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Abstract.

In this paper fast implicit and explicit Runge–Kutta methods for systems of Volterra
integral equations of Hammerstein type are constructed. The coefficients of the methods
are expressed in terms of the values of the Laplace transform of the kernel. These
methods have been suitably constructed in order to be implemented in an efficient way,
thus leading to a very low computational cost both in time and in space. The order of
convergence of the constructed methods is studied. The numerical experiments confirm
the expected accuracy and computational cost.
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1 Introduction.

Volterra integral equations (VIEs) arising in mathematical modeling processes
are often characterized by convolution kernels. The more general class of nonlin-
ear convolution equations are the so-called Volterra integral equations of Ham-
merstein type:

y(t) = f(t) +

∫ t
0

k(t− τ)g(τ, y(τ))dτ , t ∈ I := [0, T ],(1.1)

y, f, g ∈ Rd, k ∈ Rd×d d ≥ 1.
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We assume that the functions f and k are continous on I and g satisfies the
Lipschitz condition with respect to y. This assumptions ensure the existence and
the uniqueness of the solution of (1.1) [4, 16].

These equations are mathematical models of evolutionary phenomena in-
corporating memory and, directly or indirectly, they arise in many branches
of science. For example VIEs of Hammerstein type directly arise in models of
epidemic diffusion, in neurophysiology, in feedback control theory, in the study
of the behaviour of nuclear reactors, wherease we can also arrive to equations of
the form (1.1) by manipulating some special hyperbolic differential equations,
by constructing, for example, transparent boundary conditions in wave diffusion
problems in unbounded domains [10, 12, 13, 14] or by considering the semi-
discretization in space of Volterra–Fredholm integral equations [3, 5].

It is known that the numerical treatment of VIEs has a very high computa-
tional cost, since, for each time step, we have to compute the history term (lag
term). For a naive implementation of a classical numerical method the com-
putational cost in time to calculate the solution of (1.1) over Nt time steps is
O(d2N2t ), with a memory request of O(d

2Nt) space (see [4]). Even in the sim-
pler case of scalar VIEs (i.e. d = 1), as the number of points Nt may be very
large, it is important to seek for numerical methods which can pull down the
computational cost (both in time and in space). As a matter of fact, in the
literature several authors have been interested in the reduction of the compu-
tational cost of numerical methods for the scalar version of (1.1). For example
a Volterra Runge–Kutta (VRK) method of order p = 4 requiring a computa-
tional effort of O(Nt(logNt)2) in time and of O(Nt) in space was constructed
in [11]. Moreover a class of fast collocation methods with a computational cost
of O(Nt(logNt)) operations and memory reqirement of O(logNt) was proposed
in [6]. Such numerical methods are all based on fast algorithms for the lag term
computation.

In this work we construct implicit and explicit fast VRK (FVRK) methods
of generic order p for the system of equations (1.1) that require only
O(d2Nt(logNt)) and O(d2 logNt) of cost in time and space respectively. We
observe that the pulling down of the cost in space from O(d2Nt) to O(d2 logNt)
is not a less important goal than the reduction of the cost in time. As a matter
of fact in many problems the number of points Nt may be very large, thus lead-
ing to difficulties in the memorization of the arrays. The coefficients of FVRK
methods are expressed in terms of M values of the Laplace transform K(s) of
the kernel k(t), so they are particularly suitable for all those problems where
we only know K(s) rather than the kernel itself (see [13, 14] and the related
bibliography). Such methods are inspired on the scheme proposed in [14], also
used in [6] for the construction of fast collocation methods.

In Section 2 we construct two classes of FVRK methods to approximate the
solution of (1.1), namely, explicit FVRK methods of Pouzet type (FPVRK
methods) and implicit FVRKmethods of de Hoog andWeiss (FHVRK methods).
In Section 3 we determine the order of convergence of the constructed methods
and we prove that they keep the same order of the corresponding classical
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methods with a not very large number of points M . The calculation of the
computational cost is presented in Section 4. Section 5 contains numerical re-
sults obtained on some real problems that confirm the expected performances of
the FVRK methods in terms of accuracy and computational cost. In Section 6
some concluding remarks are reported.

2 Fast Runge–Kutta methods.

In order to construct FVRK methods for the equation (1.1) we shall refer to
classical explicit extended VRK methods of Pouzet type (PVRK methods) and
implicit VRK methods of de Hoog and Weiss [8] (HVRK methods).
Suppose that the given interval I is discretized by the uniform mesh

Ih = {tn := nh, n = 0, . . . , Nt, h ≥ 0, Nth = T}.

The equation (1.1) can be rewritten, by relating it to this mesh, as

y(t) = Fn(t) + Φn(t) t ∈ [tn, T ],

where

Fn(t) := f(t) +

∫ tn
0

k(t− τ)g(τ, y(τ))dτ

and

Φn(t) :=

∫ t
tn

k(t− τ)g(τ, y(τ))dτ

represent respectively the lag term and the increment function.
A VRK method is based on an approximation scheme for the increment func-
tion Φn(t), that will be called a VRK formula and denoted by Φ̄n(t), and on
an approximation scheme, F̄n(t), for the lag term, that will be called lag term
formula.
The approximation of the equation in the mesh point tn+1 leads to the discrete
method of the form

yn+1 = F̄n(tn + h) + Φ̄n(tn + h) n = 0, . . . , Nt − 1.(2.1)

Let us fix the vectors c = (ci)
m
i=1, b = (bi)

m
i=1 and the square matrix

A = (ais)
m
i,s=1, determined by the “Butcher array” for ODEs

c A

bT
(2.2)

and let us fix cm+1 = 1.
An explicit m-stage PVRK method applied to the equation (1.1) reads

yn+1 = F̄n(tn,m+1) + Φ̄n(tn,m+1) n = 0, . . . , Nt − 1,(2.3)
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where the increment term is given by

Φ̄n(tn,m+1) = h
m∑
i=1

bik((1− ci)h)g(tn,i, Yn,i).(2.4)

The stages Yn,i are explicitly computed through

Yn,i = F̄n(tn,i) + h
i−1∑
s=1

aisk((ci − cs)h)g(tn,s, Yn,s) i = 1, . . . ,m(2.5)

and the lag term is given by

F̄n(tn,i) = f(tn,i) + h
n−1∑
r=0

m∑
s=1

bsk(tn,i − tr,s)g(tr,s, Yr,s) i = 1, . . . ,m+ 1.(2.6)

An m-stage HVRK method, applied to equation (1.1) reads

yn+1 = Yn,m n = 0, . . . , Nt − 1(2.7)

with Yn,i determined by

Yn,i = F̄n(tn,i) + hci

m∑
l=1

blk(ci(1− cl)h)g
(
tn + ciclh,

m∑
s=1

Ls(cicl)Yn,s
)

(2.8)

i = 1, . . . ,m,

where the lag terms F̄n(tn,i) are given by (2.6) for i = 1, . . . ,m and we remind
that in this case is cm = 1.
A straightforward implementation of classical VRK method (either of Pouzet
type or of de Hoog and Weiss) would require O(d2N2t ) operations and O(d

2Nt)
memory for computing the numerical solution over Nt time steps. The reduction
of the computational cost to O(d2Nt logNt) in time and O(d2 logNt) in space
will be obtained by taking into account of the peculiarity of the considered
equation and by using the following inverse Laplace transform approximation
formula [14]

u(t) =
1

2πi

∫
Γl

U(λ)etλdλ ≈
N∑

j=−N

ω
(l)
j U
(
λ
(l)
j

)
etλ

(l)
j t ∈ Īl.(2.9)

This formula locally approximates a function u(t) by sums of exponentials on
a sequence of fast growing intervals Īl = [B

l−1h+(c1−1)h, (2Bl−1)h], covering
[h, T ], where B > 1 is an integer, Γl is a suitably chosen Talbot contour [17, 19]

and the weights ω
(l)
j are obtained using the trapezoidal rule to a parametrization

of the contour integral on Γl. The number 2N + 1 of quadrature points λ
(l)
j

chosen on Γl, is independent of l and it is much smaller than would be required
for a uniform approximation on the whole interval I. What’s more, by using an
M nodes trapezoidal rule, the resulting error satisfies

‖E(t)‖t∈Il = O(e
−c
√
M ),(2.10)
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where the positive constant c depends on the distance of the singularities of
the Laplace transform U(s) of the function u(t) with respect to the Talbot
contour.

Remark 2.1. The use of the formula (2.9) for the inverse Laplace transform
approximation is the core of the scheme proposed by Lubich and Shädle in [14].
As a matter of fact, by opportunely inserting the (2.9) in (2.6), we will be able to
efficiently compute the lag term at each time step by exploiting its evaluations
at the previous time steps (see Section 2.1).

Remark 2.2. Note that the formula (2.9) can be applied when t > 0. An
implicit PVRK method involves also evaluations of the kernel k(t) with t < 0,
thus motivating our choice of considering HVRK methods.

2.1 Fast computation of the lag terms.

As in [14] let L be the smallest integer for which tn+1 < 2B
Lh and for l =

1, 2, . . . , L − 1 determine the integer ql ≥ 1 such that τl = qlBLh satisfies
tn+1 − τl ∈ [Blh, (2Bl − 1)h], with τ0 = tn and τL = 0. It is easy to verify that
[tn,i − τl−1, tn,i − τl] ⊆ Īl.
In order to use the formula (2.9) for the approximation of the kernel, we have
to split the sum over r in (2.6) as

F̄n(tn,i) = f(tn,i) + h
L∑
l=1

τl−1
h −1∑
r=

τl
h

m∑
s=1

bsk(tn,i − tr,s)g(tr,s, Yr,s)(2.11)

i = 1, . . . ,m+ 1.

In this way for each fixed l the argument tn,i − tr,s of the kernel k(t) belongs to
[tn,i − τl−1, tn,i − τl] ⊆ Īl. Now we approximate each component kαβ(t) of the
kernel k(t) in (2.11) with the formula (2.9) evaluated in t = tn,i − tr,s,

kαβ(tn,i − tr,s) ≈

Nαβ∑
j=−Nαβ

ωj
(l,α,β)Kα,β(λj

(l,α,β))e(tn,i−tr,s)λj
(l,α,β)

,(2.12)

α, β = 1, . . . , d,

where the points λj
(l,α,β) belong to a Talbot contour Γl,α,β associated to the

complex function Kα,β(s). The number of points chosen on each contour and
the quadrature weights also depend on α and β.

The approximation F̄n,i = (
1F̄n,i, . . . ,

dF̄n,i)
T of F̄ (tn,i) is obtained by in-

serting (2.12) in (2.11)

αF̄n,i = fα(tn,i) +
d∑
β=1

L∑
l=1

N∑
j=−N

ωj
(l,α,β)Kα,β

(
λj
(l,α,β)

)
e(tn,i−τl−1)λj

(l,α,β)

(2.13)

× zβ
(
τl−1, τl, λ

(l,α,β)
j

)
i = 1, . . . ,m+ 1, α = 1, . . . , d,
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where

zβ(τl−1, τl, λ) := h

τl−1
h −1∑
r=

τl
h

m∑
s=1

bse
(τl−1−tr,s)λgβ(tr,s, Yr,s) β = 1, . . . , d.(2.14)

Remark 2.3. The HVRK methods have cm = 1, and thus the index i in (2.13)
should arrive only up to i = m.

The implementation of the formula (2.13) by mean of the direct computation of
(2.14) would still lead to a computational cost of O(d2N2t ). The idea proposed
in [14] to reduce the computational cost was based on a new organization in
the computation of the function z at each time step, which could exploit its
evaluations at the previous time steps. In order to reach the same goal we split
the interval [τl, τl−1] in subintervals [τl + tk, τl−1 + tk+1] of length h, we denote
with zk = z(τl + tk, τl, λ) and we prove that the following one step formula for
the evaluation the function z in the mesh points from τl to τl−1 holds.

Proposition 2.1. Let z(τl−1, τl, λ) be given by (2.14), with τl = m̄h, τl−1 =
τl + n̄h, then⎧⎨

⎩
zk+1 = e

λhzk + h
m∑
s=1
bse
(1−cs)hλg(τl + tk,s, Ỹk,s) k = 0, . . . , n̄− 1

z0 = 0,
(2.15)

where Ỹk,s = Ym̄+k,s and zk ∈ Rd.

We can advance the values (2.15) of z by one step for all required values λ
(l)
j

on all Talbot contours in every time step tn → tn+1, according to the scheme
illustrated in [14]. So the computational cost is of O(d2Nt logB Nt) operations
(see Section 3 for the detailed calculation). Note that the function z in (2.13)
does not depend on i, so we have to evaluate it only one time at each step
tn → tn+1 independently on the number stages m. Moreover the computation
of zk+1 through (2.15) only requires the value zk of z at the previous step and the
values of the stages Ỹk,r, which represent an approximation of the exact solution
at the point τl + tk,r ∈ [τl + tk, τl + tk+1]. So we do not need to keep in memory
all the past values, thus leading to a memory requirement of O(d2 logB Nt).

2.2 Determination of the approximate solution.

Once approximated the lag terms in the points tn,i, the next step to follow is
to solve the nonlinear system (2.5) or (2.8), after inserting the inverse Laplace
transform approximation (2.9).

2.2.1 Explicit extended FPVRK methods.

Now we can use the approximations

kαβ((ci − cs)h) ≈

Nαβ∑
j=−Nαβ

ωj
(α,β)Kαβ

(
λj
(α,β)
)
e(ci−cs)λj

(α,β)

=: Ψis(α, β),(2.16)
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where Ψis is a matrix of dimension d, the weigths ωj
(α,β) and the nodes λj

(α,β)

correspond to a Talbot contour Γ0,α,β associated to the interval Ī0 = [0, h]. As
concerns the increment term (2.4) the evaluations of k(t) are approximated by

kαβ((1− ci)h) ≈

Nαβ∑
j=−Nαβ

ωj
(α,β)Kαβ

(
λj
(α,β)
)
e(1−ci)hλj

(α,β)

=: Ψi(α, β),

where Ψi is a matrix of dimension d. Thus the stages Ȳn,i can be computed
explicitly through the formula

Ȳn,i = F̄n(tn,i) + h
i−1∑
s=1

aisΨisg(tn,s, Ȳn,s) i = 1, . . . ,m(2.17)

obtained by inserting the approximation (2.16) in the formula (2.5). The approxi-
mate solution of (1.1) in the mesh points Ih is obtained by

yn+1 = F̄n,m+1 + h
m∑
i=1

biΨig(tn,i, Ȳn,i) n = 0, . . . , Nt − 1.(2.18)

2.2.2 Implicit FHVRK methods.

As before we can use the approximations

kαβ(ci(1− cl)h) ≈

Nαβ∑
j=−Nαβ

ωj
(α,β)Kαβ

(
λj
(α,β)
)
eci(1−cl)hλj

(α,β)

=: Ψil(α, β),

(2.19)

where Ψil is a matrix of dimension d, the weigths ωj
(α,β) and the nodes λj

(α,β)

correspond to a Talbot contour Γ0,α,β associated to the interval Ī0 = [0, h].
Thus the nonlinear system (2.8) becomes

Ȳn,i = F̄n,i + hci

m∑
l=1

blΨilg
(
tn + ciclh,

m∑
s=1

Ls(cicl)Ȳn,s
)
,(2.20)

and the approximate solution of (1.1) in the mesh points Ih is obtained by

ȳn+1 = Ȳn,m n = 0, . . . , Nt − 1.(2.21)

Remark 2.4 (Linear case). In the case of linear VIEs the nonlinear systems
(2.17) and (2.20) become linear, and they can be written in the form

(I− hD)Ȳn = F̄n,(2.22)

where Ȳn = (Ȳ
T
n,1, . . . , Ȳ

T
n,m)

T , F̄n = (F̄
T
n,1, . . . , F̄

T
n,m)

T , I denotes the identity
matrix of order md and D = (Dis) is a block square matrix of dimension md.
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Each block is defined as

Dis =

⎧⎨
⎩
aisΨis FPVRK methods

ci
m∑
l=1

blΨilLs(cicl) FHVRK methods,
(2.23)

where Ψil are given by (2.16) for FPVRK methods or by (2.19) for FHVRK
methods.

3 Computational cost.

In this section we will give the calculation of the computational cost of the
FVRK methods in function of the number Nt of mesh points, proving that it
is of O(d2Nt logNt) operations and of O(d2 logNt) memory requirement. We
will only take into consideration the FHVRK methods, since for the FPVRK
methods the same result can be obtained in a similar way.
In the subsequent computations m will represent the number of stages, Lt
the total number of different Talbot contours, N = maxα,β=1,...,dNα,β, M =
2N+1 the maximum number of points chosen on the Talbot contours. A FHVRK
method consists, for each time step tn, n = 0, . . . , Nt− 1, in the following steps:

STEP 1 Evaluate the lag terms (2.13) for i = 1, . . . ,m + 1 and α = 1, . . . , d
using all the values of the function z, already computed in the previous time
steps.
We can observe that, by construction, the integer L in (2.13) satisfies

L ≤ Lt ≤ logB Nt.

As the formula (2.13) involves, for each i and α, a sum for l = 1, . . . , L,
one for j = −N, . . . , N , and one for β = 1, . . . , d the number of floating
point operations FLOPlag for the lag terms computation is proportional to
d2mML. Thus

FLOPlag ≤ d
2C1mM logB Nt.

STEP 2 Determine the approximate solution ȳn+1 = Ȳn,m by mean of (2.21).
Thus we need to solve the nonlinear system of dimension md.
If we solve such system by an iterative method, the computational cost for
the solution of the nonlinear system is of

FLOPsist = C2km
2d2

operations, where k is the number of iterations required by the iterative
method.

STEP 3 Advance by one step the formula (2.15) for each l (on all Talbot con-
tours) and for j = −N, . . . , N . This values will be used for the computation
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of the lag terms in the subsequent time steps. The formula (2.15) requires,
for each l and for each j, the computation of a sum for s = 1, . . . ,m, thus
requiring a number of floating point operations FLOPadvance proportional
to dmMLt. Thus

FLOPadvance ≤ dC3mM logB Nt.

Thus the total number of floating point operations FLOPtot in function of the
time steps Nt is given by

FLOPtot = Nt(FLOPlag + FLOPsist + FLOPadvance)

≤ (d2C1 + dC3)mMNt logB Nt + d
2C2km

2Nt

and then

FLOPtot = O(d
2Nt logB Nt).

As regards the memory requirement for computing the solution of (1.1) over Nt
time steps through (2.13), (2.15), (2.20), (2.21) we can observe that we have to
store

1. Kα,β(λ
(l,α,β)
j ), λ

(l,α,β)
j , ω

(l,α,β)
j , ehλ

(l,α,β)
j , for l = 1, . . . , Lt and for j =

−N, . . . , N , α, β = 1, . . . , d

2. z(τl−1, τl, λ
(l)
j ), for l = 1, . . . , Lt and for j = −N, . . . , N ,

3. Yn,i, i = 1, . . . ,m.

The total cost in space of the FVRK methods is less or equal to Cd2M logB Nt
+md, and thus is O(d2 logB Nt).

4 Convergence analysis.

Let us denote by ‖ · ‖d a vector norm on Rd (when applied to a matrix it
will denote a compatible matrix norm) and let us consider classical explicit
PVRK methods and implicit HVRK methods of order p. The following theorem
estabilishes the order of convergence of the corresponding FVRK methods.

Theorem 4.1. Let ēn = y(tn)−ȳn be the error of the FVRK methods (explicit
FPVRK or implicit FHVRK). If the function g(τ, y) is Lipschitz continuous with
respect to y then

max
1≤n≤Nt

‖ēn‖d = O(h
p) +O(e−c

√
M ).(4.1)

Proof. We prove the thesis for the implicit FHVRK methods, since in the
case of explicit FPVRK methods the proof is similar. Let en = y(tn) − yn
and ēn = y(tn) − ȳn, n = 1, . . . , Nt respectively denote the error of the clas-
sical HVRK method (2.6), (2.7), (2.8) and of the corresponding FHVRK method
(2.13), (2.20), (2.21), and define εn = yn − ȳn.
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According to our notation we have

max
1≤n≤Nt

‖ēn‖d ≤ max
1≤n≤Nt

‖en‖d + max
1≤n≤Nt

‖εn‖d.

Since we are considering classical methods of order p, it follows that

max
1≤n≤N

‖en‖d ≤ C1h
p

(see [4]).
Let Q be the Lipschitz constant of the function g with respect to y, i.e.

‖g(t, y)− g(t, ȳ)‖d ≤ Q‖y − ȳ‖d

uniformly with respect to t and for all y, ȳ ∈ Rd.
Let us denote by ηn,i = Yn,i − Ȳn,i ∈ Rd the error committed in the approxi-

mation of the stages and let us define the matrix M
(n,k)
i,s ∈ Rd×d by

(
M
(n,k)
i,s

)
α,β
=

Nαβ∑
j=−Nαβ

ω
(l,α,β)
j Kα,β

(
λ
(l,α,β)
j

)
e(tn,i−tk,s)λ

(l,α,β)
j α, β = 1, . . . , d.

By substracting (2.20) from (2.8), and exploiting the Lipschitz condition on g
we obtain

‖ηn,i‖d ≤ h
m∑
s=1

dis‖ηn,s‖d + h
n−1∑
k=0

m∑
s=1

q
(n,k)
i,s ‖ηk,s‖d + h

∥∥E(i)n,n∥∥d + h
L∑
l=1

∥∥E(i)n,l
∥∥
d

(4.2)

i = 1, . . . ,m,

where q
(n,k)
i,s , dis are scalar values and E

(i)
n,n, E

(i)
n,l are vectors of dimension d,

defined by:

q
(n,k)
i,s = Q|bs|

∥∥M (n,k)i,s

∥∥
d
k = 0, . . . , n− 1, i, s = 1, . . . ,m,

E
(i)
n,l =

τl−1
h −1∑
r=

τl
h

m∑
s=1

bs
(
k(tn,i − tr,s)−M

(n,r)
i,s

)
g(tr,s, Yr,s),

E(i)n,n = ci

m∑
l=1

bl(k(ci(1− cl)h)−Ψil)g
(
tn,s,

m∑
s=1

Ls(cicl)Yn,s
)
,

dis = ciQ
m∑
l=1

bl‖Ψil‖d|Ls(cicl)|.

By using (2.10) we obtain the discrete Gronwall inequality

‖ηn‖∞ ≤
hC3

1− hC2

n−1∑
k=0

‖ηk‖∞ +
C4

1− hC2
e−c

√
M , n = 0, . . . , Nt − 1,(4.3)

where ηn = (‖ηn,1‖d, . . . , ‖ηn,m‖d)T , C2 = maxi
∑m
s=1 dis and C3 =

maxi,n,k
∑m
s=1 q

(n,k)
i,s .
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Using the Gronwall result (Corollary 1.5.2 in [4]) for (4.3), it follows that

‖ηn‖∞ ≤ C5e−c
√
M and hence, being εn = ηn,m, we obtain

max
1≤n≤Nt

‖εn‖d ≤ C5e
−c
√
M .

Remark 4.1. An immediate consequence of Theorem 4.1 is that, by choos-

ing M such that e−c
√
M ≤ C1hp, then the FVRK methods keep the same order

of the corresponding classical ones. Thus, since the error due to the approxi-
mation of the inverse Laplace transform decreases exponentially with M , it is
sufficient to fix a not too high number of points on the Talbot contour in order
to preserve the order of convergence of the classical methods.

It immediately follows from Theorem 4.1, Remark 4.1 and Theorem 5.3.5
in [4], that it is possible to achieve local superconvergence at the mesh points by
opportunely choosing the parameters of the VRK methods:

Corollary 4.1. Let f , k ∈ C2m−v, with v ∈ {0, 1, 2}. Then it is possible to
choose M such that the following statements hold:

(i) If the nodes {ci} are the Radau II points for (0, 1], then the FHVRK (2.13),
(2.15), (2.20), (2.21) satisfies, for v = 1,

max
1≤n≤Nt

‖ēn‖d = O(h
2m−1).

(ii) If the nodes {ci} are the Lobatto points for [0, 1], then the FHVRK method
(2.13), (2.15), (2.20), (2.21) satisfies, for v = 2,

max
1≤n≤Nt

‖ēn‖d = O(h
2m−2).

(iii) Let the nodes {ci} are the m Gauss points for (0,1), cm+1 = 1. Furthermore,
suppose to consider a modification of the FHVRK method given by (2.13),
(2.15), (2.20) for the computation of the stages, but with the approximate
solution calculated by mean of (2.18), then, for v = 0,

max
1≤n≤Nt

‖ēn‖d = O(h
2m).

5 Numerical results.

In the numerical experiments we tested the performances of the FVRK
methods in terms of order of convergence and computational cost, in order to
validate the theoretical results of Sections 3 and 4. In addition, we have compara-
ted the performarces of the FVRK methods with that ones of a pair of extended
explicit Bel’tyukov Runge–Kutta (EBVRK) formulas [18]. Our methods were
implemented in MATLAB and the numerical experiment have been performed
on different text examples.
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For the first purpose we report the results obtained on the two test problems:

• the linear Volterra integral equation of renewal theory taken from [4, 9]:

y(t) = 1− e−λt(1 + λt) +

∫ t
0

λ2(t− τ)e−λ(t−τ)y(τ)dτ, t ∈ [0, 10],(5.1)

with K(s) = ( λ
λ+s )

2, λ = 1/2, and exact solution y(t) = 1
4 (2λt− 1+ e

−2λt);
• the nonlinear equation given in [11], arising in the analysis of neural net-
works with post inhibitory rebound:

y(t) = 1 +

∫ t
0

(t− τ)3(4− t+ τ)e−t+τ
y4(τ)

1 + 2y2(τ) + 2y4(τ)
dτ, t ∈ [0, 10],

(5.2)

with K(s) = 24s
(1+s)5 and reference solution y(10) = 1.25995582337233, ob-

tained numerically by using different codes with very stringent tolerances;
• the linear system given in [4]:

(
y1(t)
y2(t)

)
=

(
0

259
9 − 24 cos t−

16
9 cos 3t

)
+

t∫

0

(
0 −1
−25 0

)(
y1(t)
y2(t)

)
dt,

(5.3)

t ∈ [0, 5],

with K11(s) = K22(s) = 0, K12(s) = −1/s, K21(s) = −25/s and exact
solution:

y1(t) = sin(t) + sin(3t)/3 + sin(5t)/5

y2(t) = cos(t) + cos(3t) + cos(5t).

5.1 Convergence.

The following FVRK methods have been used, where p denotes the order of
the method, according to Theorem 4.1 and Corollary 4.1:

IMPLICIT METHODS:

L2 : 2-points Lobatto (c1 = 0, c2 = 1), p = 2;

R3 : 3-points Radau II
(
c1 =

4−
√
6

10 , c2 =
4+
√
6

10 , c3 = 1
)
, p = 5;

G3 : 3-points Gauss
(
c1 =

5−
√
15

10 , c2 = 1/2, c3 =
5+
√
15

10

)
, p = 6.

EXPLICIT METHODS:

E3 : 3-points with Butcher array:

0 0 0 0
2/3 2/3 0 0
2/3 5/12 1/4 0

1/4 −1/4 1

, p = 3;
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E4 : classical 4-points with Butcher array:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

, p = 4.

The number of correct significant digits cd at the end point is defined to be

cd := − log10 (‖y(T )− yNt‖d / ‖y(T )‖d) .

In Figures 5.1–5.3 we report the value of cd obtained by the application of
each method respectively to the Equations (5.1)–(5.3), with respect the number
Nt of mesh points.

Figure 5.1: Number of correct significant digits for problem (5.1).

Figure 5.2: Number of correct significant digits for problem (5.2).

In Tables 5.1–5.3 we report the numerical results and we compute a numerical

estimation of the order of the method with the formula p(h) = cd(h)−cd(2h)
log10 2

for

a fixed h, which shows that our methods produce the expected order.
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Figure 5.3: Number of correct significant digits for problem (5.3).

Table 5.1: Number of correct significant digits for problem (5.1) at t = T = 10.

method Nt = 16 Nt = 32 Nt = 64 Nt = 128 p(h = 10
128 )

L2 1,82 2,41 3,01 3,61 1,99
E3 3,23 4,07 4,94 5,83 2,96
E4 3,78 4,93 6,10 7,29 3,95
R3 6,18 7,66 9,16 10,67 5,02
G3 7,98 9,76 11,56 13,35 5,95

Table 5.2: Number of correct significant digits for problem (5.2) at t = T = 10.

method Nt = 16 Nt = 32 Nt = 64 Nt = 128 Nt = 256 p(h = 10
256 )

L2 2,82 3,27 3,84 4,44 5,04 1,99
E3 3,05 4,14 5,27 6,41 7,35 3,12
E4 3,38 4,96 6,51 7,20 8,26 3,52
R3 4,73 6,45 8,33 9,91 11,41 4,98
G3 6,35 8,62 9,26 11,53 13,17 5,45

Table 5.3: Number of correct significant digits for problem (5.3) at t = T = 5.

method Nt = 32 Nt = 64 Nt = 128 Nt = 256 p(h = 5
256 )

L2 0,72 1,13 1,71 2,30 1,99
E3 1,11 2,02 3,02 4,02 3,33
E4 1,97 2,99 4,07 5,20 3,74
R3 3 4 5,30 6,70 4,65
G3 4,86 6,66 8,46 10,27 5,99
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5.2 Computational cost.

In order to verify that our methods have a computational cost of order
O(Nt logB Nt) in Figure 5.4 we plot the cpu-time in seconds versus Nt, ob-
tained by applying the R3 FVRK method to Equation (5.1) on an Intel Pentium
4/3,2GHz. We also plot the lines corresponding to algorithms of order O(Nt)
and O(N2t ). The picture shows that our method perfectly follows the behaviour
of the function CNt logB Nt.

Figure 5.4: Computational cost.

In a second session of experiments we have compared our fast implementation
of VRK methods with a well-chosen implementation of Bel’tyukov Runge–Kutta
(EBVRK) methods. We have tested the efficiency, on equal accuracy, of the
explicit IV -order FVRK (E4) and EBVRK methods on the four standard test
problems of the convolution type specified in [2] and summarized in Table 5.4.

Table 5.4: A summary of the four test problems.

g(t) k(t) T

1 t2 exp(−t)/2 (t− τ )2 exp(τ − t)y(τ )/2 5
2 1 + sin2(t) −3 sin(t− τ )y2(τ ) 5
3 1 (t− τ )3(4− t+ τ ) exp(τ − t)y4(τ )/(1 + 2y2(τ ) + 2y4(τ )) 10
4 exp(−t) exp(τ − t)(y(τ ) + exp(−y(τ ))) 40

In Figure 5.5 we compare the efficiency curves for the two methods. There we
plot the curves of square root of u against the absolute end-point global error
for the four convolution test problems of Table 5.4, where u is the number of
kernel evaluations. For the method E4 the number of kernel evaluations we have
considered is the sum of the evaluations of the Laplace transforms K and of
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Figure 5.5: Efficiency curves of u1/2 against the absolute end-point global error (E) for
the four test problems in Table 5.4, where u is the number of kernel evaluations. Solid
line FVRK E4, dashed-dot line EBVRK 4.

the exponentials in (2.13) and (2.16). The choice of u1/2 was done because the
number of kernel evaluations in [18] varies as N2t .

6 Concluding remarks.

In this work we constructed fast VRK method for the Equation (1.1) of order p
that can be implemented with a computational cost ofO(d2Nt logNt) operations
and with a memory requiremet ofO(d2 logNt) to compute the numerical solution
over Nt time steps. This was possible by exploiting the Laplace transform of the
kernel and the fact that the equation is of convolution type. We proved that
the convergence and stability properties depend on the number M of points
chosen on the Talbot contour for the inverse Laplace transform approximation.
In particular with a suitable choice of M , the order of convergence p is the same
of the corresponding classical VRK method. The numerical experiments clearly
confirm the theoretical expectations.
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