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Abstract.

The weak approximation of the solution of a system of Stratonovich stochastic differ-
ential equations with am–dimensional Wiener process is studied. Therefore, a new class
of stochastic Runge–Kutta methods is introduced. As the main novelty, the number
of stages does not depend on the dimension m of the driving Wiener process which
reduces the computational effort significantly. The colored rooted tree analysis due
to the author is applied to determine order conditions for the new stochastic Runge–
Kutta methods assuring convergence with order two in the weak sense. Further, some
coefficients for second order stochastic Runge–Kutta schemes are calculated explicitly.
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1 Introduction.

In recent years, derivative free Runge–Kutta type schemes have been proposed
for the strong approximation of stochastic differential equations (SDEs), see
e.g. [1, 2, 5, 9, 11, 16]. In contrast to this, special schemes have to be developed
for the weak approximation of SDEs, see e.g. [5, 6, 9, 17]. Recently, stochastic
Runge–Kutta (SRK) methods for the weak approximation have been studied
by Kloeden and Platen [5], Komori et. al. [7, 8], Rößler [12, 13, 14] and Tocino
and Vigo-Aguiar [19]. However, due to the knowledge of the author, all proposed
second order SRK methods suffer from an inefficiency if they are applied to SDEs
with a multi-dimensional Wiener process. Then, the number of stages and thus
the number of evaluations of the diffusion function depends at least linearly
on the dimension m of the driving Wiener process. This drawback becomes
significant especially for high-dimensional problems. In [14], SRK methods for
SDE systems with commutative noise have been introduced with four stages
independent of the dimension m of the driving Wiener process. The aim of the
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present paper is to carry over this item to the non-commutative noise case.
Therefore, we expand the class of SRK methods in [14] to a new class now also
applicable to SDEs with non-commutative noise. Essentially, these new SRK
methods possess two advantages. On the one hand, the number of stages and
thus the number of evaluations of the drift and the diffusion functions for each
step is constant, i.e. independent of the dimension m ≥ 1 of the driving Wiener
process. On the other hand, the number of random variables that have to be
simulated for each step is only 2m−1. The paper is organized as follows: Firstly,
in Sections 2–4 we briefly review the main results of the rooted tree analysis
for weak approximation [12, 15]. In Section 5, the new class of SRK methods is
introduced and order conditions are calculated by the rooted tree analysis given
in Section 2–4. Further, some coefficients for explicit second order SRK schemes
are presented. Finally, some numerical examples are presented in Section 6.
Let (Ω,F , P ) be a probability space with a filtration (Ft)t≥0 fulfilling the usual
conditions and let I = [t0, T ] for some 0 ≤ t0 < T <∞. We consider the solution
(Xt)t∈I of the d-dimensional Stratonovich SDE system

Xt = Xt0 +

∫ t
t0

a(s,Xs) ds+
m∑
j=1

∫ t
t0

bj(s,Xs) ◦ dW
j
s(1.1)

for d, m ≥ 1 and t ∈ I with an m-dimensional Wiener process (W )t≥0. Let
Xt0 = x0 ∈ R

d be Ft0-measurable with E(‖Xt0‖
2l) < ∞ for some l ∈ N.

Throughout the paper, suppose that a, bj : I × Rd → R
d fulfill a Lipschitz

and a linear growth condition w.r.t. the state variable x for j = 1, . . . ,m and
fulfill the conditions of the Existence and Uniqueness Theorem [4]. Further, let
ClP (R

d,R) denote the space of all g ∈ Cl(Rd,R) with polynomial growth, i.e.
there exists a constant C > 0 and r ∈ N, such that |∂ixg(x)| ≤ C(1 + ‖x‖

2r) for
all x ∈ Rd and any partial derivative of order i ≤ l [5]. We say that g belongs to
Ck,lP (I × R

d,R) if g ∈ Ck,l(I × Rd,R) and g(t, ·) ∈ ClP (R
d,R) holds uniformly

in t ∈ I. Let a discretization Ih = {t0, t1, . . . , tN} with t0 < t1 < · · · < tN = T of
the time interval I = [t0, T ] with step sizes hn = tn+1− tn for n = 0, 1, . . . , N−1
be given. Further, let h = max0≤n<N hn denote the maximum step size.

Definition 1.1. An approximation process Y converges weakly with order p

to X at time T as h→ 0 if for each f ∈ C2(p+1)P (Rd,R) exist a constant Cf and
a finite δ0 > 0 such that for each h ∈ ]0, δ0[ holds:

|E(f(XT ))− E(f(Y (T )))| ≤ Cf h
p.(1.2)

2 A general class of stochastic Runge–Kutta methods.

We consider a very general class of stochastic Runge–Kutta methods which
has been introduced in [12]: LetM be a finite set of multi-indices with κ = |M|
elements and let θν(h), ν ∈M, be some suitable random variables. For the weak
approximation of the solution (Xt)t∈I of SDE (1.1), a general class of s-stage
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stochastic Runge–Kutta methods is given by Y0 = x0 and

Yn+1 = Yn +
s∑
i=1

z
(0,0)
i a

(
tn + c

(0,0)
i hn,H

(0,0)
i

)
(2.1)

+
s∑
i=1

m∑
k=1

∑
ν∈M

z
(k,ν)
i bk

(
tn + c

(k,ν)
i hn,H

(k,ν)
i

)

for n = 0, 1, . . . , N − 1 with Yn = Y (tn), tn ∈ Ih, and

H
(k,ν)
i = Yn +

s∑
j=1

Z
(k,ν)(0,0)
ij a

(
tn + c

(0,0)
j hn,H

(0,0)
j

)

+
s∑
j=1

m∑
r=1

∑
µ∈M

Z
(k,ν)(r,µ)
ij br

(
tn + c

(r,µ)
j hn,H

(r,µ)
j

)

for i = 1, . . . , s, k = 0, 1, . . . ,m and ν ∈M∪ {0}. Here, let

z
(0,0)
i = αi hn z

(k,ν)
i =

∑
ι∈M

γ
(ι)
i

(k,ν)
θι(hn)

Z
(k,ν)(0,0)
ij = A

(k,ν)(0,0)
ij hn Z

(k,ν)(r,µ)
ij =

∑
ι∈M

B
(ι)
ij

(k,ν)(r,µ)
θι(hn)

for i, j = 1, . . . , s and let αi, γ
(ι)
i

(k,ν)
, A
(k,ν)(0,0)
ij , B

(ι)
ij

(k,ν)(r,µ)
∈ R be the coeffi-

cients of the SRK method. The weights can be defined by

c(k,ν) = A(k,ν)(0,0)e(2.2)

with e = (1, . . . , 1)T . If A
(k,ν)(0,0)
ij = B

(ι)
ij

(k,ν)(r,µ)
= 0 for j ≥ i then (2.1) is

called an explicit SRK method, otherwise it is called implicit. We assume that
the random variables θν(hn) satisfy the moment condition

E
(
θp1ν1 (hn) · . . . · θ

pκ
νκ (hn)

)
= O
(
h(p1+···+pκ)/2n

)
(2.3)

for all pi ∈ N0 and νi ∈ M, 1 ≤ i ≤ κ. The moment condition ensures a con-
tribution of each random variable having an order of magnitude O(

√
h). This

condition is in accordance with the order of magnitude of the increments of the
Wiener process. Remark that in the case of b ≡ 0, the SRK method reduces
to the well known deterministic Runge–Kutta method, so the introduced class
of SRK methods turns out to be a generalization of deterministic Runge–Kutta
methods.

3 Colored rooted tree analysis.

For the analysis of order conditions, without loss of generality we consider
an d-dimensional autonomous Stratonovich SDE system w.r.t. a m-dimensional
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Wiener process. Following the approach in [12, 15], we denote by TS(∆) the
set of colored rooted trees which have a root of type γ = and which may
consist of some further deterministic nodes of type τ = and stochastic nodes
of type σjk = jk

with a variable index jk ∈ {1, . . . ,m}. The variable index jk
is associated with the jkth component of the m-dimensional driving Wiener
process of the considered SDE. If not stated otherwise, each stochastic node has
its own variable index. So, if we have a tree with s stochastic nodes then to each
stochastic node corresponds exactly one of the indices j1, . . . , js.
Every tree t ∈ TS(∆) can be written by a combination of three different
brackets: If t1, . . . , tk are colored trees then we denote by (t1, . . . , tk), [t1, . . . , tk]
and {t1, . . . , tk}j the tree in which t1, . . . , tk are each joined by a single branch to
, , and

j
, respectively. Here, the order of the subtrees t1, . . . , tk does not

matter since any order leads to equivalent trees. Therefore, we obtain t2.4 =
([

j1
,

j2
]) = ([σj1 , σj2 ]), t2.6 = ({ j2

}j1 , ) = ({σj2}j1 , τ) and t2.15 =

({
j2
}j1 , { j4

}j3) = ({σj2}j1 , {σj4}j3) for the trees in Figure 3.1.

Figure 3.1: Some elements of TS(∆) with j1, j2, j3, j4 ∈ {1, . . . ,m}.

In the following, let l(t) be the number of nodes of t ∈ TS(∆). Then, we denote
by d(t) the number of deterministic nodes, by s(t) the number of stochastic
nodes of t ∈ TS(∆) and it holds l(t) = d(t) + s(t) + 1. The order ρ(t) of the
tree t ∈ TS(∆) is defined as ρ(t) = d(t) + 12s(t) with ρ(γ) = 0. For example, it
holds ρ(t2.4) = ρ(t2.6) = ρ(t2.15) = 2.
Now, let LTS(∆) denote the set of monotonically labelled trees, i.e. where
the nodes are monotonically numbered starting with number one at the root of
the tree. Then, α∆(t) is the cardinality of t, i.e. the number of possibilities of
monotonically labelling the nodes of t with numbers 1, . . . , l(t). For example, for
t1.2 = (σj1 , σj2) exists only one possible monotonically labelling (σ

2
j1
, σ3j2)

1 and
thus α∆(t1.2) = 1. In contrast to this, for t1.5.3 = (τ, σj1) holds α∆(t1.5.3) = 2.
Although (τ2, σ3j1)

1 and (σ3j1 , τ
2)1 are equivalent trees, there exist two different

labelled trees (τ2, σ3j1)
1 and (τ3, σ2j1)

1. So one has to distinguish between the
labels of deterministic and stochastic nodes (see [12] for details). Further, it
holds α∆(t2.4) = 1 and α∆(t2.6) = α∆(t2.15) = 3.
To each tree t ∈ TS(∆) we assign an elementary differential which is defined
recursively by F (γ)(x) = f(x), F (τ)(x) = a(x), F (σj)(x) = b

j(x) and

F (t)(x) =

⎧⎪⎨
⎪⎩
f (k)(x) · (F (t1)(x), . . . , F (tk)(x)) for t = (t1, . . . , tk)

a(k)(x) · (F (t1)(x), . . . , F (tk)(x)) for t = [t1, . . . , tk]

bj
(k)
(x) · (F (t1)(x), . . . , F (tk)(x)) for t = {t1, . . . , tk}j

.(3.1)
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Here f (k), a(k) and bj
(k)
define a symmetric k-linear differential operator, and

one can choose the sequence of subtrees t1, . . . , tk in an arbitrary order. For
example, the Ith component of a(k) · (F (t1), . . . , F (tk)) can be written as

(
a(k) · (F (t1), . . . , F (tk))

)I
=

d∑
J1,...,Jk=1

∂kaI

∂xJ1 . . . ∂xJk

(
F J1(t1), . . . , F

Jk(tk)
)

where the components of vectors are denoted by superscript indices, which are
chosen as capitals. Thus, we obtain for t2.6 the elementary differential

F (t2.6) = f
′′(bj1

′
(bj2), a) =

d∑
J1,J2=1

∂2f

∂xJ1∂xJ2

(
d∑

K1=1

∂bJ1,j1

∂xK1
bK1,j2 · aJ2

)
.

Definition 3.1. Let TS(S) denote the set of trees t ∈ TS(∆) with a root of
type γ which can be build by finite many steps of the form

a) adding a deterministic node of type τ , or
b) adding two stochastic nodes of type σjk , both with the same new variable
index jk for some k ∈ N.

Let LTS(S) denote the set of labelled trees t ∈ TS(S) with the nodes labelled
in the same order as they are added. Then, αS(t) is the number of all possible
different monotonically labels of t ∈ TS(S) with αS(t) = 0 if t /∈ TS(S).

The following Theorem holds due to Theorem 4.2 and Proposition 5.1 in [15].

Theorem 3.1. For p ∈ N0, f, ai ∈ C
2p+2
P (Rd,R), bi,j ∈ C2p+3P (Rd,R),

i = 1, . . . , d, j = 1, . . . ,m, and for t ∈ [t0, T ] with h = t − t0 the following
truncated expansion holds:

Et0,x0(f(Xt)) =
∑

t∈TS(S)
ρ(t)≤p

m∑
j1,...,js(t)/2=1

αS(t)F (t)(x0)

2s(t)/2 ρ(t)!
hρ(t) +O(hp+1).(3.2)

Next, we give an expansion for the approximation process (Y (t))t∈Ih defined
by the SRK method (2.1). For t ∈ TS(∆) let the density γ(t) be defined recur-
sively by γ(t) = 1 if l(t) = 1 and

γ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ∏
i=1

γ(ti) if t = (t1, . . . , tλ),

l(t)
λ∏
i=1

γ(ti) if t = [t1, . . . , tλ] or t = {t1, . . . , tλ}j .

Since the expansion for (Y (t))t∈Ih contains the coefficients and the random
variables of the SRK method, we define a coefficient function ΦS which assigns
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to every tree t ∈ TS(∆) an elementary weight:

ΦS(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ∏
i=1

ΦS(ti) if t = (t1, . . . , tλ)

z(0,0)
T
λ∏
i=1

Ψ(0,0)(ti) if t = [t1, . . . , tλ]

∑
ν∈M

z(k,ν)
T
λ∏
i=1

Ψ(k,ν)(ti) if t = {t1, . . . , tλ}k

(3.3)

where ΦS(γ) = 1, Ψ
(k,ν)(∅) = e with τ = [∅], σk = {∅}k and

Ψ(k,ν)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z(k,ν)(0,0)
λ∏
i=1

Ψ(0,0)(ti) if t = [t1, . . . , tλ]

∑
µ∈M

Z(k,ν)(r,µ)
λ∏
i=1

Ψ(r,µ)(ti) if t = {t1, . . . , tλ}r

.(3.4)

Here e = (1, . . . , 1)T and the product of vectors in (3.4) is defined by component-
wise multiplication, i.e. (a1, . . . , an)·(b1, . . . , bn) = (a1b1, . . . , anbn). Remark that
TS(S) ⊂ TS(∆). Further, each tree t ∈ TS(∆) has s(t) different variable indices
j1, . . . , js(t) while a tree u ∈ TS(S) has only s(u)/2 different variable indices.
Then Proposition 6.1 in [12] holds:

Proposition 3.2. Let (Y (t))t∈Ih be defined by the SRK method (2.1). As-
sume that for the random variables holds θι(h) =

√
h · ϑι for ι ∈ M with some

bounded random variables ϑι. Then for p ∈ N0, f, ai, bi,j ∈ C
2(p+1)
P (Rd,R) for

i = 1, . . . , d, j = 1, . . . ,m and for t ∈ [t0, T ] with h = t− t0 holds:

Et0,x0 (f (Y (t))) =
∑

t∈TS(∆)

ρ(t)≤p+
1
2

m∑
j1,...,js(t)=1

α∆(t) γ(t)F (t)(x0) E (ΦS(t))

(l(t)− 1)!
+O(hp+1).

4 Order conditions for stochastic Runge–Kutta methods.

Now, we apply the rooted tree expansions of the solution and the approxi-
mation processes in order to yield order conditions for the SRK method (2.1).

Definition 4.1. Let |t| denote the tree which is obtained if the nodes σji of t
are replaced by σ, i.e. by omitting all variable indices. Let a tree t ∈ TS(S) with
variable indices j1, . . . , js(t)/2 be given and let u ∈ TS(∆) with variable indices

ĵ1, . . . , ĵs(u) denote the tree which is equivalent to t except for the variable indices,
i.e. |t| ∼ |u| with s(t) = s(u). For a fixed choice of correlations of type jk = jl
or jk �= jl, 1 ≤ k < l ≤ s(t)/2, between the indices j1, . . . , js(t)/2, let β(t) denote

the number of all possible correlations between the indices ĵ1, . . . , ĵs(u) of tree u
such that t ∼ u holds. In the case of s(t) = 0 or t ∈ TS(∆)\TS(S) define
β(t) = 1.
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Note that in case ofm = 1 we have β(t) = 1 for all t ∈ TS(S). For example, for
t = (σj1 , σj2 , {σj2}j1) ∈ TS(S) and u = (σĵ1 , σĵ2 , {σĵ4}ĵ3) ∈ TS(∆), two cases
have to be considered. On the one hand we have the correlation j1 = j2 for t
where we get the only possible correlation ĵ1 = ĵ2 = ĵ3 = ĵ4 for u, i.e. β(t) = 1.
On the other hand we have j1 �= j2 as a correlation for t allowing us two different
correlations ĵ1 = ĵ3 �= ĵ2 = ĵ4 and ĵ2 = ĵ3 �= ĵ1 = ĵ4 for u. Thus we get β(t) = 2
in the latter case.
The following theorem yields conditions for the coefficients and the random
variables of the SRK method (2.1) such that convergence with some order p in
the weak sense is assured (see Theorem 6.4 in [12]).

Theorem 4.1. For p ∈ N let ai ∈ Cp+1,2p+2P (I × Rd,R) and let bi,j ∈

Cp+1,2p+3P (I ×Rd,R) for i = 1, . . . , d, j = 1, . . . ,m. Then the SRK method (2.1)
with step size h is of weak order p, if for all t ∈ TS(∆) with ρ(t) ≤ p + 1

2 and
all correlations of type jk = jl or jk �= jl, 1 ≤ k < l ≤ s(t), between the indices
j1, . . . , js(t) ∈ {1, . . . ,m} of t holds

E(ΦS(t)) =
αS(t) · (l(t)− 1)! · hρ(t)

α∆(t) · β(t) · γ(t) · 2s(t)/2 · ρ(t)!
(4.1)

provided (2.2) and (2.3) hold and if the approximation Y has uniformly bounded
moments w.r.t. the number N of steps.

Remark 4.1. The approximation Y by the SRK method (2.1) has uniformly
bounded moments if bounded random variables are used by the method, if (2.3)

is fulfilled and if E(z(k,ν)
T
e) = 0 holds for 1 ≤ k ≤ m and ν ∈ M (see [12]).

Further, Theorem 4.1 provides uniform weak convergence with order p in the
case of a non-random time discretization Ih [12].

5 Order two stochastic Runge–Kutta methods.

In the present section, we consider second order SRK schemes for the weak
approximation of the solution of Stratonovich SDEs (1.1). Therefore, we consider
a new class of SRK methods where the number of stages is independent of the
dimension m of the driving Wiener process. Thus, we define the d-dimensional
approximation process Y with Yn = Y (tn) for tn ∈ Ih by the following SRK
method of s stages with Y0 = x0 and

Yn+1 = Yn +
s∑
i=1

αia
(
tn + c

(0)
i hn,H

(0)
i

)
hn

+
s∑
i=1

m∑
k=1

β
(1)
i b

k
(
tn + c

(1)
i hn,H

(k)
i

)
Î(k)

+
s∑
i=1

m∑
k=1

β
(2)
i b

k
(
tn + c

(2)
i hn, Ĥ

(k)
i

)√
hn

(5.1)
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for n = 0, 1, . . . , N − 1 with supporting values

H
(0)
i = Yn +

s∑
j=1

A
(0)
ij a
(
tn + c

(0)
j hn,H

(0)
j

)
hn

+
s∑
j=1

m∑
l=1

B
(0)
ij b

l
(
tn + c

(1)
j hn,H

(l)
j

)
Î(l)

H
(k)
i = Yn +

s∑
j=1

A
(1)
ij a
(
tn + c

(0)
j hn,H

(0)
j

)
hn

+
s∑
j=1

B
(1)
ij b

k
(
tn + c

(1)
j hn,H

(k)
j

)
Î(k)

+
s∑
j=1

m∑
l=1
l�=k

B
(3)
ij b

l
(
tn + c

(1)
j hn,H

(l)
j

)
Î(l)

Ĥ
(k)
i = Yn +

s∑
j=1

A
(2)
ij a
(
tn + c

(0)
j hn,H

(0)
j

)
hn

+
s∑
j=1

m∑
l=1
l�=k

B
(2)
ij b

l
(
tn + c

(1)
j hn,H

(l)
j

) Î(k,l)
√
hn

for i = 1, . . . , s and k = 1, . . . ,m. The random variables are defined by

Î(k,l) =

{
Î(k) Ĩ(l) if l < k

−Î(l) Ĩ(k) if k < l
(5.2)

with independent random variables Î(k), 1 ≤ k ≤ m, possessing the moments

E
(
Îq(k)
)
=

⎧⎪⎨
⎪⎩
0 for q ∈ {1, 3, 5}

(q − 1)hq/2n for q ∈ {2, 4}

O(hq/2n ) for q ≥ 6

(5.3)

and Ĩ(k), 1 ≤ k ≤ m− 1, having the moments

E
(
Ĩq(k)
)
=

⎧⎪⎨
⎪⎩
0 for q ∈ {1, 3}

hn for q = 2

O(hq/2n ) for q ≥ 4

.(5.4)

Thus, only 2m−1 independent random variables are needed. For example, we can
choose Î(k) as three point distributed random variables with P(Î(k) = ±

√
3hn)

= 1
6 and P(Î(k) = 0) =

2
3 . The random variables Ĩ(k) can be defined by a two

point distribution with P(Ĩ(k) = ±
√
hn) =

1
2 .
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The coefficients of the SRK method (5.1) can be represented by an extended
Butcher array taking the form

c(0) A(0) B(0)

c(1) A(1) B(1) B(3)

c(2) A(2) B(2)

αT β(1)
T
β(2)

T

Applying the rooted tree analysis presented in Section 3 and Section 4, we can
calculate order conditions for the SRK method (5.1).

Theorem 5.1. Let ai ∈ C2,4P (I × R
d,R) and bi,j ∈ C2,5P (I × R

d,R) for
i = 1, . . . , d, j = 1, . . . ,m. If the coefficients of the stochastic Runge–Kutta
method (5.1) fulfill the equations

1. αT e = 1 2. (β(1)
T
e)2 = 1 3. β(2)

T
e = 0

4. β(1)
T
B(1)e = 1

2 5. β(2)
T
A(2)e = 0 6. β(2)

T
(B(2)e)2 = 0

then the method attains order 1.0 for the weak approximation of the solution
of the Stratonovich SDE (1.1). Further, if ai ∈ C3,6P (I × R

d,R) and bi,j ∈

C3,7P (I × R
d,R) for 1 ≤ i ≤ d, 1 ≤ j ≤ m and if in addition the equations

7. αTA(0)e = 1
2 8. αT (B(0)(B(1)e)) = 1

4

9. αT (B(0)e)2 = 1
2 10. (β(1)

T
e)(αTB(0)e) = 1

2

11. (β(1)
T
e)(β(1)

T
A(1)e) = 1

2 12. β(1)
T
(B(1)(A(1)e)) = 1

4

13. β(1)
T
((B(1)e)(A(1)e)) = 1

4 14. β(1)
T
B(3)e = 1

2

15. (β(1)
T
e)(β(1)

T
(B(1)e)2) = 1

3 16. (β(1)
T
e)(β(1)

T
(B(3)e)2) = 1

2

17. β(1)
T
(B(3)(B(3)e)) = 0 18. (β(2)

T
B(2)e)2 = 1

4

19. β(1)
T
(B(1)e)3 = 1

4 20. β(1)
T
(B(1)(B(1)e)2) = 1

12

21. β(1)
T
(B(1)(B(3)e)2) = 1

4 22. β(1)
T
(A(1)(B(0)e)) = 0

23. β(2)
T
(A(2)e)2 = 0 24. β(2)

T
(A(2)(A(0)e)) = 0

25. β(1)
T
(B(1)(B(1)(B(1)e))) = 1

24 26. β(2)
T
(A(2)(B(0)e)) = 0

27. β(2)
T
(A(2)(B(0)e)2) = 0 28. β(2)

T
(B(2)e)4 = 0

29. β(2)
T
(B(2)(B(1)e))2 = 0 30. β(2)

T
(B(2)(B(3)e))2 = 0

31. β(1)
T
((B(1)e)(B(3)e)2) = 1

4 32. β(2)
T
((A(2)e)(B(2)e)2) = 0

33. β(1)
T
(B(1)(B(3)(B(1)e))) = 1

8 34. β(1)
T
(B(3)(B(3)(B(3)e))) = 0

35. β(1)
T
(B(3)(B(1)(B(3)e))) = 0 36. β(2)

T
(A(2)(B(0)(B(1)e))) = 0
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37. (β(1)
T
e)(β(1)

T
((B(3)e)(B(1)e))) = 1

4

38. (β(1)
T
e)(β(1)

T
(B(1)(B(1)e))) = 1

6

39. (β(1)
T
e)(β(1)

T
(B(3)(B(1)e))) = 1

4

40. (β(1)
T
e)(β(1)

T
(B(1)(B(3)e))) = 1

4

41. β(1)
T
((B(1)e)(B(1)(B(1)e))) = 1

8

42. β(1)
T
((B(1)e)(B(3)(B(1)e))) = 1

8

43. β(1)
T
((B(3)e)(B(1)(B(3)e))) = 1

4

44. β(1)
T
((B(3)e)(B(3)(B(3)e))) = 0

45. β(1)
T
(B(3)((B(3)e)(B(1)e))) = 0

46. β(2)
T
((B(2)(A(1)e))(B(2)e)) = 0

47. β(2)
T
((B(2)e)(B(2)(B(1)e))) = 0

48. β(2)
T
((B(2)e)(B(2)(B(3)e))) = 0

49. β(2)
T
((B(2)e)(B(2)((B(1)e)2))) = 0

50. β(2)
T
((B(2)e)(B(2)((B(3)e)2))) = 0

51. β(2)
T
((B(2)e)(B(2)((B(1)e)(B(3)e)))) = 0

52. β(2)
T
((B(2)e)(B(2)(B(1)(B(1)e)))) = 0

53. β(2)
T
((B(2)e)(B(2)(B(3)(B(1)e)))) = 0

54. β(2)
T
((B(2)e)(B(2)(B(3)(B(3)e)))) = 0

55. β(2)
T
((B(2)e)(B(2)(B(1)(B(3)e)))) = 0

are fulfilled and if c(i) = A(i)e for i = 0, 1, 2, then the stochastic Runge–Kutta
method (5.1) attains order 2.0 for the weak approximation of the solution of the
Stratonovich SDE (1.1).

Remark 5.1. The 55 conditions of Theorem 5.1 reduce to 17 conditions
for m = 1 since we do not need Ĥ

(k)
i if we choose A

(2)
ij = 0 and we do not

need B
(3)
ij as well. Further we need s ≥ 4 for an explicit SRK method of order 2.0

(see [14]).

Proof. Firstly, we show hat the SRK method (5.1) is contained in the general
class (2.1). Therefore, we chooseM = {(k), (k, l) : 0 ≤ k, l ≤ m} and

γ
(ι)
i

(k,ν)
θι(hn) =

⎧⎪⎪⎨
⎪⎪⎩

β
(1)
i Î(k) if 0 < ι = k, ν = 0

β
(2)
i

√
hn if 0 = ι < k, ν = 1

0 otherwise
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A
(k,ν)(0,0)
ij hn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A
(0)
ij hn if k = ν = 0

A
(1)
ij hn if k > 0, ν = 0

A
(2)
ij hn if k > 0, ν = 1

0 otherwise

B
(ι)
ij

(k,ν)(r,µ)
θι(hn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
(0)
ij Î(r) if k = ν = µ = 0, ι = r

B
(1)
ij Î(k) if k = r = ι, ν = µ = 0

B
(2)
ij

Î(k,r)√
hn

if ι = (k, r), 0 < k �= r, ν = 1, µ = 0

B
(3)
ij Î(r) if 0 < k �= r, ι = r, ν = µ = 0

0 otherwise

for k = 0, 1, . . . ,m, r = 1, . . . ,m and ι, ν, µ ∈M. As a result of this we have

z
(0,0)
i = αi hn z

(k,0)
i = β

(1)
i Î(k) z

(k,1)
i = β

(2)
i

√
hn

Z
(0,0)(0,0)
ij = A

(0)
ij hn Z

(k,0)(0,0)
ij = A

(1)
ij hn Z

(k,1)(0,0)
ij = A

(2)
ij hn

Z
(0,0)(k,0)
ij = B

(0)
ij Î(k) Z

(k,0)(k,0)
ij = B

(1)
ij Î(k) Z

(k,1)(l,0)
ij = B

(2)
ij

Î(k,l)√
hn

Z
(k,0)(l,0)
ij = B

(3)
ij Î(l)

for 1 ≤ k, l ≤ m with k �= l. Further, we have H(0,0)i = H
(0)
i , H

(k,0)
i = H

(k)
i and

H
(k,1)
i = Ĥ

(k)
i . Now, apply Theorem 4.1 for all t ∈ TS(∆) with ρ(t) ≤ 2.5. We

refer to [12] for all necessary trees and corresponding parameters αS(t), α∆(t)
or β(t). Apart from (5.3) and (5.4), the following moments are helpful in the
subsequent calculations: E(Î2(k,l)) = h

2, E(Î(k,l)Î(l,k)) = −h
2, E(Î(k) Î(l)Î(k,l)) = 0

and E(Îq(k,l)) = 0 for q = 1, 3 and k �= l. In the following, it holds β(t) = 1 if not
stated otherwise and we write h = hn.

Order 0.5 trees.
t0.5.1 = (σj1): ΦS(t) = z

(j1,0)
T
e+ z(j1,1)

T
e

With αS(t) = 0 follows E(ΦS(t)) = 0 ⇔ β(2)
T
e
√
h = 0.

In the following, we assume that Condition 3. of Theorem 5.1 holds.

Order 1.0 trees.
t1.1 = (τ): ΦS(t) = z

(0,0)T e
With αS(t) = α∆(t) = 1 follows E(ΦS(t)) = h ⇔ αT e h = h.

t1.2 = (σj1 , σj2): ΦS(t) = (z
(j1,0)

T
e+ z(j1,1)

T
e)(z(j2,0)

T
e+ z(j2,1)

T
e)

For j1 = j2 with αS(t) = α∆(t) = 1 follows E(ΦS(t)) = h ⇔

(β(1)
T
e)2 E(Î2(j1)) + (β

(2)T e)2 h = h.
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t1.3 = ({σj2}j1): ΦS(t) = z
(j1,0)

T
Z(j1,0)(j2,0)e+ z(j1,1)

T
Z(j1,1)(j2,0)e

For j1 = j2 with αS(t) = α∆(t) = 1 follows E(ΦS(t)) =
1
2h ⇔

β(1)
T
B(1)e E(Î2(j1)) =

1
2h.

Now, we additionally assume that Conditions 1., 2. and 4. of Theorem 5.1
hold.

Order 1.5 trees.
t1.5.2 = ({τ}j1): ΦS(t) = z

(j1,0)
T
Z(j1,0)(0,0)e+ z(j1,1)

T
Z(j1,1)(0,0)e

With αS(t) = 0 follows E(ΦS(t)) = 0 ⇔ β(2)
T
A(2)e

√
hh = 0.

t1.5.6 = ({σj2 , σj3}j1):

ΦS(t) = z
(j1,0)

T
((Z(j1,0)(j2,0)e)(Z(j1,0)(j3,0)e))

+ z(j1,1)
T
((Z(j1,1)(j2,0)e)(Z(j1,1)(j3,0)e))

For j1 �= j2 = j3 with αS(t) = 0 follows E(ΦS(t)) = 0 ⇔

β(2)
T
(B(2)e)2 E(Î2(j1,j2))h

−1/2 = 0.

For the trees t1.5.1 = ([σj1 ]), t1.5.3 = (τ, σj1), t1.5.4 = (σj1 , σj2 , σj3), t1.5.5 =
({σj2}j1 , σj3) and t1.5.7 = ({{σj3}j2}j1) holds αS(t) = 0 and E(ΦS(t)) = 0.

Order 2.0 trees.
t2.1 = ([τ ]): ΦS(t) = z

(0,0)TZ(0,0)(0,0)e
With αS(t) = α∆(t) = 1 follows E(ΦS(t)) =

1
2h
2 ⇔ αTA(0)e h2 = 1

2h
2.

t2.2 = (τ, τ): ΦS(t) = (z
(0,0)T e)2

With αS(t) = α∆(t) = 1 follows E(ΦS(t)) = h
2 ⇔ (αT e)2 h2 = h2.

t2.3 = ([{σj2}j1 ]): ΦS(t) = z
(0,0)T (Z(0,0)(j1,0)(Z(j1,0)(j2,0)e))

For j1 = j2 with αS(t) = α∆(t) = 1 follows E(ΦS(t)) =
1
4h
2 ⇔

αT (B(0)(B(1)e)) E(Î2(j1)) =
1
4h
2.

t2.4 = ([σj1 , σj2 ]): ΦS(t) = z
(0,0)T ((Z(0,0)(j1,0)e)(Z(0,0)(j2,0)e))

For j1 = j2 with αS(t) = α∆(t) = 1 follows E(ΦS(t)) =
1
2h
2 ⇔

αT (B(0)e)2 E(Î2(j1)) =
1
2h
2.

t2.5 = (σj1 , [σj2 ]): ΦS(t) = (z
(j1,0)

T
e+ z(j1,1)

T
e) (z(0,0)

T
Z(0,0)(j2,0)e)

For j1 = j2 with αS(t) = 2 and α∆(t) = 3 follows E(ΦS(t)) =
1
2h
2 ⇔

(β(1)
T
e) (αTB(0)e) E(Î2(j1)) =

1
2h
2.

t2.6 = ({σj2}j1 , τ): ΦS(t) = (z
(j1,0)

T
Z(j1,0)(j2,0)e+z(j1,1)

T
Z(j1,1)(j2,0)e) (z(0,0)

T
e)

For j1 = j2 with αS(t) = 2 and α∆(t) = 3 follows E(ΦS(t)) =
1
2h
2 ⇔

(β(1)
T
B(1)e)(αT e) E(Î2(j1))h =

1
2h
2.

t2.7 = (σj1 , σj2 , τ): ΦS(t) = (z
(j1,0)

T
e+ z(j1,1)

T
e)(z(j2,0)

T
e+ z(j2,1)

T
e)(z(0,0)

T
e)

For j1 = j2 with αS(t) = 2 and α∆(t) = 3 follows E(ΦS(t)) = h
2 ⇔

(β(1)
T
e)2 E(Î2(j1)) = h

2.
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t2.8 = (σj1 , {τ}j2):

ΦS(t) = (z
(j1,0)

T
e+ z(j1,1)

T
e)(z(j2,0)

T
Z(j2,0)(0,0)e+ z(j2,1)

T
Z(j2,1)(0,0)e)

For j1 = j2 with αS(t) = 2 and α∆(t) = 3 follows E(ΦS(t)) =
1
2h
2 ⇔

(β(1)
T
e)(β(1)

T
A(1)e) E(Î2(j1))h =

1
2h
2.

t2.9 = ({{τ}j2}j1):

ΦS(t) = z
(j1,0)

T
(Z(j1,0)(j2,0)(Z(j2,0)(0,0)e)) + z(j1,1)

T
(Z(j1,1)(j2,0)(Z(j2,0)(0,0)e))

For j1 = j2 with αS(t) = α∆(t) = 1 follows E(ΦS(t)) =
1
4h
2 ⇔

β(1)
T
(B(1)(A(1)e)) E(Î2(j1))h =

1
4h
2.

t2.10 = ({σj2 , τ}j1):

ΦS(t) = z
(j1,0)

T
((Z(j1,0)(j2,0)e)(Z(j1,0)(0,0)e))

+ z(j1,1)
T
((Z(j1,1)(j2,0)e)(Z(j1,1)(0,0)e))

For j1 = j2 with αS(t) = 1 and α∆(t) = 2 follows E(ΦS(t)) =
1
4h
2 ⇔

β(1)
T
((B(1)e)(A(1)e)) E(Î2(j1))h =

1
4h
2.

t2.11 = (σj1 , σj2 , σj3 , σj4):

ΦS(t) = (z
(j1,0)

T
e+ z(j1,1)

T
e)(z(j2,0)

T
e+ z(j2,1)

T
e)

× (z(j3,0)
T
e+ z(j3,1)

T
e)(z(j4,0)

T
e+ z(j4,1)

T
e)

Case A): For j1 = j2 = j3 = j4 with αS(t) = α∆(t) = β(t) = 1 follows

E(ΦS(t)) = 3h
2 ⇔ (β(1)

T
e)4 E(Î4(j1)) = 3h

2.

Case B): For j1 = j2 �= j3 = j4 with αS(t) = α∆(t) = 1 and β(t) = 3 follows

E(ΦS(t)) = h
2 ⇔ (β(1)

T
e)2(β(1)

T
e)2 E(Î2(j1)Î

2
(j3)
) = h2.

t2.12 = (σj1 , σj2 , {σj4}j3):

ΦS(t) = (z
(j1,0)

T
e+ z(j1,1)

T
e)(z(j2,0)

T
e+ z(j2,1)

T
e)

× (z(j3,0)
T
Z(j3,0)(j4,0)e+ z(j3,1)

T
Z(j3,1)(j4,0)e)

Case A): For j1 = j2 = j3 = j4 with αS(t) = α∆(t) = 6 and β(t) = 1 follows

E(ΦS(t)) =
3
2h
2 ⇔ (β(1)

T
e)2(β(1)

T
B(1)e) E(Î4(j1)) =

3
2h
2.

Case B): For j1 = j3 �= j2 = j4 with αS(t) = 4, α∆(t) = 6 and β(t) = 2 follows

E(ΦS(t)) =
1
2h
2 ⇔ (β(1)

T
e)2(β(1)

T
B(3)e) E(Î2(j1)Î

2
(j2)
) = 1

2h
2.

Case C): For j1 = j2 �= j3 = j4 with αS(t) = 2, α∆(t) = 6 and β(t) = 1 follows

E(ΦS(t)) =
1
2h
2 ⇔ (β(1)

T
e)2(β(1)

T
B(1)e) E(Î2(j1)Î

2
(j3)
) = 1

2h
2.

t2.13 = (σj1 , {σj3 , σj4}j2):

ΦS(t) = (z
(j1,0)

T
e+ z(j1,1)

T
e)(z(j2,0)

T
((Z(j2,0)(j3,0)e)(Z(j2,0)(j4,0)e))

+ z(j2,1)
T
((Z(j2,1)(j3,0)e)(Z(j2,1)(j4,0)e)))
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Case A): For j1 = j2 = j3 = j4 with αS(t) = α∆(t) = 4 and β(t) = 1 follows

E(ΦS(t)) = h
2 ⇔ (β(1)

T
e)(β(1)

T
(B(1)e)2) E(Î4(j1)) = h

2.

Case B): For j1 = j2 �= j3 = j4 with αS(t) = 2, α∆(t) = 4 and β(t) = 1 follows

E(ΦS(t)) =
1
2h
2 ⇔ (β(1)

T
e)(β(1)

T
(B(3)e)2) E(Î2(j1)Î

2
(j3)
) = 1

2h
2.

Case C): For j1 = j3 �= j2 = j4 with αS(t) = 2, α∆(t) = 4 and β(t) = 2 follows

E(ΦS(t)) =
1
4h
2 ⇔ (β(1)

T
e)(β(1)

T
((B(3)e)(B(1)e))) E(Î2(j1)Î

2
(j2)
) = 1

4h
2.

t2.14 = (σj1 , {{σj4}j3}j2):

ΦS(t2.14) = (z
(j1,0)

T
e+ z(j1,1)

T
e)(z(j2,0)

T
(Z(j2,0)(j3,0)(Z(j3,0)(j4,0)e))

+ z(j2,1)
T
(Z(j2,1)(j3,0)(Z(j3,0)(j4,0)e)))

Case A): For j1 = j2 = j3 = j4 with αS(t) = α∆(t) = 4 follows E(ΦS(t)) =
1
2h
2

⇔ (β(1)
T
e)(β(1)

T
(B(1)(B(1)e))) E(Î4(j1)) =

1
2h
2.

Case B): For j1 = j2 �= j3 = j4 with αS(t) = 2 and α∆(t) = 4 follows E(ΦS(t))

= 1
4h
2 ⇔ (β(1)

T
e)(β(1)

T
(B(3)(B(1)e))) E(Î2(j1)Î

2
(j3)
) = 1

4h
2.

Case C): For j1 = j4 �= j2 = j3 with αS(t) = 2 and α∆(t) = 4 follows E(ΦS(t))

= 1
4h
2 ⇔ (β(1)

T
e)(β(1)

T
(B(1)(B(3)e))) E(Î2(j1)Î

2
(j2)
) = 1

4h
2.

Case D): For j1 = j3 �= j2 = j4 with αS(t) = 0 follows E(ΦS(t)) = 0 ⇔

(β(1)
T
e)(β(1)

T
(B(3)(B(3)e))) E(Î2(j1)Î

2
(j2)
) = 0.

t2.15 = ({σj2}j1 , {σj4}j3):

ΦS(t) = (z
(j1,0)

T
Z(j1,0)(j2,0)e+ z(j1,1)

T
Z(j1,1)(j2,0)e)(z(j3,0)

T
Z(j3,0)(j4,0)e

+ z(j3,1)
T
Z(j3,1)(j4,0)e)

Case A): For j1 = j2 = j3 = j4 with αS(t) = α∆(t) = 3 follows E(ΦS(t)) =
3
4h
2

⇔ (β(1)
T
B(1)e)2 E(Î4(j1)) =

3
4h
2.

Case B): For j1 = j3 �= j2 = j4 with αS(t) = 2 and α∆(t) = 3 follows E(ΦS(t))

= 1
2h
2 ⇔ (β(1)

T
B(3)e)2 E(Î2(j1)Î

2
(j2)
) + (β(2)

T
B(2)e)2 E(Î2(j1,j2)) =

1
2h
2.

Case C): For j1 = j2 �= j3 = j4 with αS(t) = 1 and α∆(t) = 3 follows E(ΦS(t))

= 1
4h
2 ⇔ (β(1)

T
B(1)e)2 E(Î2(j1)Î

2
(j3)
) = 1

4h
2.

Case D): For j1 = j4 �= j2 = j3 with αS(t) = 0 follows E(ΦS(t)) = 0 ⇔

(β(1)
T
B(3)e)2 E(Î2(j1)Î

2
(j2)
) + (β(2)

T
B(2)e)2 E(Î(j1,j2)Î(j2,j1)) = 0.

t2.16 = ({σj2 , σj3 , σj4}j1):

ΦS(t) = z
(j1,0)

T
((Z(j1,0)(j2,0)e)(Z(j1,0)(j3,0)e)(Z(j1,0)(j4,0)e))

+ z(j1,1)
T
((Z(j1,1)(j2,0)e)(Z(j1,1)(j3,0)e)(Z(j1,1)(j4,0)e))



RUNGE–KUTTA METHODS FOR STRATONOVICH SDES 671

Case A): For j1 = j2 = j3 = j4 with αS(t) = α∆(t) = 1 and β(t) = 1 follows

E(ΦS(t)) =
3
4h
2 ⇔ β(1)

T
(B(1)e)3 E(Î4(j1)) =

3
4h
2.

Case B): For j1 = j2 �= j3 = j4 with αS(t) = α∆(t) = 1 and β(t) = 3 follows

E(ΦS(t)) =
1
4h
2 ⇔ β(1)

T
((B(1)e)(B(3)e)2) E(Î2(j1)Î

2
(j3)
) = 1

4h
2.

t2.17 = ({σj2 , {σj4}j3}j1):

ΦS(t) = z
(j1,0)

T
((Z(j1,0)(j2,0)e)(Z(j1,0)(j3,0)(Z(j3,0)(j4,0)e)))

+ z(j1,1)
T
((Z(j1,1)(j2,0)e)(Z(j1,1)(j3,0)(Z(j3,0)(j4,0)e)))

Case A): For j1 = j2 = j3 = j4 with αS(t) = α∆(t) = 3 follows E(ΦS(t)) =
3
8h
2

⇔ β(1)
T
((B(1)e)(B(1)(B(1)e))) E(Î4(j1)) =

3
8h
2.

Case B): For j1 = j2 �= j3 = j4 with αS(t) = 1 and α∆(t) = 3 follows E(ΦS(t))

= 1
8h
2 ⇔ β(1)

T
((B(1)e)(B(3)(B(1)e))) E(Î2(j1)Î

2
(j3)
) = 1

8h
2.

Case C): For j1 = j3 �= j2 = j4 with αS(t) = 2 and α∆(t) = 3 follows E(ΦS(t))

= 1
4h
2 ⇔ β(1)

T
((B(3)e)(B(1)(B(3)e))) E(Î2(j1)Î

2
(j2)
) = 1

4h
2.

Case D): For j1 = j4 �= j2 = j3 with αS(t) = 0 follows E(ΦS(t)) = 0 ⇔

β(1)
T
((B(3)e)(B(3)(B(3)e))) E(Î2(j1)Î

2
(j2)
) = 0.

t2.18 = ({{σj3 , σj4}j2}j1):

ΦS(t) = z
(j1,0)

T
(Z(j1,0)(j2,0)((Z(j2,0)(j3,0)e)(Z(j2,0)(j4,0)e)))

+ z(j1,1)
T
(Z(j1,1)(j2,0)((Z(j2,0)(j3,0)e)(Z(j2,0)(j4,0)e)))

Case A): For j1 = j2 = j3 = j4 with αS(t) = α∆(t) = 1 follows E(ΦS(t)) =
1
4h
2

⇔ β(1)
T
(B(1)(B(1)e)2) E(Î4(j1)) =

1
4h
2.

Case B): For j1 = j2 �= j3 = j4 with αS(t) = α∆(t) = 1 follows E(ΦS(t)) =
1
4h
2

⇔ β(1)
T
(B(1)(B(3)e)2) E(Î2(j1)Î

2
(j3)
) = 1

4h
2.

Case C): For j1 = j3 �= j2 = j4 with αS(t) = 0 follows E(ΦS(t)) = 0 ⇔

β(1)
T
(B(3)((B(3)e)(B(1)e))) E(Î2(j1)Î

2
(j2)
) = 0.

t2.19 = ({{{σj4}j3}j2}j1):

ΦS(t) = z
(j1,0)

T
(Z(j1,0)(j2,0)(Z(j2,0)(j3,0)(Z(j3,0)(j4,0)e)))

+ z(j1,1)
T
(Z(j1,1)(j2,0)(Z(j2,0)(j3,0)(Z(j3,0)(j4,0)e)))

Case A): For j1 = j2 = j3 = j4 with αS(t) = α∆(t) = 1 follows E(ΦS(t)) =
1
8h
2

⇔ β(1)
T
(B(1)(B(1)(B(1)e))) E(Î4(j1)) =

1
8h
2.

Case B): For j1 = j2 �= j3 = j4 with αS(t) = α∆(t) = 1 follows E(ΦS(t)) =
1
8h
2

⇔ β(1)
T
(B(1)(B(3)(B(1)e))) E(Î2(j1)Î

2
(j3)
) = 1

8h
2.
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Case C): For j1 = j3 �= j2 = j4 with αS(t) = 0 follows E(ΦS(t)) = 0 ⇔

β(1)
T
(B(3)(B(3)(B(3)e))) E(Î2(j1)Î

2
(j2)
) = 0.

Case D): For j1 = j4 �= j2 = j3 with αS(t) = 0 follows E(ΦS(t)) = 0 ⇔

β(1)
T
(B(3)(B(1)(B(3)e))) E(Î2(j1)Î

2
(j2)
) = 0.

t2.20 = ({[σj2 ]}j1):

ΦS(t) = z
(j1,0)

T
(Z(j1,0)(0,0)(Z(0,0)(j2,0)e)) + z(j1,1)

T
(Z(j1,1)(0,0)(Z(0,0)(j2,0)e))

For j1 = j2 with αS(t) = 0 follows E(ΦS(t)) = 0 ⇔

β(1)
T
(A(1)(B(0)e)) E(Î2(j1)) = 0.

For all correlations between j1, . . . , j4 which have not been considered explic-
itly holds αI(t) = 0 and E(ΦS(t)) = 0.
Finally, we have to consider all trees t ∈ TS(∆) with ρ(t) = 2.5 for which due
to αS(t) = 0 the condition E(ΦS(t)) = 0 has to be fulfilled. Since the calculations
are analogous to the ones already performed, repetition is avoided (see [12] for
all trees up to order 2.5). Leaving out the trees which do not supply any new
restrictions, we calculate the following conditions:

Table 5.1: Conditions from t ∈ TS(∆) with ρ(t) = 2.5.

t correlation condition

({τ}j1 , τ) 5.

({τ, τ}j1) 23.

({[τ ]}j1) 24.

(τ, {σj2 , σj3}j1) j1 �= j2 = j3 6.

({τ}j1 , σj2 , σj3) j2 = j3 5.

({τ}j1 , {σj3}j2) j2 = j3 5.

({[σj2 ]}j1 , σj3) j2 = j3 26.

({τ, σj2 , σj3}j1) j1 �= j2 = j3 32.

({[σj2 , σj3 ]}j1) j2 = j3 27.

({[{σj3}j2 ]}j1) j2 = j3 36.

({{τ}j2 , σj3}j1) j1 �= j2 = j3 46.

(σj1 , σj2 , {σj4 , σj5}j3) j1 = j2, j3 �= j4 = j5 6.

j1 = j4 > j3, j2 = j5 > j3 6.

({σj2}j1 , {σj4 , σj5}j3) j1 = j2, j3 �= j4 = j5 6.

j1 = j4 > j3, j2 = j5 > j3 6.

({σj2 , {σj4}j3}j1 , σj5) j1 �= j2 = j3 = j4 = j5 47.

j1 �= j2 = j3, j3 �= j4 = j5 48.

j1 < j2 = j5, j1 < j3 = j4, j2 �= j3 47.

j1 < j2 = j4, j1 < j3 = j5, j2 �= j3 48.

({σj2 , σj3 , σj4 , σj5}j1) j1 �= j2 = j3, j1 �= j4 = j5 28.

({σj2 , {σj4 , σj5}j3}j1) j1 �= j2 = j3 = j4 = j5 49.
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t correlation condition

j1 �= j2 = j3, j3 �= j4 = j5 50.

j1 < j2 = j4, j1 < j3 = j5, j4 �= j5 51.

({σj2 , {{σj5}j4}j3}j1) j1 �= j2 = j3 = j4 = j5 52.

j1 �= j2 = j3, j3 �= j4 = j5 53.

j1 < j2 = j4, j1 < j3 = j5, j2 �= j3 54.

j1 < j2 = j5, j1 < j3 = j4, j2 �= j3 55.

({{σj3}j2 , {σj5}j4}j1) j1 �= j2 = j3 = j4 = j5 29.

j1 �= j2 = j4, j2 �= j3 = j5 30.

j1 < j2 = j5, j1 < j4 = j3 30.

Now, we just have to summarize the calculated conditions in order to arrive
at the conditions in Theorem 5.1. Finally, the approximation Y by the SRK

method (5.1) has uniformly bounded moments due to E(z(k,ν)
T
e) = 0 for 1 ≤

k ≤ m and ν ∈ {0, 1}.

We remark that in the case of SDEs with commutative noise the SRK
method (5.1) can be simplified to the one introduced in [14] by choosing β

(2)
i = 0

for i = 1, . . . , s. In this case only m random variables Î(j), j = 1, . . . ,m, have to
be simulated and the number of effective stages is reduced as well. The commu-
tativity condition can be illustrated in the light of rooted trees as follows: If the
commutativity condition [5, 14] holds, then the endings {σjk}jl and {σjl}jk of
a rooted tree, presented in Figure 5.1, are equal and we can substitute one of the
two endings of a rooted tree by the other one. This is a direct consequence from
the corresponding elementary differentials. By the use of this item particularly
for the tree t2.15 in the proof of Theorem 5.1 and with β

(2) ≡ 0, it can be easily
checked that already those order conditions of Theorem 5.1 containing only the
coefficients α, β(1), A(0), B(0), B(1) and B(3) guarantee order 2.0 for the SRK
method (5.1) with β(2) ≡ 0 and coincide with the ones determined in [14] for
commutative noise.

Figure 5.1: Two equivalent endings of a tree in case of commutative noise.

Some explicit SRK schemes of order 2.0 are given by RS1 and RS2 with the
coefficients presented in Table 5.2 and Table 5.3. Due to s = 4 stages needed for
the Stratonovich SRK methods, it is possible to calculate schemes of a higher
deterministic order pD than the stochastic order of convergence pS . So the SRK
method converges at least with order p = pS for SDEs, however it converges
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Table 5.2: SRK scheme RS1 with order pD = pS = 2.0.

0

0 0 0

1 1 0 1
4

3
4

0 0 0 0 0 0 0

0

0 0 2
3

0

1 1 0 1
12

1
4

1
4

3
4

1 1 0 0 − 5
4

1
4
2 1

4
3
4

0

0

0 0 1

0 0 0 −1 0

0 0 0 0 0 0 0

0 0 1
2

1
2

1
8

3
8

3
8

1
8

0 − 1
4

1
4
0

Table 5.3: SRK scheme RS2 with order pD = 3.0 and pS = 2.0.

0
2
3

2
3

0
2
3

1
6

1
2

1
4

3
4

0 0 0 0 0 0 0

0

0 0 2
3

0

1 1 0 1
12

1
4

1
4

3
4

1 1 0 0 − 5
4

1
4

2 1
4

3
4

0

0

0 0 1

0 0 0 −1 0

0 0 0 0 0 0 0

1
4

1
4

1
2

0 1
8

3
8

3
8

1
8

0 − 1
4

1
4

0

with order pD ≥ pS in case of an ODE. The deterministic part is represented
by the coefficients A(0) and α. RS2 is of order pD = 3.0 and pS = 2.0 while
RS1 is of order pD = 2.0 and pS = 2.0. For s = 4 it is also possible to calculate
coefficients for a scheme of order pD = 4.0 and pS = 2.0.

6 Numerical example.

We consider now some test equations in order to compare the SRK scheme
(RS1) with the order one Euler–Maruyama scheme (EM), with the second order
SRK scheme (PL1WM) due to Platen [5] which is also contained in the class
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of SRK methods proposed in [19] and with the extrapolated Euler–Maruyama
scheme (ExEu) due to Talay and Tubaro [18] attaining order two. The extra-

polated Euler–Maruyama approximation is given by 2E(f(Z
h/2
T )) − E(f(Z

h
T ))

based on the Euler–Maruyama approximations Z
h/2
T and ZhT calculated with

step sizes h and h/2. Since the schemes (EM), (PL1WM) and (ExEu) are
designed for Itô SDEs, we always apply them to the corresponding Itô SDEs
in the following. The values E(f(XT )) are approximated for f(x

1, x2) = x1

and f(x1, x2) = x1x2 or f(x1, x2) = (x1)2 by Monte Carlo simulation. There-
fore, we estimate E(f(YT )) by the sample average of M independent simulated
realizations of the approximations f(YT,k), k = 1, . . . ,M , with YT,k calcu-
lated by the scheme under consideration. Then, the error is denoted by µ̂ =
E(f(XT )) −

1
M

∑M
k=1 f(YT,k). The empirical variance σ̂

2
µ of the error µ̂ is cal-

culated following [5] based on M1 batches with M2 trajectories in each, i.e.,
M = M1 ·M2. In order to analyze the systematic error of the schemes under
consideration, we minimize the statistical error by choosing M very large [5],
i.e. much larger than usually necessary for approximations in practice. Then,
the errors µ̂ at time T = 1.0 are plotted versus the corresponding step sizes h
with double logarithmic scale in order to obtain the empirical order of con-
vergence. Further, some reference lines with slope 1.0 and 2.0 are plotted for
better comparison.
Firstly, we consider for d = m = 2 the linear SDE system with commutative
noise

d

(
X1t

X2t

)
=

(
299
200X

1
t

299
200X

2
t

)
dt+

(
1
10X

1
t

0

)
◦ dW 1t +

(
0
1
10X

2
t

)
◦ dW 2t ,(6.1)

with initial value X0 = (
1
10 ,

1
10 )
T . Then, the moments of the solution are given as

E(Xit) =
1
10 exp(

3
2 t) and E((X

i
t )
2) = 1

100 exp(
301
100 t) for i = 1, 2. Here, we choose

M1 = 20 batches with M2 = 5× 106 trajectories in each and consider the step
sizes 20, . . . , 2−7. The errors |µ̂| and empirical variances σ̂2µ with corresponding
step sizes are presented in Figure 6.1 and Tables 6.1–6.2.

Figure 6.1: Step size vs. error for the approximation of E(X1T ) in the left and of
E((X1T )

2) in the right figure for SDE (6.1).



676 A. RÖSSLER

Table 6.1: Results for the approximation of E(X1t ) for SDE (6.1).

RS1 EM ExEu PL1WM
h |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ

2−0 8.57e-02 1.20e-10 1.98e-1 1.95e-11 8.57e-2 1.19e-10 8.57e-02 1.21e-10
2−1 3.56e-02 1.87e-10 1.42e-1 4.40e-11 3.95e-2 1.72e-10 3.56e-02 1.85e-10

2−2 1.18e-02 3.44e-10 9.07e-2 1.33e-10 1.48e-2 3.27e-10 1.18e-02 3.43e-10

2−3 3.40e-03 1.71e-10 5.27e-2 9.67e-11 4.67e-3 1.64e-10 3.40e-03 1.71e-10
2−4 9.08e-04 4.42e-10 2.87e-2 3.25e-10 1.33e-3 4.35e-10 9.08e-04 4.41e-10

2−5 2.32e-04 8.51e-10 1.50e-2 7.25e-10 3.52e-4 8.43e-10 2.32e-04 8.51e-10

2−6 6.01e-05 6.18e-10 7.69e-3 5.71e-10 9.23e-5 6.16e-10 6.01e-05 6.18e-10
2−7 1.43e-05 4.18e-10 3.89e-3 4.02e-10 2.27e-5 4.17e-10 1.43e-05 4.18e-10

Table 6.2: Results for the approximation of E((X1t )
2) for SDE (6.1).

RS1 EM ExEu PL1WM
h |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ

2−0 7.08e-02 6.32e-11 1.40e-1 4.84e-12 7.73e-2 5.13e-11 7.08e-02 6.32e-11

2−1 3.14e-02 1.33e-10 1.09e-1 1.69e-11 4.01e-2 1.05e-10 3.14e-02 1.31e-10

2−2 1.07e-02 2.74e-10 7.44e-2 6.97e-11 1.64e-2 2.40e-10 1.07e-02 2.72e-10
2−3 3.12e-03 1.48e-10 4.54e-2 6.50e-11 5.50e-3 1.38e-10 3.12e-03 1.48e-10

2−4 8.37e-04 3.74e-10 2.54e-2 2.40e-10 1.62e-3 3.65e-10 8.37e-04 3.74e-10

2−5 2.14e-04 7.26e-10 1.35e-2 5.76e-10 4.39e-4 7.17e-10 2.14e-04 7.26e-10
2−6 5.55e-05 5.06e-10 6.99e-3 4.51e-10 1.16e-4 5.04e-10 5.55e-05 5.06e-10

2−7 1.36e-05 3.40e-10 3.55e-3 3.21e-10 2.92e-5 3.39e-10 1.36e-05 3.40e-10

As a second test equation, we consider for d = m = 2 the linear SDE system
with non-commutative noise

d

(
X1t

X2t

)
=

(
5
4X

2
t −

5
4X

1
t

1
4X

1
t −

1
4X

2
t

)
dt+

(√
3
2

(
X1t −X

2
t

)
0

)
◦ dW 1t +

(1
2

(
X1t +X

2
t

)
X1t

)
◦ dW 2t ,

(6.2)

with initial value X0 = (
1
10 ,

1
10 )
T . Then, we can calculate the first moment

of Xit as E(X
i
t) =

1
10e

1
2 t and the second moment as well as the mixed second

moment of X1t and X
2
t as E((X

i
t )
2) = E(X1t X

2
t ) =

1
100e

2t for i = 1, 2. For the

Figure 6.2: Step size vs. error for the approximation of E(X1T ) in the left and of
E(X1T X

2
T ) in the right figure for SDE (6.2).
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approximation, we choose M1 = 20 and M2 = 5× 107. The results for the step
sizes 20, . . . , 2−5 are presented in Figure 6.2 and Tables 6.3–6.4.

Table 6.3: Results for the approximation of E(X1t ) for SDE (6.2).

RS1 EM ExEu PL1WM
h |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ

2−0 2.37e-03 8.21e-10 1.49e-2 3.82e-10 2.37e-3 8.90e-10 2.37e-03 8.12e-10

2−1 7.13e-04 6.54e-10 8.62e-3 4.57e-10 7.60e-4 4.19e-10 7.12e-04 5.48e-10

2−2 1.91e-04 6.55e-10 4.69e-3 4.97e-10 2.12e-4 7.57e-10 1.91e-04 6.40e-10
2−3 4.67e-05 1.08e-09 2.45e-3 8.89e-10 5.24e-5 1.10e-09 4.59e-05 1.08e-09

2−4 5.25e-06 8.67e-10 1.25e-3 7.57e-10 5.32e-6 9.40e-10 5.15e-06 8.81e-10

2−5 5.58e-06 1.25e-09 6.38e-4 1.12e-09 4.28e-6 1.38e-09 5.45e-06 1.24e-09

Table 6.4: Results for the approximation of E(X1t X
2
t ) for SDE (6.2).

RS1 EM ExEu PL1WM
h |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ

2−0 1.17e-02 8.08e-10 4.14e-2 3.25e-11 2.13e-2 2.35e-10 2.00e-02 2.51e-10

2−1 4.11e-03 4.44e-09 3.14e-2 5.53e-11 1.09e-2 3.84e-10 8.98e-03 7.43e-10
2−2 1.19e-03 4.48e-09 2.11e-2 1.75e-10 4.43e-3 1.28e-09 3.14e-03 1.89e-09

2−3 3.32e-04 5.21e-09 1.28e-2 1.24e-09 1.50e-3 4.01e-09 9.41e-04 4.41e-09

2−4 4.95e-05 3.91e-09 7.12e-3 1.46e-09 4.10e-4 3.90e-09 2.21e-04 3.70e-09
2−5 9.61e-07 7.87e-09 3.78e-3 4.33e-09 9.69e-5 7.61e-09 4.68e-05 7.70e-09

The third test equation is a non-linear SDE system for d = m = 2 with
non-commutative noise given by

d

(
X1t

X2t

)
=

(
− 54X

1
t +

9
4X

2
t

9
4X

1
t −

5
4X

2
t

)
dt+

⎛
⎝
√
3
4

(
X1t
)2
− 32X

1
tX

2
t +

3
4

(
X2t
)2
+ 3
20

0

⎞
⎠◦ dW 1t

+

⎛
⎜⎝−
√
1
4

(
X1t
)2
− 12X

1
tX

2
t +

1
4

(
X2t
)2
+ 1
20√(

X1t
)2
− 2X1tX

2
t +
(
X2t
)2
+ 15

⎞
⎟⎠ ◦ dW 2t ,

(6.3)

Figure 6.3: Step size vs. error for the approximation of E(X1T ) in the left and of
E(X1T X

2
T ) in the right figure for SDE (6.3).
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with initial value X0 = (
1
10 ,

1
10 )
T . Then, the corresponding moments of the

solution are E(Xit) =
1
10 exp(t), E((X

i
t)
2) = 3

50 exp(2t) −
1
10 exp(−t) +

1
20 and

E(X1t X
2
t ) =

3
50 exp(2t) +

1
5 exp(−t) −

1
4 for i = 1, 2. Here, we choose M1 = 20

and M2 = 5× 107. The results are presented in Figure 6.3 and Tables 6.5–6.6.

Table 6.5: Results for the approximation of E(X1t ) for SDE (6.3).

RS1 EM ExEu PL1WM
h |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ

2−0 2.18e-02 1.58e-08 7.18e-2 2.98e-09 2.18e-2 1.31e-08 2.18e-02 4.57e-09

2−1 7.72e-03 1.32e-08 4.68e-2 6.80e-09 8.53e-3 1.33e-08 7.76e-03 1.05e-08

2−2 2.32e-03 1.50e-08 2.77e-2 1.07e-08 2.80e-3 1.64e-08 2.33e-03 1.50e-08
2−3 6.40e-04 5.91e-09 1.53e-2 5.71e-09 8.28e-4 6.13e-09 6.38e-04 7.05e-09

2−4 1.54e-04 7.43e-09 8.01e-3 6.95e-09 2.11e-4 7.79e-09 1.49e-04 7.53e-09

2−5 3.70e-05 4.19e-09 4.12e-3 4.79e-09 5.77e-5 5.29e-09 3.16e-05 4.50e-09

Table 6.6: Results for the approximation of E(X1t X
2
t ) for SDE (6.3).

RS1 EM ExEu PL1WM
h |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ |µ̂| σ̂2µ

2−0 1.94e-01 4.81e-07 3.27e-1 8.15e-10 2.43e-1 6.46e-09 3.92e-02 2.83e-09

2−1 2.12e-03 1.09e-06 2.85e-1 4.33e-09 4.85e-2 1.45e-08 2.73e-02 5.34e-09
2−2 1.28e-02 9.48e-07 1.67e-1 6.23e-09 6.60e-3 2.84e-08 1.12e-02 9.88e-09

2−3 1.70e-03 1.46e-07 8.67e-2 2.19e-08 1.75e-3 1.05e-07 3.36e-03 8.05e-08

2−4 9.91e-05 2.67e-07 4.42e-2 3.46e-08 4.63e-4 1.85e-07 8.18e-04 1.86e-07
2−5 3.71e-04 2.83e-07 2.24e-2 1.31e-07 3.07e-4 3.08e-07 4.05e-04 3.07e-07

7 Conclusion.

In the present paper, a class of SRK methods applicable to non–commutative
Stratonovich SDE systems with am–dimensional driving Wiener process is intro-
duced. Compared to other SRK schemes, the main advantage of the introduced
class of SRK methods (5.1) is the significant reduction of the computational
costs. If we consider the order two SRK schemes proposed in [5, p. 486] and
in [19] for Itô SDE systems, then at least 2 evaluations of the drift function a
and 2m + 1 evaluations of each diffusion function bj, j = 1, . . . ,m, are neces-
sary for each step. Further, m(m+ 1)/2 independent random variables have to
be simulated for the schemes in [5, 19] for each step. Furthermore, these SRK
methods are not directly applicable to Stratonovich SDEs. On the other hand,
Komori [7] proposed a SRK family for non–commutative Stratonovich SDEs.
However, the computational effort of his SRK family depends also linearly on
the dimension of the driving Wiener process in each step. Although the SRK
schemes proposed in [7] need only the simulation of 2m−1 independent random
variables for each step, these SRK schemes need 4 evaluations of the drift a and
3m+1 evaluations of each diffusion function bj , j = 1, . . . ,m, in each step. Thus,
all known SRK methods seem not to have much relevance in practice, especially
for high dimensional problems, due to the dependence of the computational costs
on the dimension m of the driving Wiener process.
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In contrast to this, the new SRK scheme RS1 needs 2 evaluations of the drift a
and only 6 evaluations of the diffusion functions bj , j = 1, . . . ,m, for each

step due to s = 4, H
(k)
1 = Ĥ

(k)
1 and β

(2)
4 = 0. Further, also only 2m − 1

independent random variables need to be simulated for each step. As a result
of this, the introduced SRK methods are appropriate also for high dimensional
problems with large values for d and m. Further, the computational effort of the
new SRK schemes is comparable to that of the extrapolated Euler–Maruyama
scheme for Itô SDEs where 3 evaluations of the drift a and 3 evaluations of
the diffusion functions bj , j = 1, . . . ,m, are necessary, and which needs the
simulation of 2m independent random variables at each step. However, if we
transform a Stratonovich SDE to an Itô SDE with the same solution process,
then the drift function contains also the diffusion functions bj and their first
derivatives [5]. Therefore, the extrapolated Euler–Maruyama scheme applied to
a Stratonovich SDE needs finally 3 additional evaluations of the first derivatives
of bj , j = 1, . . . ,m, for each step. As a result of this, the introduced new class
of SRK methods is of considerable importance, especially for high dimensional
problems like e.g. in mathematical finance or physics. Further, embedded SRK
schemes may be applied for step size control, see also [10]. For future research,
the calculation of coefficients for implicit SRK methods and an analysis of the
stability attributes for the SRK methods may be of particular interest.
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