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Abstract.

The exact relation between a Cooper-like reducibility concept and the reducibilities
introduced by Hundsdorfer, Spijker and by Dahlquist and Jeltsch is given. A shifted
Runge–Kutta scheme and a transplanted differential equation is introduced in such
a fashion that the input/output relation remains unchanged under these transfor-
mations. This gives a technique to prove stability and contractivity results. This is
demonstrated on the example of contractivity disks.
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1 Introduction.

In [6] we have studied contractivity of explicit Runge–Kutta methods. A close
look at the proofs shows that these are similar to the ones in [1], [5] concerning
BN-stability. A similar relation between proofs in [2] and [3] can be observed.
Here we shall link some of these results by introducing shifted Runge–Kutta
schemes and the corresponding transplanted differential equation. These trans-
formations are done in such a fashion that the input/output relation in the
transformed situation is the same one as in the original scheme. This gives us
a tool to prove new results by transforming these back to known theorems.
We shall present this proving technique in Section 3. To show how it works we
apply it to prove r-circle contractivity in Section 4. To present these results
in their sharpest version we need the concept of irreducibility. We shall intro-
duce in Section 2 a reducibility concept which has been implicitly suggested by
G. J. Cooper [4] and then give the exact relation to the reducibility concepts
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ematics, RWTH Aachen, May 1987. At the end of this article we give additions in Appendix 1
and remarks to the history of the report.
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of Hundsdorfer and Spijker [11] and of Dahlquist and Jeltsch [6]. The results in
this report have been announced in [7].

2 Irreducible methods.

To solve the initial value problem

y′(t) = f(t, y(t)), y(0) given, y, f ∈ Rs or Cs(2.1)

we consider m-stage Runge–Kutta methods. Let yn and yn+1 be the numerical
approximations to the exact solution at tn and tn+1 = tn+h, respectively, where
the stepsize h is always assumed to be positive. Then yn+1 is computed by

yn+1 = yn + h
m∑

j=1

bj f(tn + cjh, Yj) ,(2.2)

where

Yi = yn + h
m∑

j=1

aij f(tn + cjh, Yj), i = 1, 2, . . . ,m .(2.3)

We shall always request the consistency condition

m∑

i=1

bi = 1(2.4a)

and

ci =
m∑

j=1

aij .(2.4b)

While (2.4a) is a necessary condition for convergence, (2.4b) is not [13]. However
(2.4b) ensures that the Runge–Kutta scheme gives the same result, whether it is
applied to a nonautonomous problem or the corresponding autonomous problem
obtained by augmenting the system of equations by the equation dt/dt = 1.
Even so (2.4b) is not necessary for the results presented here it is convenient
to assume it and practically all known methods satisfy it. The scheme is called
explicit if

A := (aij)
m
i,j=1(2.5)

is a strictly lower triangular matrix. A Runge–Kutta method is called conflu-
ent if ci = cj for some i �= j and nonconfluent otherwise. For compactness of
notations we introduce the vectors

Y, F (tn em + ch, Y ) ∈ R
msor Cms, and c, em ∈ R

m
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are defined by

Y =

⎛

⎜⎜⎜⎝

Y1
Y2
...
Ym

⎞

⎟⎟⎟⎠ , F (tn em + ch, Y ) =

⎛

⎜⎜⎜⎝

f(tn + c1h, Y1)
f(tn + c2h, Y2)

...
f(tn + cmh, Ym)

⎞

⎟⎟⎟⎠

em =

⎛

⎜⎜⎜⎝

1
1
...
1

⎞

⎟⎟⎟⎠ , c = Aem =

⎛

⎜⎜⎜⎝

c1
c2
...
cm

⎞

⎟⎟⎟⎠ .

(2.6)

Using the Kronecker-product symbol ⊗, see for example [9, p. 116], or [12] we
can simplify the notation. In order to cut down on the number of parentheses we
assume that ⊗ has higher priority than ordinary matrix multiplication. Let Is
be the s× s identity matrix, and let bT = (b1, b2, . . . , bm). Then (2.2) and (2.3)
take the form

yn+1 = yn + hb
T ⊗ Is F (tn em + ch, Y )(2.7)

and

Y = em ⊗ yn + hA ⊗ Is F (tn em + ch, Y ) .(2.8)

The aim in research on Runge–Kutta scheme is very often to express a prop-
erty of the scheme in terms of properties of the coefficients aij and bj . However
one can often, for example by adding redundant stages, destroy the latter while
keeping the former. Thus one would like to get rid of all possible redundancies in
a scheme to get sharpest results. This lead to the introduction of several notions
of reducibility [4, 6, 8, 11, 15]. Before discussing reducibility we observe that
a permutation of the numbering of the stages does not change the numerical
result of the Runge–Kutta scheme. In terms of the coefficients matrix A and b
this is expressed by the obvious

Lemma 2.1. Let Π be a permutation matrix. Then the Runge–Kutta schemes
defined by A, b, c and πA πT , πb, πc give identical results.

In a strict sense one should call a Runge–Kutta scheme reducible, if there is
a Runge–Kutta scheme with fewer stages which gives in all situation identical
results as the original scheme. This reducibility has the drawback of being too
stringent and not being expressed in terms of the coefficients. Four our results we
shall use the following reducibility definition, which has been implicitly suggested
by G. J. Cooper [4].

Definition 2.1. An m-stage Runge–Kutta scheme A, b is called reducible,
if there exists an mr < m and an mr-stage Runge–Kutta scheme Ar, br which
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satisfies the following property. There exists an m ×m matrix M with exactly
one element 1 in each row and 0 otherwise such that

AM =M

(
Ar 0
D

)
, MT b =

(
br
0

)
.(2.9)

Here D is an (m −mr) ×m matrix. The method is called irreducible if it is
not reducible.

In [4]M is called reducing matrix. The reducedmr-stage Runge–Kutta method
is given by

Z = emr ⊗ yn + hAr ⊗ Is F (tn emr + hAr emr , Z)(2.10)

and

zn+1 = yn + h b
T
r ⊗ Is F (tn emr + hAr emr , Z) .(2.11)

Before relating zn+1, Z of (2.11), (2.10) with yn+1, Y of (2.7), (2.8) we observe
the following simplification.

Lemma 2.2. If the Runge–Kutta scheme A, b is reducible then there exists
a permutation matrix π such that the reducing matrix M of the Runge–Kutta
method πA πT , πb has the product representation

M =MS P ,(2.12)

where P is a permutation matrix and

MS =

⎛

⎝
Iµ 0

0︸︷︷︸
σ

L 0

⎞

⎠ ,(2.13)

where L is an (m− µ)× (µ− σ) matrix with exactly one 1 in each row, at least
one 1 in each column and zeros otherwise.

Proof. First we observe that pre-multiplication (post-multiplication) with
a permutation matrix corresponds to a permutation of the rows (columns) of
a matrix. Let M ′ be the reducing matrix of the scheme. By definition M ′ has
columns with no 1, exactly one 1 and more than one 1. Hence there exists
a permutation matrix PT such that M ′PT has in the first σ columns exactly
one 1, in the next µ−σ columns more than one 1 and no ones in the last m−µ
columns. Since there is exactly one 1 in each row of M ′ and thus of M ′PT there
exists a permutation matrix π such that MS := πM

′PT has the form (2.13).
Clearly M := πM ′ has the required form (2.12) and we find using (2.9) that

πAπTM = πAM ′ = πM ′
(
Ar 0
D

)
=M

(
Ar 0
D

)
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and

MTπb =M ′T b =

(
br

0

)
.

Due to Lemma 2.1 and Lemma 2.2 we can always assume, without loss of
generality, that a reducible Runge–Kutta scheme is in the form such that M
has the product representation (2.12). The two factors are associated with two
well-known reducibility concepts, namely reducibility in the sense of Dahlquist
and Jeltsch [6] and reducibility in the sense of Hundsdorfer and Spijker [11]. To
simplify the referencing within this section we give these two special reducibility
concepts the following working names:

Definition 2.2 (Dahlquist/Jeltsch [6]). An m-stage Runge–Kutta A, b
method is called DJ-reducible if there exist two sets T and U such that T �= φ,
U �= φ, T ∩ U = φ, T ∪ U = S := {1, 2, . . . ,m} and

bj = 0 if j ∈ T(2.14)

aij = 0 if i ∈ U and j ∈ T .(2.15)

Clearly, a Runge–Kutta method is DJ-reducible if and only if it is reducible
with an M which is a permutation matrix. The reduced scheme is obtained
by deleting all stages Yj with j ∈ T . Hence, one can reduce the scheme by
|T |-stages to an |U |-stage Runge–Kutta method. DJ-reducible schemes can be
thought of schemes where one has artificially added stages together with zeros
at appropriate locations to ensure that the additional stages have no influence
on the old ones. The only influence is on the solvability of the whole system.
One can add the new stags such that the enlarged method has 0, 1, 2, . . . up
to infinitely many solution. However, due to the appropriate zeros one has that
if the enlarged scheme has solutions then the yn+1 value is the same as in the
original method.

A different reducibility concept was introduced in [11] (see also [15] for a special
case). Here the idea was that existing stages are duplicated in order to give add-
itional stages, all providing the same Yj and therefore the same f(tn + cjh, Yj).
Hence, wherever an f(tn + cjh, Yj) occurs in the scheme it can be replaced by
a sum over these identical values. The formal definition is:

Definition 2.3 (Hundsdorfer/Spijker [11]). Let ρ ≥ 1, S1, S2, . . . , Sρ are
pairwise disjoint subsets of S := {1, 2, . . . ,m} each containing at least two ele-
ments. Let

S0 = S −
ρ⋃

j=1

Sj .

The method is {S1, S2, . . . , Sρ}-reducible, if for k = 1, 2, . . . , ρ one has for i, j ∈
Sk that

∑

ν=S�

aiν =
∑

ν∈S�

ajν , � = 1, 2, . . . , ρ(2.16)
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and

ai� = aj�, � ∈ S0 .(2.17)

Clearly, if a Runge–Kutta A, b is {S′1, S
′
2, . . . , S

′
ρ}-reducible then there exists

a permutation matrix π such that the scheme πA πT , πb is {S1, S2, . . . , Sρ}-
reducible where Si satisfies the following condition

S0 = {1, 2, . . . , s0} s0 + i ∈ Si for i = 1, 2, . . . , ρ .(2.18)

The idea behind this reducibility is that for each fixed i ≥ 1, all stages Yj with
j ∈ Si give identical Yj values. The scheme can then be reduced, assuming that
(2.18) holds, to the scheme A′, b′

a′ij = aij i = 1, 2, . . . , s0 + ρ; j = 1, 2, . . . , s0
(2.19)

a′i,s0+k =
∑

�∈Sk

ai� i = 1, 2, . . . , s0 + ρ; k = 1, 2, . . . , ρ

b′i = bi i = 1, 2, . . . , s0
(2.20)

b′s0+k =
∑

�∈Sk

b� k = 1, 2, . . . , ρ .

This scheme has |S0| + ρ stages. From the idea of this reducibility concept it
is clear that if the reduced scheme has a solution then the unreduced one has
a solution too. However, the large system may have additional solutions where
the stages with the indices in the same Sj are not identical. We give now the
final relation between the three reducibility concepts.

Proposition 2.3. An m-stage Runge–Kutta method A, b is reducible to an
mr-stage Runge–Kutta Ar, br if and only if it is either DJ-reducible or
{S1, . . . , Sρ}-reducible or both. More precisely:

i) A Runge–Kutta scheme is DJ-reducible if and only if there exists a reducing
matrix M of rank(M) = m.

ii) A Runge–Kutta scheme is {S0, S1, . . . , Sρ}-reducible if and only if µ :=
rank(M) < m. It can be reduced to an µ-stage scheme and one has

µ = ρ+ σ .(2.21)

In addition, after suitable numbering of the stages one has

S0 = {1, 2, . . . , σ}(2.22)

and

Sk = {i|mi,σ+k = 1}, k = 1, 2, . . . , ρ ,(2.23)

where

MS = (mij)
m
i,j=1 .
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iii) If we assume that M is chosen such as to minimize mr then after reducing
the scheme to a rank (M)-stage method using {S1, S2, . . . , Sσ}-reducibility
the remaining scheme can be reduced by rank (M) −mr-stages using DJ-
reducibility.

Remarks.

1. The reducibility of Definition 2.1 is nothing more than a combination of the
two-well established reducibility concepts.

2. Since in [11], [8, p. 111], an algorithm to determine {S1, . . . , Sρ}-reducibility
is given and it is obvious how to determine DJ-reducibility one just joins the
two algorithms together to get an algorithm for determining reducibility.

Proof of Proposition 2.3. As already observed in [4], part i), is trivial. To
show ii) we first assume hat the scheme is {S1, . . . , Sρ}-reducible. Without loss
of generality we can assume that the stage numbers have been permuted such
that the Si are as follows:

S0 = {1, 2, . . . , σ} σ + i ∈ Si for i = 1, 2, . . . , ρ .(2.24)

Let M = (mij)
m
i,j=1 be defined by

mij =

⎧
⎪⎨

⎪⎩

1 for i ∈ S0, j = i

1 for i ∈ Sk, j = σ + k, for k = 1, 2, . . . , ρ

0 elsewhere .

(2.25)

Clearly, rank (M) = σ + ρ < m and M satisfies (2.23) and with µ := rank(M)
(2.21) too. It remains to show that M is a reducing matrix. Let A′ = AM =
(a′ij)

m
i,j=1. Hence

a′ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aij j ∈ S0
∑

�∈Sk

ai� j = σ + k, k = 1, 2, . . . , ρ

0 j > σ + ρ .

One easily verifies that

MA′ = A′ =

(
A′11 0

A′22 0

)

and

b′ :=MT b =

(
b′1

0

)
,

where A′11 is a µ× µ matrix and b
′
1 ∈ R

µ. Hence, the Runge–Kutta scheme A, b
is reducible. In fact M has the standard form of MS in (2.13). We now show
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the converse, namely that a reducible scheme with the reducing matrix M of
rank (M) = µ < m is {S1, . . . , Sρ}-reducible with (2.21)–(2.23) after suitable
renumbering of the stage numbers. We choose the numbering of the stage num-
bers such thatM has the form (2.12), (2.13). This defines σ. We choose ρ and Si
according to (2.21)–(2.23). Since there is exactly one 1 in each row of MS we
have

ρ⋃

j=0

Sj = {1, 2, . . . ,m}

and the sets Sj are pairwise disjoint. Moreover each Sj with j > 0 has at least
two elements. For brevity we rewrite MS as

MS =

(
Iµ 0

L′ 0

)
, A′ = P

(
Ar 0

D

)
PT ,

where Iµ is the µ× µ identity matrix and L′ is the (m− µ)× µ matrix

L′ = (0 L) .

With the corresponding partitioning of A and A′ we find from (2.9)

AMS =

(
A11 +A12L

′ 0

A21 +A22L
′ 0

)
=

(
A′11 A′12

L′A′11 L′A′12

)
=MSA

′ .(2.26)

Hence A′12 = 0 and A
′
11 is uniquely determined. Let i ∈ Sj , j > 0 and k ∈ S0.

Hence one finds by (2.26) that the (i, k)th element of AM is aik while the (i, k)th
element of MA′ is a′σ+j,k. Hence by (2.26) one has

aik = a
′
σ+j,k .(2.27)

Since this is true for all i ∈ Sj we have shown (2.17). Let i ∈ Sj , j > 0 and
k > 0. As before one finds by equating the (i, σ + k)th element in (2.26) that

∑

ν∈Sk

aiν = a
′
σ+j,σ+k .(2.28)

Since the right-hand side is the same for all i ∈ Sj we have shown (2.16). To
show iii) assume thatM is chosen such that it minimizes mr. In addition we can
assume by Lemma 2.2 that M is in the standard form M =MSP where MS is
given by (2.13). We have already shown that MS determines the {S1, . . . , Sρ}-
reducibility, and

AMS =MSA
′

and

A′ =

(
A′11 0

A′21 A′22

)
= P

(
Ar 0

D

)
PT .(2.29)
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Here A′11 is a µ× µ matrix. Let

b′ =MTS b = P
T

(
br

0

)
.(2.30)

From the form ofMS we see that the Runge–Kutta method A
′, b′ is DJ-reducible

to an µ-stage scheme. In addition one sees from (2.29), (2.30) that the scheme
A′, b′ is also DJ-reducible to anmr-stage scheme. Sincemr is minimal the scheme
A′11, b

′
1, where b

′
1 is the vector in R

µ consisting of the first µ components of b′ is
DJ-reducible by µ−mr-stages to the scheme Ar, br. One verifies easily that the
scheme A′11, b

′
1 is the one obtained by the {S1, . . . , Sσ}-reduction.

Part iii) of Proposition 2.3 gives the best insight in the relation between
the solvability of (2.10) of the completely reduced scheme Ar, br and (2.8) of
the original scheme A, b and the relation between yn+1 in (2.7) and zn+1 in
(2.11). First let νr, ν be the number of solutions of (2.10) and (2.8) respec-
tively. It is illuminating to consider also the scheme A′11, b

′
1 which is obtained

from A, b by using {S1, . . . , Sσ}-reducibility. This intermediate method has the
form

W = eµ ⊗ yn + hA
′
11 ⊗ Is F (tn eµ + hA

′
11 eµ,W )(2.31)

and

wn+1 = yn + h b
′T ⊗ Is F (tn eµ + hA

′
11 eµ,W ) .(2.32)

Let ν′ be the number of solutions of (2.31). Clearly, there is no relation what-so-
ever between νr and ν

′ since the system (2.31) can be thought of being created
from the smaller system (2.10) by adding a system of redundant stages which
may have no or any number of solutions, i.e. all three possibilities νr < ν

′,
νr = ν

′ and νr > ν
′ can occur. However one always has ν′ ≤ ν since from each

solution of (2.31) one can construct a solution of (2.8) by duplication of the
appropriate stages. It νr · ν′ > 0 then one always has wn+1 = zn+1. However
since (2.8) admits sometimes solutions which did not arise from duplication of
stages in (2.31) one may have that yn+1 �= wn+1. Therefore it is possible that
the system (2.8) of the original scheme has a unique solution and the system of
the completely reduced scheme (2.10) has a unique solution but yn+1 �= zn+1.
To demonstrate this we give the following example.

Example. The scalar initial value problem is the following

y′ = f(t, y) =

{
y2 if y ≥ 0

0 if y < 0

y(0) = 1 .
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The reducible scheme is given by

A =

⎛

⎜⎜⎜⎝

0 0 0

0 1 −
1

2

0
1

2
0

⎞

⎟⎟⎟⎠

bT =
(
1 b2 − b2

)

and the completely reduced scheme is Euler’s method

Ar = (0) bTr = (1) .

One easily verifies that for y0 = 1, h = 2 the implicit equation (2.8) with A has
the unique solution

Y =

⎛

⎜⎝
1

0

1

⎞

⎟⎠

and hence

y1 = 3− 2b2 .

Since the reduced scheme is Euler’s scheme it has a unique solution and z1 = 3.

3 Shifted Runge–Kutta methods and the transplanted differential
equation.

In this section we transform the Runge–Kutta method and the differential
equation such that the input/output relation in the transformed situation is the
same one as in the original scheme if one uses the same stepsize h in both cases.
The transformed scheme is called shifted Runge–Kutta method.

Definition 3.1. Let A, b, c represent an m-stage Runge–Kutta scheme with
c = A em. Then the Runge–Kutta scheme A

∗, b∗, c∗ shifted by σ is defined as
follows

A∗ = A+ σIm(3.1)

b∗ = b

c∗ = c+ σem .(3.2)

Clearly, the shifted Runge–Kutta scheme satisfies (2.4b). We shall now “trans-
plant” the differential equation. To do this we introduce the non-linear map
Tσ : R

s+1 → Rs+1 given by
(
t∗

y∗

)
= Tσ

(
t

y

)
=

(
t+ σh

y + σh f(t, y)

)
.(3.3)
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In order not to overload the notations we do not indicate the dependance of Tσ
on h and f explicitly.

Definition 3.2. The function f∗(t∗y∗) defined by

f∗(t∗, y∗) := f(t, y)(3.4)

where t, y are given by
(
t

y

)
= T [−1]σ

(
t∗

y∗

)

is called the transplant of fff under the map TσTσTσ.

Thus the value of f∗ at t∗, y∗ is equal to the value of f at the pre-image of
t∗, y∗ under the map Tσ.

Proposition 3.1. Let A, b be an m-stage Runge–Kutta scheme with c = Aem
and A∗, b∗ the scheme shifted by σ. Let f∗ be the transplant of f under the
map Tσ. Then one integration step to solve the initial value problem

y′(t) = f(t, y(t)), y(tn) = yn

using the Runge–Kutta scheme A, b yields the same result as one step to solve
the “transplanted” initial value problem

z′(t) = f∗(t, z(t)), z(tn) = yn

using the shifted Runge–Kutta method A∗, b∗, c∗.

Proof. From (3.4) follows that

F ∗
(
tn em + c

∗h, Y ∗
)
= F
(
tn em + c

∗h− σhem, Y
)

(3.5)

if

Y ∗ = Y + σhF
(
tn em + c

∗h− σhem, Y
)
.(3.6)

Substitution of (3.5) and (3.6) in

Y ∗ = em ⊗ yn + hA
∗ ⊗ Is F

∗
(
tn em + c

∗h, Y ∗
)

gives using (3.1), (3.2)

Y + σhF (tn em + ch, Y ) = em ⊗ yn + h(A+ σIm)⊗ Is F (tn em + ch, Y ) .

Thus Y satisfies (2.8). Hence

zn+1 = yn + hb
∗T ⊗ Is F

∗
(
tn em + c

∗h, Y ∗
)

= yn + hb
T ⊗ Is F (tn em + ch, y) = yn+1 .
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Since the input/output relation of the original and the transformed situation
are identical a boundedness result

‖yn+1‖ ≤ k‖yn‖(3.7)

or a result of the form

‖yn+1 − ỹn+1‖ ≤ k ‖yn − ỹn‖(3.8)

for the transformed situation must imply the corresponding result in the original
situation and vice versa. Before exploiting this fact by giving examples in the
next section, we collect here some basic properties on the transformation.

Clearly, the order of a Runge–Kutta scheme can vary under a shift by σ as one
easily sees from the example of the one stage Gauss–Legendre method A = (12 ),
b = (1). This method has order 2 while the scheme shifted by − 12 is Euler’s
method which has order one. However, from Definition 3.1 the following lemma
is obvious.

Lemma 3.2. A shifted Runge–Kutta scheme is consistent if and only if the
original scheme is consistent.

Lemma 3.3. A shifted Runge–Kutta scheme is reducible if and only if the
original scheme is reducible.

Proof. Assume the scheme A, b is reducible; i.e. (2.9) holds with the reducing
matrix M . Let A∗, b∗ be the Runge–Kutta scheme shifted by σ. Hence

A∗M = AM + σM =MA′ + σM

=M(A′ + σIm) .
(3.9)

Since A′ + σIm has the same structure A
′ and b∗ = b we find by (3.9) that the

shifted method is reducible too. Since the sign of σ is arbitrary we have that the
shifted scheme is reducible if and only if the original method is reducible.

In the next sections we shall impose some conditions on the differential equa-
tions. Let 〈·, ·〉 be a semi-innerproduct and ‖u‖ := 〈u, u〉

1
2 be a semi-norm on Rs

or Cs. One imposes on the differential equation either the condition

Re〈αu+ βf(u), γu+ δf(u)〉 ≤ 0 for all u ∈ Rs or Cs(3.10)

or

Re〈α(u− v) + β(f(t, u)− f(t, v)), γ(u− v) + δ(f(t, u)− f(t, v))〉 ≤ 0(3.11)

for all u, v ∈ Rs or Cs .

Here, α, β, γ, δ are real numbers.

Since we always want that these conditions involve f we can without loss of
generality assume δ = 1. Condition (3.10) is very often used with

α = δ = 1, β = γ = 0
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to prove monotonicity, i.e.

‖yn+1‖ ≤ ‖yn‖ ,(3.12)

see for example [2, 14]. For proving contractivity, i.e.

‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖(3.13)

one usually request (3.11) with either α = δ = 1, β = 0, see e.g. [1], or α = δ = 1,
γ = 0, see e.g. [6].

Lemma 3.4. Assume that f satisfies either (3.10) or (3.11) respectively with
δ = 1. If 1 − γσh > 0 then the transplant f∗ of f under Tσ satisfies (3.10) or
(3.11) respectively with α, β, γ, δ replaced by

α∗ :=
α

1− γσh
, β∗ :=

β − ασh

1− γσh
, γ∗ :=

γ

1− γσh
, δ∗ := 1 .(3.14)

Proof. The map Tσ is given by

u∗ = Tσ(u) = u+ σh f(u)

and the transplant f∗ of f under Tσ is given by

f∗(u∗) := f(u) .

If (3.10) holds one easily finds

0 ≥ Re 〈αu+ β f(u), γu+ f(u)〉

= Re 〈(u+ σh f(u) + (β − ασh) f(u), γ(u+ σh f(u)) + (1− γσh) f(u)〉

= Re
〈 α

1− γσh
u∗ +

β − ασh

1− γσh
f∗(u∗),

γ

1− γσh
u∗ + f∗(u∗)

〉
.

Here we have used in the last step that 1 − γσh > 0. The result for (3.11) is
proved in the same way.

In order to get a feeling for the conditions (3.10) and (3.11) we observe that
for the linear equation y′ = λy the conditions become, provided that ‖y‖ �= 0,

Re
α+ βλ

γ + λ
≤ 0 .(3.15)

Since w(λ) = (α + βλ)/(y + λ) is a Möbius transformation the set {λ |Rew(λ)
≤ 0} is either a circle or a halfplane.



580 G. DAHLQUIST AND R. JELTSCH

4 r-circle contractivity.

In this section we show on the example of contractivity how Proposition 3.1
can be used to prove new results. We talk of numerical contractivity if any
two numerical solutions

{yn}n=0,1,... ,, {ỹ}n=0,1,... ,

which are computed with the same h satisfy

‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖, n = 0, 1, . . . , .(4.1)

Here we assume that ‖u‖ is an innerproduct norm as introduced in the Section 3.
In order that one has numerical contractivity one has to impose conditions on
the differential equations and on the methods. For the differential equation we
request that (3.10) holds with α = δ = 1, y = 0, i.e.

Re 〈u− v, f(t, u)− f(t, v)〉 ≤ −β‖f(t, u)− f(t, v)‖2 for all u, v ∈ Rs or Cs .

(4.2)

For brevity let us introduce the generalized disks

D(r) :=

⎧
⎪⎨

⎪⎩

{λ ∈ C
∣∣ |λ+ r| ≤ r} if r > 0

{λ ∈ C
∣∣Reλ ≤ 0} if r =∞

{λ ∈ C
∣∣ |λ+ r| ≥ −r} if r < 0 .

(4.3)

Hence (4.2) corresponds for y′ = λy to the condition λ ∈ D(1/(2β)).

To motivate the condition on the Runge–Kutta scheme we consider the scalar
test equation

y′ = λ(t) y(t), λ(t) ∈ C .(4.4)

If one applies (2.7), (2.8) to (4.3) the numbers

ζi = hλ(tn + ci h), i = 1, 2, . . . ,m(4.5)

and ζ = (ζ1, ζ2, . . . , ζm)
T are needed. Assume that (4.4) satisfies (4.2) then

ζi ∈ D(r) with r = h/(2β). If the ci are distinct then one can choose any
m complex numbers ζi ∈ D(r) and find a smooth λ(t) such that (4.5) holds.
Applying (2.7), (2.8) to (4.4) leads to

yn+1 = K(ζ) yn ,(4.6)

where

K(ζ) = 1 + bT Z(Im −AZ)
−1 em(4.7)

with

Z = diag(ζ1, ζ2, . . . , ζm) ,(4.8)

see [1]. Clearly we have numerical contractivity if |K(ζ)| ≤ 1. This leads to the
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Definition 4.1. A Runge–Kutta method is called rrr-circle contractive if
D(r) is the largest generalized disk with r �= 0 and

|K(ζ)| ≤ 1 for all ζ ∈ D(r)m .(4.9)

A method is called circle contractive if (4.9) holds for some r �= 0.

With largest generalized disk we mean largest in the sense of the natural
ordering by set inclusion. Note that this is equivalent to the ordering of − 1

r
in

the reals. Note that for a confluent method applied to (4.4) one never has ζi �= ζj
if ci = cj . Nevertheless we request (4.9). One reason for this is, that with the
present definition 1

r
is a continuous function of the coefficients aij and bj if the

method is irreducible as one easily sees from the next theorem below. Another
is that Theorem 4.1 will hold. Clearly D(r) ⊂ S, where S is the stability region
of the method, given by

S = {µ ∈ C
∣∣ |K(µIm)| ≤ 1} .

Following Burrage and Butcher [1] we introduce the matrix,

Q = BA+ATB − bbT ,(4.10)

where

B = diag(b1, b2, . . . , bm) .(4.11)

Theorem 4.1. Assume that the Runge–Kutta scheme is irreducible. Then the
following conditions are equivalent:

i) The method is r-circle contractive.
ii) bi > 0 for i = 1, 2, . . . ,m and

−
1

r
= inf
w∈Rm

w �=0

wTQw

wTBw
= min
i=1,2,...,m

νi ,(4.12)

where νi are the eigenvalues B
− 12 QB−

1
2 .

iii) 1r is the smallest number such that the following holds. If two numerical
solutions {yn}, {ỹn} of a differential equation with (4.2) are computed with
the same stepsize h satisfying

h

2r
≤ β ,(4.13)

then one has

‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖ .(4.14)

From this theorem one easily notes that r-circle contractivity is equivalent to
(1, 0, 12 ) algebraic stability of G. J. Cooper [3]. Instead of proving the theorem
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directly we show how one can use the transformation described in Section 3 to
make use of existing theorems concerning the “half plane” situation. Hence, let
us first recall these results.

Definition 4.2. A Runge–Kutta scheme is called algebraically stable if
bi ≥ 0 for i = 1, . . . ,m and Q is nonnegative definite.

It is easy to show that, if the method is irreducible then one has in fact
bi > 0 [6], [8, p. 114].

Definition 4.3. A Runge–Kutta method is called BN-stable if for all f
satisfying (4.2) with β = 0, all yn, ỹn and all h > 0 inequality (4.14) holds.

Theorem 4.2 ([10]). A Runge–Kutta scheme is algebraically stable if and only
if

|K(ζ)| ≤ 1 for all ζ ∈ (C−)m .(4.15)

Theorem 4.3 ([1, 5, 11]). An irreducible Runge–Kutta scheme is BN-stable if
and only if it is algebraically stable.

We shall need the following two lemmata. The first one corresponds to Propo-
sition 3.1 and relates K(ζ) to K∗(ζ∗).

Lemma 4.4. Let K(ζ) belong to the Runge–Kutta method A, b and K∗(·)
belong to the Runge–Kutta scheme shifted by 1

2r . Moreover let

ζ∗ = (ζ∗1 , ζ
2
2 , . . . , ζ

∗
m)
T ,

where

ζ∗i =
ζi

1 + 1
2r ζi

.(4.16)

Then

K∗(ζ∗) = K(ζ) .(4.17)

Moreover

|K(ζ)| ≤ 1 for all ζ ∈ D(r)m(4.18)

if and only if

|K∗(ζ∗)| ≤ 1 for all ζ ∈ (C−)m .(4.19)

Proof. Clearly

Z∗ = diag
(
ζ∗1 , . . . , ζ

∗
m

)
= Z
(
Im +

1

2r
Z
)−1
.
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Hence

K∗(ζ∗) = 1 + bTZ
(
Im +

1

2r
Z
)−1 (

Im −
(
A+

1

2r
Im

)
Z
(
Im +

1

2r
Z
)−1)−1

em

= 1 + bTZ
(
Im +

1

2r
Z −
(
A+

1

2r
Im

)
Z
)−1
em = K(ζ)

and thus (4.17) holds. The equivalence of (4.18) and (4.19) is trivial since the
map ζ → ζ/(1− 1

2r ζ) is a Möbius transformation which maps D(r) one-to-one

onto C−.

Lemma 4.5. Let Q belong to the Runge–Kutta method A, b. Then

inf
w∈Rm

w �=0

wTQw

wTBw
≥ −
1

r
,(4.20)

if and only if the Runge–Kutta method A∗, b∗ shifted by 12r is algebraically stable.

Proof. The proof follows immediately from b∗ = b and the relation

Q∗ = BA∗ +A∗T B − bbT

= B
(
A+

1

2r
Im

)
+
(
A+

1

2r
Im

)T
B − bbT

= Q+
1

r
B .

Proof of Theorem 4.1. To prove the equivalence of i) and ii) it is enough
to show that one has

|K(ζ)| ≤ 1 for all ζ ∈ D(r)m ,

if and only if

inf
w∈Rm

w �=0

wTQw

wTBw
≥ −
1

r
.(4.21)

This follows however immediately from the Lemma 4.4, 4.5 and Theorem 4.2. To
show the equivalence of ii) and iii) it is enough to show that (4.21) is equivalent
to the following statement: If two numerical solutions {yn}, {ỹn} of a differential
equation with (4.2) are computed with the same stepsize satisfying

h

2r
≤ β ,(4.22)

then one has

‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖ .(4.23)

However this last statement is equivalent to the statement that the Runge–Kutta
method shifted by 1

2r is BN-stable since by Proposition 3.1 the input/output
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relation is invariant under the transformation and by Lemma 3.4 and (4.22)
the β∗ of the transformed differential equation is nonnegative. By Theorem 4.3
the transformed method is algebraically stable and hence by Lemma 4.5 we have
(4.21). �
In similar ways one can use the presented technique to generalize other known
results. We mention, just as an example results by M. N. Spijker [14] on mono-
tonicity which could be extended most easily.
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Appendix 1.

ROLF JELTSCH, ETH, Zürich, Switzerland

One of the referees made the following correct remark:

In Section 3 the authors fail to require (in Definition 3.2, in Propos-
ition 3.1, in Lemma 3.4) that the map Tσ is a bijection, so as to ensure
that f∗ = f ◦ (Tσ)−1 actually exists. Partly due to this omission, their
proof of Theorem 4.1 on p. 583 seems to be incomplete. To be more
specific, let Fβ denote the class of all f satisfying (4.2) for some inner
product and some s ≥ 1. On p. 583 the authors claim the following
statement (a) and (b) to be equivalent.

(a)... There is contractivity for A, whenever f ∈ Fβ ,
h
2r ≤ β,

(b)... There is contractivity for A∗ = (A+ 1
2r ), whenever f ∈ F0, h <∞.

However, their proof of this equivalence seems to require that the
dubious statement (c), (d) are true.

(c)... f∗, with σ = 1
2r , actually exists, whenever f ∈ Fβ ,

h
2r ≤ β,

(d)... There is an f ∈ Fβ with β ≥
h
2r , f

∗ = g, σ = 1
2r , whenever g ∈ F0

is given.

This remark by the referee is correct. We show this with the following example:

Let σh = 1 and f(t, y) = −y then by (3.3) in Definition 3.1 we have

Tσ

(
t
y

)
=

(
t+ 1
0

)
.

Clearly T
[−1]
σ does not exist.

This problem can be removed by making the changes suggested by the referee.
Hence we replace Definition 3.2 by

Definition 4.4 (new version of Definition 3.2). Assume the map Tσ: R
s+1 →

R
s+1 given by (3.3) is a bijection. Then the function f∗(t∗, y∗) defined by

f∗(t∗, y∗) := f(t, y) ,(4.24)

where t, y are given by
(
t
y

)
= T [−1]σ

(
t∗

y∗

)

is called the transplant of fff under the map TσTσTσ.

Replace Proposition 3.1 by

Proposition 4.6 (new version of Proposition 3.1). Let A, b be an m-stage
Runge–Kutta scheme with c = Aem and A

∗, b∗ the scheme shifted by σ. Assume
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hat the map Tσ defined by σ and f(t, y) is a bijection. Let f
∗ be the transplant of

f under the map Tσ. Then one integration step to solve the initial value problem

y′(t) = f(t, y(t)), y(tn) = yn

using the Runge–Kutta scheme A, b yields the same result as one step to solve
the “transplanted” initial value problem

z′(t) = f∗(t, y(t)), z(tn) = zn

using the shifted Runge–Kutta method A∗, b∗, c∗.

Further we replace Lemma 3.4 by

Lemma 4.7 (new version of Lemma 3.4). Assume that f satisfies either (3.10)
or (3.11) respectively with δ = 1. Assume that the map Tσ defined by σ and f(t, y)
is a bijection. If 1−γσh > 0 then the transplant f∗ of f under Tσ satisfies (3.10)
or (3.11) respectively with α, β, γ, δ replaced by

α∗ :=
α

1− γσh
, β∗ :=

β − ασh

1− γσh
, γ∗ :=

γ

1− γσh
, δ∗ := 1 .(4.25)

At this point we should note that for the differential equation

y′ = λ(t) y λ ∈ C(4.26)

satisfying (4.2) one has λ ∈ D( 12β ). If we transplant (4.26) with σ =
1
2β one has

for hσ ≤ β that 1 + σhλ �= 0 except in the case λ = − 1
β
and hσ = β. Hence

except for the particular case of λ = − 1
β
the transformation Tσ is a bijection.

Applying a Runge–Kutta method to (4.26) yields

yn+1 = K(ζ) yn .(4.27)

Note that if ζi = −2r this corresponds by (4.16) to ζ∗i = ∞. However −2r
is a boundary point of D(r) and ∞ is a boundary point of C−. As K(ζ) is
a rational function (4.9) and (4.15) are true independently whether this boundary
points are included or not. Hence Lemma 4.4 remains valid. The same is true
for Lemma 4.5, We modify Theorem 4.1 as follows:

Theorem 4.8 (new version of Theorem 4.1).Assume the Runge–Kutta scheme
is irreducible. Then the following conditions are equivalent

i) (as in Theorem 4.1)
ii) (as in Theorem 4.1)
iii) (new) 1

r
is the smallest number such that the following holds.

Let two numerical solutions {yn}, {ỹn} of a differential equation satisfying
(4.2) be computed with the same stepsize h satisfying

h

2r
≤ β(4.28)
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and assume that the transformation Tσ with σ =
1
2r is bijective then one has

‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖ .

The proof of Theorem 4.8 can now be done exactly the same way as in the
original report. However we have now requested in statement iii) that the trans-
formation Tσ with σ =

1
2r is bijective.

Remarks added by the editors.

This article appeared first as a report by the Institute for Geometry and Prac-
tical Mathematics, RWTH Aachen, May 1987. G. Dahlquist worked on a re-
port while visiting the R. Jeltsch in Aachen in June of 1983. On his way home
G. Dahlquist bought a postcard in transit in Brussels which he posted while
being in Copenhagen on June 13. The text of this postcard is given here, be-
cause the main idea of the second half of the article, Sections 3 and 4, namely
the transformation Tσ is described on the back of the postcard. The report was
submitted to BIT in Summer of 1987.


