper and lower solutions of the
stochastic differential equations and the Euler–Maruyama scheme.
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1 Introduction.

In [5] we proved the existence of strong solutions for d-dimensional autonomous
Itô stochastic differential equations

dXt = f(Xt)dt+ g(Xt)dWt, t ∈ [0, T ](1.1)

for which the drift coefficient is a monotone increasing function, but not ne-
cessarily continuous, and the diffussion coefficient is Lipschitz continuous. By
an increasing function we mean that f(x) ≤ f(y) whenever x ≤ y, where the
inequalities are interpreted componentwise. A motivating example is the scalar
SDE

dXt = H(Xt)dt+ dWt,(1.2)
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where H : R→ R is the Heaviside function, which is defined by

H(x) :=

{
0 if x ≤ 0

1 if x > 0.

Such equations arise, for example, when one considers the effects of background
noise on switching systems or other discontinuous ordinary differential equations.
In this paper we show that the Euler–Maruyama scheme applied to a stochastic
differential equation such as (1.2) can be used to obtain numerical approxima-
tions which converge strongly to a solution with the same initial value. Specif-
ically, we consider the numerical approximation of such stochastic differential
equations with additive noise, i.e. of the form

dXt = f(Xt)dt+AdWt, t ∈ [0, T ](1.3)

for which the drift coefficient is a monotone increasing function, which is contin-
uous from below but not necessarily continuous, and A is a d×k matrix andWt
a k-dimensional Wiener process.
Gyöngy and Krylov [4] have investigated such problems with a discontinuous
drift coefficient and a more general diffusion term than ours. In particular, they
proved that the Euler–Maruyama approximations converge in probability to the
unique solution (see Theorem 2.8). Later, under the same conditions as in [4] (see
Theorem 2.6) plus a monotonicity condition on the drift coefficient, Gyöngy [3]
extended the results in [4] to obtain the almost sure convergence of the Euler–
Maruyama approximations. However, the monotonicity condition in [3] does not
apply to our model problem (1.3), so our goal here is to give a different set of hy-
potheses which ensures the strong convergence of the Euler–Maruyama scheme.
Nevertheless, Theorem 2.8 of [4] will play a crucial role in our work. Moreover,
both the existence proof and the numerical results make extensive use of upper
and lower solutions.

2 Existence and uniqueness theory.

Let (Ω,F , P ) be a complete probability space and let {Ft}t≥0 be the smallest
filtration generated by the k-dimensional Wiener process Wt in the SDE (1.1).

Definition 2.1. A strong solution of the SDE (1.1) on an interval [0, T ] is
a stochastic process Xt which is Ft-measurable for each t ∈ [0, T ] with
E‖Xt‖2 <∞ for all t ∈ [0, T ] such that

Xt = X0 +

∫ t
0

f(Xs)ds+

∫ t
0

g(Xs)dWs, t ∈ [0, T ], w.p.1.(2.1)

Definition 2.2. A Ft-measurable stochastic process Ut is an upper solution of
the SDE (1.1) on the interval [0, T ] if the inequality (interpreted component wise)

Ut ≥ U0 +

∫ t
0

f(Us)ds+

∫ t
0

g(Us)dWs, t ∈ [0, T ],(2.2)
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holds with probability 1. If the process satisfies the reversed inequality (i.e.
with ≤), then we say that it is a lower solution.

Upper and lower solutions of stochastic differential equations have been con-
sidered previously under other names in [1], where conditions ensuring their
existence were given in [1], see also [2]. We proved the following theorem in [5].

Theorem 2.1. Suppose that f : Rd → Rd and g : Rd → Rd×k both satisfy
a linear growth bound,

‖f(x)‖+ ‖g(x)‖ ≤ K + L‖x‖, x ∈ Rd,(2.3)

and that

• f is increasing (but not necessarily continuous), i.e., f(x) ≤ f(y) whenever
x ≤ y (where the inequalities are interpreted componentwise),
• g is Lipschitz continuous.

In addition, suppose that the SDE (1.1) has mean-square continuous upper and

lower solutions Ut and Lt on [0, T ] with
∫ T
0 E‖f(Lt)‖

2dt < ∞,
∫ T
0 E‖f(Ut)‖

2dt
<∞ and Lt ≤ Ut for t ∈ [0, T ], w.p.1. Finally, suppose that X0 is F0-measurable
with E‖X0‖2 <∞ and L0 ≤ X0 ≤ U0, w.p.1.
Then the SDE (1.1) has at least one mean-square continuous strong solu-
tion Xt with initial value X0. Moreover, Lt ≤ Xt ≤ Ut for t ∈ [0, T ], w.p.1.

Theorem 2.1 applies in particular for the scalar SDE (1.2) with the Heaviside
drift coefficient f(x) = H(x) and diffusion coefficient g(x) ≡ 1. First we note
that H(x) is an increasing function and then that

X0 +

∫ t
0

dWs ≤ X0 +

∫ t
0

H(Xs)ds+

∫ t
0

dWs ≤ X0 +

∫ t
0

1ds+

∫ t
0

dWs

for any sample path continuous, non-anticipative stochastic process Xt, so

Lt := X0 +Wt, Ut := X0 + t+Wt

are lower and upper solutions, respectively, for the Heaviside SDE (1.2). Thus,
the Heaviside SDE (1.2) has at least one mean-square continuous strong solu-
tion X∗t taking values between those of these lower and upper solutions, specifi-
cally with

X0 +Wt ≤ X
∗
t ≤ X0 + t+Wt, t ∈ [0, T ], w.p.1.

3 The Euler–Maruyama scheme.

The Euler–Maruyama scheme with constant step size ∆ for the SDE (1.3) is

X
(∆)
n+1 = X

(∆)
n + f

(
X(∆)n

)
∆+A∆Wn,(3.1)
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for n = 0, 1, . . . , N∆ − 1, where N∆ := T/∆ and the the components of ∆Wn
are N(0,∆) distributed and independent, and the ∆Wn for different n are also
independent.
Our aim is to prove the following theorem.

Theorem 3.1. Suppose that the assumptions of Theorem 2.1 hold and, in
addition, that the drift coefficient f is continuous from below. Then there exists
a mean-square continuous strong solution Xt of the SDE (1.3) with the same
initial value and with Lt ≤ Xt ≤ Ut for t ∈ [0, T ] such that the solutions of the
Euler scheme converge strongly (i.e. mean-square) to this solution, i.e.,

lim
∆→0

sup
n=0,1,...,N∆

E
∥∥X(∆)n −Xtn

∥∥2 = 0.
The usual theorems on the strong convergence of the Euler–Maruyama scheme
as in [7] do not apply to the SDE (1.3) because of the lack of regularity of the
drift coefficient. Our proof below applies the Euler–Maruyama scheme to more
regular equations and then takes the limit. It makes extensive use of upper and
lower numerical solutions.

3.1 Upper and lower numerical solutions.

Let the step size ∆ > 0 be fixed. A lower solution of the Euler–Maruyama
scheme applied to the SDE (1.3) with constant step size ∆ is a finite sequence

of Ftn-measurable random variables L
(∆)
n with E‖L(∆)n ‖2 <∞ which satisfies

L
(∆)
n+1 ≤ L

(∆)
n + f

(
L(∆)n

)
∆+A∆Wn,(3.2)

for n = 0, 1, . . . , N∆ − 1, where N∆ := T/∆. An upper solution U
(∆)
n is defined

analogously with ≤ replaced by ≥.
If the SDE has a lower solution Lt, then Euler–Maruyama scheme has a lower

solution L
(∆)
n defined by

L
(∆)
n+1 = min

{
Ltn , L

(∆)
n + f(L(∆)n )∆ + [A∆Wn]

−
}
, n = 0, 1, . . . , N∆ − 1,

(3.3)

with L
(∆)
0 ≤ L0, where (this differs in sign from convention!)

[x]− := min{0, x} =

{
0 if x ≥ 0

x if x ≤ 0
.

By construction it follows that L
(∆)
n ≤ Ltn for each n.

Similarly, if the SDE has a upper solution Ut, then Euler–Maruyama scheme

has a upper solution U
(∆)
n defined by

U
(∆)
n+1 = max

{
Utn , U

(∆)
n + f(U (∆)n )∆ + [A∆Wn]

+
}
, n = 0, 1, . . . , N∆ − 1,

(3.4)
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with U
(∆)
0 ≥ U0, where

[x]+ := max{0, x} =

{
x if x ≥ 0

0 if x ≤ 0
.

By construction it follows that U
(∆)
n ≥ Utn for each n.

4 Successively iterated stochastic differentials.

To prove Theorem 3.1 we shall apply the Euler–Maruyama scheme to succes-
sively iterated stochastic differentials and take their convergence.
Recall that as well as being an increasing function with a linear growth bound,
the drift f is continuous from below, i.e., left continuous in the scalar case. In
addition, we assume that a lower solution Lt and an upper solutions Ut of the
SDE (1.3) are known with Lt ≤ Ut for t ∈ [0, T ].
We consider the following successive interations.

X
(j+1)
t = X0 +

∫ t
0

f
(
X(j)s
)
ds+AWt, t ∈ [0, T ],(4.1)

for j = 0, 1, 2, . . . with X
(0)
t ≡ Lt and some F0-measurable initial value X0 with

E‖X0‖2 < ∞ and L0 ≤ X0 ≤ U0. Equation (4.1) is not so much a stochastic
differential equations as a stochastic differential

dX
(j+1)
t = f

(
X
(j)
t

)
dt+AdWt, t ∈ [0, T ],

i.e., the right hand side is a known function which does not involve the un-

known “solution” X
(j+1)
t . It has a unique strong solution X

(j+1)
t (in the sense

of Theorem 2.1) for each j = 0, 1, 2, . . . by Theorem 2.2 in [5].

In particular, X
(j)
t is a lower solution and Ut an upper solution with X

(j)
t ≤

X
(j+1)
t ≤ Ut for all t ∈ [0, T ]. To see this note that

X
(j+1)
t −X(j)t =

∫ t
0

(
f
(
X(j)s
)
− f
(
X(j−1)s

))
ds, t ∈ [0, T ],

for j = 1, 2, . . . Thus, if X
(j)
t ≥ X(j−1)t for all t ∈ [0, T ], then f(X(j)t ) ≥

f(X
(j−1)
t ) for all t ∈ [0, T ] and it follows that X(j+1)t ≥ X(j)t for all t ∈ [0, T ].

Now for j = 1, we have X
(1)
t ≥ X

(0)
t ≡ Lt since Lt is a lower solution of the

SDE (1.3) and

X
(1)
t − Lt ≥

∫ t
0

(f(Ls)− f(Ls)) ds ≡ 0, t ∈ [0, T ].

The sequence of functions {X(j)t (ω)} is monotonically increasing and bounded
above by Ut(ω) on the interval [0, T ], so converges pointwise for each t and ω.
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We need to show that the limits form a stochastic process, in particular, satisfies
the required measurability and integrability conditions.

Since X
(j)
t ∈ [Lt, Ut] for all t > 0, then E‖X

(j)
t ‖

2 is bounded for any fixed t.

Thus,X
(j)
t converges weakly in L

2(Ω,Rd) to some X̄t for any t, i.e., E〈X
(j)
t , g〉 →

E〈X̄t, g〉 for any g ∈ L2(Ω,Rd). Choosing g to be a constant function equal

to any one of the unit vectors in Rd, it follows (componentwise) that EX
(j)
t

→ EX̄t.
We now want to show that X

(j)
t ≤ X̄t, w.p.1., for every j ∈ N and for every

t > 0. Suppose not. Then there exists some j ∈ N and A ⊆ Ω with P (A) > 0

such that X
(j)
t > X̄t, a.s., on A for some t > 0. Hence, E{X

(j)
t IA} > E{X̄tIA}

where IA is the indicator function of A. Moreover, we know that X
(j+1)
t ≥ X(j)t ,

a.s., so

E
{
X
(j+1)
t IA

}
≥ E
{
X
(j)
t IA

}
> E{X̄tIA}.

Now, since IA ∈ L2(Ω,R) we have that E{X
(j+1)
t IA} → E{X̄tIA}, and thus have

a contradiction.
Now using the Markov inequality, we obtain

P
(
X̄t −X

(j)
t ≥ ε

)
≤
E{X̄t −X

(j)
t }

ε
,

for every ε > 0, so X
(j)
t → X̄t in probability and hence from the boundedness

(see [12, Theorem 17.4, p. 146]) we have X
(j)
t → X̄t in L

2(Ω,Rd). Finally, since

the sequence X
(j)
t is monotone, it converges a.s, to X̄t for each t and X̄t is Ft

measurable.
There thus exists a unique limit X̄t(ω) with X

(j)
t (ω) ≤ X̄t(ω) ≤ Ut(ω) for

t ∈ [0, T ]. In particular, by the continuity from below,

lim
j→∞

f
(
X
(j)
t (ω)

)
= f(X̄t(ω)).

Taking the limit in the integral equation (4.1), using the Lebesgue Dominated
Convergence theorem, we obtain

X̄t(ω) = X0 +

∫ t
0

f(X̄s(ω))ds+AWt(ω), t ∈ [0, T ],

i.e., X̄t is a strong solution of the SDE (1.3).

5 Successively iterated Euler–Maruyama solutions.

Let the step size ∆ > 0 be fixed and let L
(∆)
n and U

(∆)
n be lower and upper

solutions of the Euler–Maruyama scheme with L
(∆)
0 ≤ X0 ≤ U

(∆)
0 .
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We consider an Euler–Maruyama analogue of the successively iterated differ-
entials (4.1), namely

X
(j+1),∆
n+1 = X(j+1),∆n + f

(
X(j),∆n

)
∆+A∆Wn, n = 0, 1, . . . , N∆ := T/∆,

(5.1)

for j = 0, 1, 2, . . . with X
(0),∆
n ≡ L∆n . Then X

(j+1),∆
n (ω) ≥ X(j),∆n (ω) for each

n = 0, 1, . . . , N∆ and all j = 0, 1, 2, . . . To see this first note that pathwise

X
(j+1),∆
n+1 −X(j),∆n+1 = X

(j+1),∆
n −X(j),∆n +

[
f
(
X(j),∆n

)
− f
(
X(j−1),∆n

)]
∆.

But for j = 1 we have X
(0),∆
n = L

(∆)
n , and

X
(1),∆
n+1 − L

∆
n+1 ≥ X

(1),∆
n − L∆n +

[
f
(
L∆n
)
− f
(
L∆n
)]
∆

with X
(1),∆
0 − L∆0 = X0 − L

∆
0 ≥ 0. Thus, X

(1),∆
n+1 ≥ L

∆
n+1 for every n ∈ N. By

induction and exploiting the monotonicity of f we have the desired result.

The vector of iterations (X
(j),∆
0 (ω), . . . , X

(j),∆
N∆

(ω)) is componentwise mono-
tonically increasing and bounded from above by the upper numerical solution
vector (U∆0 (ω), . . . , U

∆
N∆
(ω)). Thus it converges componentwise to the limit

(
X̄∆0 (ω), · · · , X̄

∆
N∆(ω)

)
,

which is also bounded above componentwise by the upper numerical solution

vector. As before we can prove that X
(j),∆
0 → X̄∆0 in L

2(Ω,Rd) as well as a.s.
Since the convergence is from below, we have

lim
j→∞

f
(
X(j),∆n (ω)

)
= f
(
X̄∆n (ω)

)
for each n = 0, 1, . . . , N∆. Thus in the limit we have pathwise

X̄∆n+1 = X̄
∆
n + f

(
X̄∆n
)
∆+A∆Wn

for n = 0, 1, . . . , N∆, i.e. X̄
∆
n satisfies the Euler–Maruyama scheme applied to

the SDE (1.3).

6 Convergence.

Finally, we need to show that the Euler–Maruyama solution X̄∆n converges
strongly to the solution X̄t of the SDE (1.3).

First we note that since the successive iterations X
(j)
t converge almost surely

to X̄t and are bounded from above by a mean-square integrable expression, they
also converge in the mean-square sense, i.e.,

E
(∥∥X(j)t − X̄t∥∥2)→ 0 as j →∞
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and similarly for the Euler iterations, i.e.,

E
(∥∥X(j),∆tn

− X̄∆tn
∥∥2)→ 0 as j →∞.

Thus,

E
(∥∥X̄∆tn − X̄tn∥∥2) ≤ E(∥∥X(j),∆tn

−X(j)tn
∥∥2)+ ε,

for every ε > 0 and j large enough.

In addition, for each j the Euler–Maruyama solution X
(j),∆
n converges in prob-

ability (see [4]) to the successive iteration X
(j)
t . Moreover, since the X

(j),∆
n are

bounded, the convergence here is also in L2(Ω,Rd), i.e.,

E
(∥∥X(j),∆tn

−X(j)tn
∥∥2)→ 0 as ∆→ 0.

Taking now the limit as ∆→ 0 in the above inequality we have that

lim
∆→0

E
(∥∥X̄∆tn − X̄tn∥∥2) ≤ ε.

Since, ε > 0 was arbitrary chosen we have the desired result. This completes the
proof of Theorem 3.1.

Remark 6.1. The result remains true if the drift coefficient is continuous
from above rather than from below. The essential change in the proof is to start

with X
(0)
t = Ut, i.e., the upper solution, and to construct a decreasing rather

than increasing sequence of iterations.
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