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Abstract.

We present an elegant algorithm for stably and quickly generating the weights of
Fejér’s quadrature rules and of the Clenshaw–Curtis rule. The weights for an arbitrary
number of nodes are obtained as the discrete Fourier transform of an explicitly de-
fined vector of rational or algebraic numbers. Since these rules have the capability of
forming nested families, some of them have gained renewed interest in connection with
quadrature over multi-dimensional regions.
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1 Introduction.

Interpolatory quadrature rules are based on a given set of n + 1 evaluation
points (nodes) xk on the integration interval. Quadrature weights wk are de-
termined such that the definite integrals of all polynomials of degree ≤ n are
exactly represented by the weighted sums of the values of the integrand at the
nodes xk. Popular interpolatory quadrature rules are the Newton–Cotes rules
(see, e.g., [2]), where uniformly distributed nodes are being used.
In view of applications to quadrature in high-dimensional regions, families of
nested quadrature rules, Qj (j = 0, 1, . . . ), are of particular interest. In a nested
family the set of nodes of Qj is a subset of the nodes of Ql for every pair l, j with
l > j. Nested families of 1-dimensional quadrature rules are ingeniously taken
advantage of in the Smolyak construction [12] of sparse grids in order to obtain
multidimensional cubature rules with a relatively small number of evaluation
points. Smolyak’s ideas have recently been successfully used by several authors,
e.g. Bungartz and Griebel [1], K. Petras [10], [11]. Comprehensive lists of refer-
ences on sparse grids and their applications are given in [1], [11].
Clearly, nested families may be constructed by means of Newton–Cotes rules.
However, as suggested by the error theory of interpolation, as well as by the
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structure of the well known Gaussian quadratures, a mesh with decreasing step
size towards the boundaries of the interval leads to significantly smaller ap-
proximation errors. In fact, Gaussian quadrature rules seem to lend themselves
to building nested families by repeated extensions (Kronrod [8]; Patterson [9]);
however, we propose an alternative approach which is theoretically better un-
derstood: the second Fejér and the Clenshaw–Curtis quadrature rules. Kautsky
and Elhay [7], [8] developed algorithms and software for calculating the weights
of general interpolatory quadratures. We will specialize on the nodes defined by
Equation (2.1) below and develop explicit representations of the weights in terms
of discrete Fourier transforms (DFTs).
A connection between the Fejér and Clenshaw–Curtis quadrature rules and
DFTs is no surprise. In fact, already in 1972 W. M. Gentleman [6] implemented
the Clenshaw–Curtis rule with n+ 1 nodes by means of a discrete cosine trans-
formation, which has to be carried out anew at every instance of quadrature,
however. Recently, a direct computation (once for all) of the Clenshaw–Curtis
weights by means of DFTs of order 2n was submitted to The Mathworks Central
File Exchange by G. von Winckel [13].
Our independent approach is along the same lines. We will present unified
algorithms based on DFTs of order n for generating the weights of the two Fejér
rules and of the Clenshaw–Curtis rule. A streamlined Matlab code is given as
well. Since all three rules have the capability of forming nested families, they are
suitable as basic rules for generating Smolyak sparse grids.

2 The rules by Fejér and Clenshaw-Curtis.

Let n ≥ 2 be a given fixed integer, and define n+ 1 quadrature nodes on the
standard interval [−1, 1] as the extremes of the Chebyshev polynomial Tn(x),
augmented by the boundary points,

xk := cosϑk, ϑk := k
π

n
, k = 0, 1, . . . , n .(2.1)

Interpolatory quadratures approximate the definite intergal of a given function
f by a weighted sum,

∫ 1
−1
f(x) dx =

n∑
k=0

wkf(xk) + Rn ,(2.2)

where Rn is the approximation error, and wk are the quadrature weights. These
may be obtained by integrating the n-th-degree polynomial interpolating the
n+ 1 discrete points (xk, f(xk)).
Applying this procedure to the nodes (2.1) directly yields the Clenshaw–Curtis
rules. Fejér’s second rule [4] is obtained by omitting the nodes x0 = 1 and
xn = −1 and using the interpolating polynomial of degree n − 2. This may
also be achieved by keeping the boundary points as nodes, but preassigning
the corresponding weights as w0 = wn = 0. We will adopt this unconventional
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approach in order to obtain a unified treatment of the two rules. Fejér’s first
rule [4] is obtained by using the well-known Chebyshev points as nodes, i.e.,
xk from (2.1) with k =

1
2 ,
3
2 , . . . , n −

1
2 ; the corresponding weights will also be

expressed in terms of discrete Fourier transforms.
L. Fejér [3] gives explicit expressions for the weights wf1k and w

f2
k of his quadra-

ture rules, together with a proof of their positiveness. These expressions were
rederived in a concise way by W. Gautschi [5]. The explicit expressions for the
weights considered are summarized by Davis and Rabinowitz [2]: the weights

wf1k , w
f2
k of Fejér’s rules are given in Equations (2.5.5.4) and (2.5.5.8) on p. 85;

for the Clenshaw–Curtis weights wcck see p. 86. With the notation used in the
present note the explicit expressions for the Fejér weights are

wf1k =
2

n

(
1− 2

[n/2]∑
j=1

1

4j2 − 1
cos(jϑ2k+1)

)
, k = 0, 1, . . . , n− 1 ,

(2.3)

wf2k =
4

n
sinϑk

[n/2]∑
j=1

sin(2j − 1)ϑk
2j − 1

, k = 0, 1, . . . , n ,

and the Clenshaw–Curtis weights are given by

wcck =
ck

n

(
1−

[n/2]∑
j=1

bj

4j2 − 1
cos(2jϑk)

)
, k = 0, 1, . . . , n ,(2.4)

where the coefficients bj, ck are defined as

bj =

{
1, j = n/2

2, j < n/2 ,
ck =

{
1, k = 0 mod n

2, otherwise .
(2.5)

All of the above equations hold for every even or odd integer n > 1. Conveniently,
wf20 = w

f2
n = 0 follows directly from (2.3), and Equation (2.4), together with

the definition (2.5) of ck implies

wcc0 = w
cc
n =

1

n2 − 1 +mod(n, 2)
,(2.6)

in agreement with the particular values defined in [2] on p. 86. By the way, the
equation for wcck on p. 86 is incomplete: the factor ck/n is missing.

3 The weights of Fejér’s second rule as a discrete Fourier transform.

In the following we present equivalent expresions for wf2k in terms of the inverse
discrete Fourier transform of explicitly defined vectors of rational numbers. In
the cases of n being a power of 2 the numerical implementations are particularly
fast.
Discrete Fourier transforms of order n are linear mappings in the space of
n-periodic sequences; traditionally the interval [0, n − 1] is used for all indices.



198 J. WALDVOGEL

Therefore we impose the periodicity condition wk+n = wk, k = 0, 1, . . . , n − 1
which implies wn = w0 in agreement with the symmetry of the weights. Through-
out we use the notation

ω = ωn := exp
(
i
2π

n

)
.(3.1)

We first rewrite the Fejér weights wf2k given by Equation (2.3) in terms of
complex vectors and matrices. For simplicity we illustrate the difference between
cases of even or odd values of n by means of the examples n = 4 and n = 5,
respectively:
⎛
⎜⎜⎜⎜⎝

wf20

wf21

wf22

wf23

⎞
⎟⎟⎟⎟⎠
=
1

4

⎛
⎜⎜⎝
0 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 s3

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1/3
−1
1
1/3

⎞
⎟⎟⎠

(3.2)⎛
⎜⎜⎜⎜⎜⎜⎜⎝

wf20

wf21

wf22

wf23

wf24

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
1

5

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 s1 0 0 0
0 0 s2 0 0
0 0 0 s3 0
0 0 0 0 s4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω6 ω8

1 ω3 ω6 ω9 ω12

1 ω4 ω8 ω12 ω16

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1
1/3
0
−1/3
−1

⎞
⎟⎟⎟⎟⎠
.

Here sk, k = 0, 1, . . . , n− 1 is the abbreviation

sk :=

{
(−1)k(1− ωk), n even

(1− ωk), n odd .
(3.3)

By introducing the n-vectors wf2 := (wf20 , w
f2
1 , . . . , w

f2
n−1)

T and

u :=

⎧⎨
⎩
(
− 1
n−1 , . . . ,−

1
3 ,−1, 1,

1
3 , . . . ,

1
n−1

)T
, n even

(
1, 13 , . . . ,

1
n−2 , 0,−

1
n−2 , . . . ,−

1
3 ,−1

)T
, n odd

(3.4)

as well as the diagonal matrix Sn := diag(s0, s1, . . . , sn−1) and the DFT matrices

Fn :=
(
ω−k ln

) ∣∣n−1
k,l=0

, F−1n =
1

n

(
ωk ln
) ∣∣n−1
k,l=0

.(3.5)

Equation (3.2) reads as

wf2 = Sn F
−1
n u .(3.6)

The representation of the Fejér weights according to (3.6) already results in
a considerable simplification compared to the known explicit expression. Many
mathematical software systems offer efficient and numerically stable implemen-
tations of the DFT for arbitrary n, particularly fast (the proper “FFT”) if n
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is a power of 2. E.g., in Matlab the commands for the DFT (premultiplication
by Fn) and the inverse DFT (premultiplication by F

−1
n ) of u are fft(u) and

ifft(u), respectively.
Further simplification can be achieved by considering the DFT of wf2,

Fnw
f2 = Tn u with Tn := Fn Sn F

−1
n .(3.7)

A short computation with n = 4 and n = 5 yields

T4 =

⎛
⎜⎜⎝

0 −1 1 0
0 0 −1 1
1 0 0 −1
−1 1 0 0

⎞
⎟⎟⎠ , T5 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 −1
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

⎞
⎟⎟⎟⎟⎠ ;

the elements tkl of the matrix Tn generally are

tkl =

⎧⎪⎨
⎪⎩
1, l − k = hn mod n

−1, l − k = (hn − 1) mod n

0, otherwise

with hn =

{
n/2, n even

0, n odd .
(3.8)

From Equation (3.7) there follows

wf2 = F−1n v with v = Tn u ,(3.9)

and Equations (3.8) and (3.4) yield for the components vk of v the explicit
rational expressions

vk =
2

1− 4 k2
, k = 0, 1, . . . ,

[n
2

]
− 1 ,

v[n/2] =
n− 3

2 [n/2]− 1
− 1 ,(3.10)

vn−k = vk , k = 1, 2, . . . ,
[n− 1
2

]
,

which hold for all even and odd integers n > 1. The redundant complex conju-
gation in the third line is used for consistency with Equation (4.4) below.

4 The Clenshaw–Curtis weights and Fejér’s first rule.

From the explicit formulas (2.3) and (2.4) there follows for k = 0, 1, . . . , n− 1:

dk := w
cc
k − w

f2
k =

⎧⎪⎨
⎪⎩

ck

n2 − 1
(−1)k, n even

ck

n2
(−1)k cos

(
k
π

n

)
, n odd ,

(4.1)
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where ck is defined in (2.5). The DFTs g of the vectors d = (d0, d1, . . . , dn−1)
T

for n = 4 and n = 5 are

g =
1

3 · 5
( −1 −1 7 −1 )T and g =

1

5 · 5
( −1 −1 4 4 −1 )T ,

respectively. For any n > 1 the components gk of g are, in analogy to (3.10),

gk = −wcc0 , k = 0, 1, . . . ,
[n
2

]
− 1 ,

g[n/2] = w
cc
0 [ (2−mod(n, 2)) n− 1 ] ,(4.2)

gn−k = gk , k = 1, 2, . . . ,
[n− 1
2

]
,

where wcc0 is defined in (2.6). Therefore, by (3.9) and (4.1) the vector w
cc of the

Clenshaw–Curtis weights may be obtained as the inverse Fourier transform of
v+ g.
The n-vector wf1 of the weights of Fejér’s first rule, given by the first line of
Equation (2.3), may equivalently be written as

wf1 = F−1n v ,(4.3)

where the vector v = (v0, v1, . . . , vn−1) is now complex and defined by

vk =
2

1− 4 k2
ei kπ/n , k = 0, 1, . . . ,

[n− 1
2

]
,

vk = 0 , if k =
n

2
,(4.4)

vn−k = vk , k = 1, 2, . . . ,
[n− 1
2

]
.

5 Conclusions.

We have established the following

Theorem. For the nodes xk := cos(kπ/n), k = 0, 1, . . . , n with n > 1 the

weights wf2 = (wf20 , w
f2
1 , . . . , w

f2
n−1)

T of Fejér’s second quadrature rule are given
by the inverse discrete Fourier transform of the vector v defined in (3.10), to be

augmented by wf2n := w
f2
0 .

Analogously, the weights wcc = (wcc0 , w
cc
1 , . . . , w

cc
n−1)

T of the Clenshaw–Curtis
quadrature rule are given by the inverse discrete Fourier transform of the vector
v+ g, where g is defined in (4.2), again with wccn := w

cc
0 .

The weights wf1 = (wf10 , w
f1
1 , . . . , w

f1
n−1)

T of Fejér’s first quadrature rule, us-
ing the Chebyshev nodes xk+1/2 with k = 0, 1, . . . , n−1, are given by the inverse
discrete Fourier transform of the complex vector v defined in (4.4).

In the Matlab function below the rational vectors v, g corresponding to Equa-
tions (3.10), (4.2) and (4.4) are generated via auxiliary vectors v0, g0 in a some-
what streamlined way.
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function [wf1,wf2,wcc] = fejer(n)

% Weights of the Fejer2, Clenshaw-Curtis and Fejer1 quadratures

% by DFTs. Nodes: x_k = cos(k*pi/n), n>1

N=[1:2:n-1]’; l=length(N); m=n-l; K=[0:m-1]’;

% Fejer2 nodes: k=0,1,...,n; weights: wf2, wf2_n=wf2_0=0

v0=[2./N./(N-2); 1/N(end); zeros(m,1)];

v2=-v0(1:end-1)-v0(end:-1:2); wf2=ifft(v2);

%Clenshaw-Curtis nodes: k=0,1,...,n; weights: wcc, wcc_n=wcc_0

g0=-ones(n,1); g0(1+l)=g0(1+l)+n; g0(1+m)=g0(1+m)+n;

g=g0/(n^2-1+mod(n,2)); wcc=ifft(v2+g);

% Fejer1 nodes: k=1/2,3/2,...,n-1/2; vector of weights: wf1

v0=[2*exp(i*pi*K/n)./(1-4*K.^2); zeros(l+1,1)];

v1=v0(1:end-1)+conj(v0(end:-1:2)); wf1=ifft(v1);

To assess the efficiency of the above implementation by means of the DFT it
was compared with a Matlab implementation of the classical explicit expressions
[4], [5]. To be fair, the vectorized operations of Matlab and matrix-vector multi-
plications were used as much as possible, at the cost of memory, though. Some
average execution times (in milliseconds on a 1.6-GHz processor) for all three
weight vectors together are collected in the following table:

n classical DFT n classical DFT

8 0.26 0.27 17 0.40 0.32

16 0.38 0.29 31 0.83 0.37

32 0.85 0.30 65 2.60 0.40

64 2.60 0.35 67 2.77 0.51

128 9.95 0.52 127 9.32 0.66

256 42.6 0.86 255 43.3 0.80

512 166.5 1.09 257 42.6 1.21

1024 660.0 1.73 1021 653.5 3.58

As expected, the classical algorithm asymptotically scales as O(n2). The asymp-
totic complexity O(n logn) of the DFT algorithm is barely reached within the
range of the table. Owing to a rather efficient implementation of the mixed-radix
FFT in Matlab the new algorithm is competitive even for prime values of n.
The combined execution times given above for all three rules together are at
most 80 % (often less than 50 %) of the time used by the Matlab code [13] for
the Clenshaw–Curtis weights alone.
The accuracy of weights computed by the DFT algorithm is excellent. E.g.,
for n = 128 the relative error of the weights of Fejér’s second rule is at most
6 eps (eps = 2−52 is the machine epsilon of Matlab), with a quadratic mean
of 1.4 eps. 86 % of the weights are in error by less than eps in magnitude. In
this range the classical algorithm loses about 2 bits of accuracy compared to the
DFT algorithm.
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