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Abstract.
A Local Linearization (LL) method for the numerical integration of Random Differ-

ential Equations (RDE) is introduced. The classical LL approach is adapted to this type
of equations, which are defined by random vector fields that are typically at most Hölder
continuous with respect to the time argument. The order of strong convergence of the
method is studied. It turns out that the LL method improves the order of convergence
of conventional numerical methods that have been applied to RDEs. Additionally, the
performance of the LL method is illustrated by means of numerical simulations, which
show that it behaves well even in those equations with complicated noisy dynamics
where conventional methods fail.
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1 Introduction.

During the last four decades the use of Random Differential Equations (RDE)
has became a useful tool for modeling many physical, biological and engineering
phenomena [24, 19, 16, 18, 15, 22]. Recently, a renovated interest in the study
of RDEs has been motivated by the development of the theory of random dy-
namical systems (see [1] and references therein). The main reason is the fact
that the dynamics of random systems is better understood in the framework
of deterministic systems than in the framework of stochastic integration theory.
For instance, RDEs have been recently used for the analysis of the bifurcation
behavior of random nonlinear systems [7, 8].

Since in most common cases no explicit solution of the equations are known,
the use of numerical methods in the treatment of RDEs has become an important
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need [17, 3, 2, 13, 21]. Essentially, a RDE is a non autonomous Ordinary Differ-
ential Equation (ODE) coupled with a stochastic process, which usually is used
to model the noisy perturbations of deterministic systems. Thus, in principle, a
RDE can be integrated by applying conventional numerical methods for ODEs.
For instance, in a recent paper [5] the authors applied the classical Euler and
Heun schemes for the integration of RDEs and introduced “averaged” versions of
these schemes that retained their standard order of convergence. However, the
application of these averaged methods is not only restricted to the particular
class of separable RDEs but it also requires a finer partition for the noise term
that, typically, increase the computational effort of these numerical algorithms.

In this paper, an alternative numerical integrator based on the Local Lineariza-
tion approach is introduced. That approach has been successfully applied in the
framework of ODEs [9] and Stochastic Differential Equations (SDEs) [11] to
construct efficient and stable numerical schemes. A key step of the LL approach
is the piece-wise linear approximation (by the first-order Taylor expansion) of
the vector field that define the differential equations. Because the vector field
of RDEs is typically at most Hölder continuous with respect to the temporal
variable, the use of the differential version of the Taylor expansion and so
the application of the conventional LL methods for nonautonomous ODEs is
not possible. Therefore, for this class of equations, the LL approach must be
reconsidered.

The goal of this work is justly to study the viability of the LL approach for
the numerical integration of RDEs. The plan of the paper is the following. In
Section 2, the LL method is derived. In Section 3, the convergence of the method
is studied and, in the last section, the performance of LL scheme is evaluated
and compared with other numerical integrators by mean of simulations.

2 Local Linearization method.

Let (Ω,F , P ) be the underlying complete probability space and {Ft, t ≥ t0}
be an increasing right continuous family of complete sub σ-algebras of F and
f : R

d ×R
k −→ R

d be a twice continuously differentiable function. Consider the
RDE

ẋ(t) = f(x(t), ξ(t)), t ∈ [t0, T ],(2.1)
x(t0) = x0,

where ξ is a k-dimensional Ft-adapted and separable finite continuous process.
Suppose that conditions for the existence and uniqueness of an almost surely
continuous solution are assumed (see Theorem 3.1 in [6]). Let (τ)h be a time
partition given by

(τ)h = {t0 < t1 < · · · < tn < · · ·},
where

sup
n

(tn+1 − tn) ≤ h < 1,

and define
nt := max{n = 0, 1, 2, . . . : tn ≤ t}.
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Suppose that a realization of ξ is given and that ytn ∈ R
d is a point closed to

x(tn). Consider the first-order Taylor expansion of the function f at the point
(ytn , ξ(tn)),

f(u, ζ) ≈ f(ytn , ξ(tn)) + f ′x(ytn , ξ(tn)))(u − ytn) + f ′ξ(ytn , ξ(tn))(ζ − ξ(tn)),

for all u ∈ R
d and ζ ∈ R

k, where f ′x and f ′ξ denote the derivatives of f respecting
to x and ξ, respectively. Thus, using this, the solution of Equation (2.1) can be
locally approximated by the solution of the linear equation

ẏ(t) = A(y(tn))y(t) + a(y(tn), t), t ∈ [tn, tn+1],(2.2)
y(tn) = ytn ,

where
A(y(tn)) = f ′x(y(tn), ξ(tn))

and

a(y(tn), t) = f(y(tn), ξ(tn))−f ′x(y(tn), ξ(tn))y(tn)+f ′ξ(y(tn), ξ(tn))(ξ(t)−ξ(tn)).

The solution of Equation (2.2) is given by

y(tn + s) = eA(y(tn))s

(
y(tn) +

∫ tn+s

tn

e−A(y(tn))(u−tn)a(y(tn), u) du

)
,

which, by means of the integral identity
∫ h

0

exp(−Au) duA = −(exp(−Ah) − I)

can be rewritten as

y(tn + s) = y(tn) +
∫ s

0

eA(y(tn))(s−u)f(y(tn), ξ(tn)) du +(2.3)

+
∫ s

0

eA(y(tn))(s−u)f ′ξ(y(tn), ξ(tn))(ξ(tn + u) − ξ(tn)) du,

for all tn + s ∈ [tn, tn+1]. Therefore, numerical integrators for Equation (2.1)
might be obtained by choosing suitable approximations to the second integral
in the expression above.

For instance, a natural approximation to the term ξ(tn + u) − ξ(tn) is given
by the following linear spline interpolation [23]

ξ(tn + u) − ξ(tn) =
∆ξ(tn)

hn
u,

where hn = tn+1− tn, ∆ξ(tn) = ξ(tn+1)−ξ(tn), n = 0, 1, . . . . Then, substituting
this in (2.3) it is obtained the Local Linear Approximation

y(tn + s) = y(tn) +
∫ s

0

eA(y(tn))(s−u)f(y(tn), ξ(tn)) du +(2.4)
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+
∫ s

0

eA(y(tn))(s−u)f ′ξ(y(tn), ξ(tn))
∆ξ(tn)

hn
u du

= y(tn) +
∫ s

0

eA(y(tn))(s−u)f(y(tn), ξ(tn)) du

+
∫ s

0

∫ u

0

eA(y(tn))(s−u)f ′ξ(y(tn), ξ(tn))
∆ξ(tn)

hn
dsdu,

which, according to [10], can be rewritten as

y(t) = y(tnt) + g(y(tnt), ξ(tnt); ∆t), t ≥ t0,(2.5)

where the vector g(y(tnt), ξ(tn); ∆t) is defined by the block matrix

F(y(tnt), ξ(tnt); ∆t) f1(y(tnt), ξ(tnt); ∆t) g(y(tnt), ξ(tnt); ∆t)

0 1 f2(y(tnt), ξ(tnt); ∆t)
0 0 1


 = e∆tC

with ∆t = t − tnt and

C =


 f ′x(y(tnt), ξ(tnt)) f ′ξ(y(tnt), ξ(tnt))

∆ξ(tn)
hn

f(y(tnt), ξ(tnt))
0 0 1
0 0 0




∈ R
(d+2)×(d+2).

Now, taking t = tn+1 in (2.5) it is obtained the following LL scheme:

ytn+1 = ytn + g(ytn , ξ(tn); hn).(2.6)

It is clear that, for a given realization of ξ, the LL Approximation (2.5) is a
continuous function that coincides with the above LL scheme at each point of
the time partition (τ)h.

It should be also noted that the LL scheme (2.6) is computational feasible and
its numerical implementation is reduced to the use of a convenient algorithm to
compute matrix exponentials, e.g., those based on rational Padé approximations
[4], the Schur decomposition [4] or Krylov subspace methods [14]. The selection
of one of them will mainly depend on the size and structure of the matrix C.
For instance, for many low-dimensional system of equations it is enough to use
the algorithm developed in [20], which takes advantage of the special structure
of the matrix C. Whereas, for large systems of equations, the Krylov subspace
methods are strongly recommended.

3 Convergence.

In this section, a study of the uniform error in the LL Approximation is
presented. It is shown that the order of convergence depends on the moduli
of continuity of the stochastic process involved in the equation.
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Suppose that there exits separable almost surely finite stochastic processes L,
K0 and K1 such that for all u,v ∈ R

d,

‖f(u, ξ(t)) − f(v, ξ(t))‖ ≤ L(t)‖u − v‖(3.1)

and

‖f(u, ξ(t))‖ ≤ K0(t)(1 + ‖u‖),(3.2) ∥∥f ′x(u, ξ(t))
∥∥ +

∥∥f ′ξ(u, ξ(t))
∥∥ ≤ K1(t).(3.3)

Assume also that for all u ∈ R
d and ζ ∈ R

k the following condition
∥∥f ′′

xx(u, ζ)
∥∥ +

∥∥f ′′
xξ(u, ζ)

∥∥ +
∥∥f ′′

ξξ(u, ζ)
∥∥ ≤ K2(3.4)

holds for some positive constant K2. Finally, let

ω(h) := sup
|t−s|≤h

‖ξ(t) − ξ(s)‖

be the moduli of continuity of ξ.
Suppose that a realization of the process ξ is given. Then, consider the cor-

responding realization of the solution process x and its respective LL approx-
imation y. Theorem 3.2 below states the order of convergence of y to x. The
following lemma shall be very useful for the proof of that theorem.

Lemma 3.1. There exists positive constants C1, C2 and C3 such that the
inequalities

sup
t0≤t≤T

‖y(t)‖ ≤ C1

and
‖y(t) − y(tnt)‖ ≤ (C2 + C3ω(h))h

hold for all t ∈ [t0, T ].
Proof. From Equation (2.2) and conditions (3.2), (3.3) it is obtained that

sup
t0≤s≤t

‖y(s)‖ ≤ ‖y0‖ + sup
t0≤s≤t

ns−1∑
n=0

∫ s

tns

(K1(tnu)‖y(u) − y(tnu)‖ +

+ K0(tnu)(1 + ‖y(tnu)‖) + K1(tnu)‖ξ(u) − ξ(tnu)‖) du

≤ ‖y0‖ +
∫ t

t0

((K0(tnu) + 2K1(tnu)) sup
t0≤s≤u

‖y(s)‖ + K0(tnu) +

+ K1(tnu)‖ξ(u) − ξ(tnu)‖) du,

which yields to

sup
t0≤s≤t

‖y(s)‖ ≤ ‖y0‖+
∫ t

t0

((K̃0 +2K̃1) sup
t0≤s≤u

‖y(s)‖du+(K̃0 +K̃1ω(h))(t− t0),
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where
K̃i = sup

t0≤s≤T
Ki(s) < ∞, i = 0, 1.

Then, from the Gronwall inequality follows that

sup
t0≤s≤t

‖y(s)‖(3.5)

≤ (‖y0‖ + (K̃0 + K̃1ω(h))(t − t0))e(K̃0+2K̃1)(t−t0)

≤
(
‖y0‖ +

(
K̃0 + 2K̃1 sup

t0≤s≤t
‖ξ(s)‖

)
(t − t0)

)
e(K̃0+2K̃1)(t−t0),

which for t = T gives the first assertion of the lemma.
On the other hand,

‖y(t) − y(tnt)‖ ≤
∫ t

tnt

(K1(tnt)‖y(u) − y(tnt)‖ + K0(tnt)(1 + ‖y(tnu)‖) +

+ K1(tnt)‖ξ(u) − ξ(tnu)‖) du,

which, by (3.5), yields to

‖y(t) − y(tnt)‖

≤
∫ t

tnt

(K̃1 + K̃0)‖y(u) − y(tnt)‖du + (K̃0(C̃1 + C̃2ω(h)) + K̃1ω(h))h,

where

C̃1 = 1 + (‖y0‖ + K̃0)(T − t0)e(K̃0+2K̃1)(T−t0),

C̃2 = K̃1(T − t0)e(K̃0+2K̃1)(T−t0).

Hence, the Gronwall inequality implies that

‖y(t) − y(tnt)‖ ≤ (K̃0C̃1 + (K̃1 + K̃0C̃2)ω(h))e(K̃0+K̃1)hh

≤ (C2 + C3ω(h))h,

where

C2 = K̃0C̃1e(K̃0+K̃1),

C3 = (K̃1 + K̃0C̃2)e(K̃0+K̃1).

This concludes the second statement of the lemma. �
Theorem 3.2. If

‖x0 − y0‖ ≤ D1h
min(2,2γ) and ω(h) ≤ D2h

γ

for some positive constants D1, D2, γ > 0 then

sup
t0≤t≤T

‖x(t) − y(t)‖ ≤ CT (ξ)hmin(2,2γ),

where CT (ξ) is a positive constant.
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Proof. The following expressions follow respectively from Equations (2.1)
and (2.2)

x(t) = x(tnt) +
∫ t

tnt

f(x(u), ξ(u)) du,

y(t) = y(tnt) +
∫ t

tnt

(A(tnt)y(u) + a(tnt , u)) du

which used in a recursive way yield to

x(t) = x(t0) +
nt−1∑
n=0

∫ tn+1

tn

f(x(u), ξ(u)) du +
∫ t

tnt

f(x(u), ξ(u)) du,

y(t) = y(t0) +
nt−1∑
n=0

∫ tn+1

tn

(A(tn)y(u) + a(tn, u)) du +

+
∫ t

tnt

(A(tnt)y(u) + a(tnt , u)) du.

From these equalities it is obtained

e(t) ≤ ‖x0 − y0‖ + P (t) + Q(t),(3.6)

where
e(t) = sup

t0≤s≤t
‖x(s) − y(s)‖

and

P (t) = sup
t0≤s≤t

∥∥∥∥∥
ns−1∑
n=0

∫ tn+1

tn

(f(x(u), ξ(u)) − f(y(u), ξ(u))) du +

+
∫ s

tns

(f(x(u), ξ(u)) − f(y(u), ξ(u))) du

∥∥∥∥∥,

Q(t) = sup
t0≤s≤t

∥∥∥∥∥
ns−1∑
n=0

∫ tn+1

tn

(f(y(u), ξ(u)) − A(tnu)y(u) − a(tnu , u)) du +

+
∫ s

tns

(f(y(u), ξ(u)) − A(tnt)y(u) − a(tnt , u)) du

∥∥∥∥∥.

From (3.1) it is obtained

P (t) ≤ sup
t0≤s≤t

∫ s

t0

L(u)‖x(u) − y(u)‖du ≤ L̃

∫ t

t0

sup
t0≤s≤u

‖x(s) − y(s)‖du,(3.7)

where
L̃ = sup

t0≤s≤T
L(s) < ∞.
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On the other hand, by applying the Taylor formulae with Lagrange rest to the
function f it is obtained

‖f(y(u), ξ(u)) − A(tnu)y(u) − a(tnu , u)‖

≤ 1
2

sup
θ∈[0,1]

{
‖f ′′

xx(yθ, ξθ)‖‖y(u) − y(tnu)‖2 +

+ 2‖f ′′
xξ(y

θ, ξθ)‖‖y(u) − y(tnu)‖‖ξ(u) − ξ(tnu)‖ +

+ ‖f ′′
ξξ(y

θ, ξθ)‖‖ξ(u) − ξ(tnu)‖2
}
,

where

yθ = y(tnu) + θ(y(u) − y(tnu)), ξθ = ξ(tnu) + θ(ξ(u) − ξ(tnu)), θ ∈ [0, 1].

Moreover, by condition (3.4) follows that

‖f(y(u), ξ(u))−A(tnu)y(u)−a(tnu , u)‖ ≤ K2(‖y(u)−y(tnu)‖2+‖ξ(u)−ξ(tnu)‖2).

Hence, by Lemma 3.1,

Q(t) ≤ K2

∫ t

t0

(2C2
2h2 + 2C2

3ω(h)2h2 + ω(h)2) du.(3.8)

Then, by combining (3.7) and (3.8) in (3.6) it is obtained from the Gronwall
inequality that

e(t) ≤ ‖x0 − y0‖ + K2(2C2
2h2 + 2C2

3ω(h)2h2 + ω(h)2)(t − t0)eL̃(t−t0).(3.9)

Finally,
e(T ) ≤ CT (ξ)hmin(2,2γ),

where

CT (ξ) = D1 + K2(2C2
2 + 2C2

3D2
2 + D2

2)(T − t0)eL̃(T−t0). �
Remark 3.1. It is worth to emphasize that for any stochastic process ξ the

LL method converges twice faster than the Euler method. In addition, for γ ≥ 0.5
and any process ξ with moduli of continuity ω(h) = O(hγ) the LL method con-
verges faster than the averaged Euler method without additional computational
effort. Note also that for the particular case of a deterministic ξ, the theorem
above provides the order of convergence of the LL method for non autonomous
ODEs (see [11]).

As it was mentioned at the beginning of this section, Theorem 3.2 holds for a
given realization of the processes x and y. Thus, the constant CT (ξ) that appears
in (3.9) is actually a realization of a finite random variable that depend on the
process ξ.

The next corollary gives an estimate of the order of strong convergence of the
LL approximation y to the process x.



LOCAL LINEARIZATION METHOD FOR RANDOM DIFFERENTIAL EQUATIONS 9

Corollary 3.3. If

E(‖x0 − y0‖) ≤ D1h
min(2,2γ)

and the stochastic processes ω, K0, K1 and L satisfy either

(i) E(ω(h)2) ≤ D2h
2γ and K0, K1, L are positive constants,

or
(ii) E(ω(h)4)≤D2h

4γ and for all t≥ t0 there exists the respective moment gener-
ating functions of the random variables L̃ = sup

t0≤s≤T
L(s), K̃i = sup

t0≤s≤T
Ki(s),

i = 0, 1,

then
E

(
sup

t0≤t≤T
‖x(t) − y(t)‖

)
≤ CT hmin(2,2γ),

for some positive constant CT .
Proof. This follows by taking expectations in the expression (3.9). Under

condition (i), the values of C2 and C3 do not depend on ξ and the result is
trivial. On the other hand, if condition (ii) holds, the corollary follows by using
the Cauchy–Schwarz inequality and expressing the expectations of the powers
of C2 and C3 in terms of the moment generating functions φ

L̃
(t) = E(eL̃t) and

φ
K̃i

(t) = E(eK̃it), i = 0, 1. �

4 Numerical experiments.

In this section the performance of the LL method is illustrated by means of
three test examples. The first one belongs to the class of separable RDE con-
sidered in [5]. Thus, a comparison among the Euler scheme, the averaged Euler
scheme and the LL scheme is achieved. For the second example, a simulation
study is carried out to estimate the order of strong convergency of the LL scheme,
and so, to corroborate the theoretical estimated obtained in the previous section.
In these two examples the dynamics behavior of the random equations is very
similar to that of their deterministic counterpart. Therefore, in the last example
a comparison between the Euler scheme and the LL scheme is carried out for a
random equation with a more complicated noisy dynamics.

For all examples, the matrix exponential that appears in the LL scheme (2.6)
is computed by the rational Padé approximation with the ‘scaling and squaring’
procedure (see Algorithm 11.3.1 in [4] for details).

Example 1. Consider the RDE

ẋ1(t) = −x2(1 + B(t)),
ẋ2(t) = x2(1 + B(t)),
x1(0) = x2(0) = 0.2,
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Figure 4.1: Phase portrait of trajectories obtained by the Euler method, the averaged Euler
method and the LL method in the integration of the Example 1 with different step sizes.

for 0 ≤ t ≤ 8, where B(t) denotes a standard scalar Wiener process. Figure 4.1
shows, for three different values of the step size h, the phase-space of the nu-
merical solution obtained by the Euler scheme, the averaged Euler scheme and
the LL scheme. Notice that even for a moderate step size like h = 2−5 the LL
scheme replicates better the actual dynamics of the systems than the other two
schemes.

Example 2. Let 0 ≤ t ≤ 64 and consider the RDE defined by

ẋ1(t) = −x2 + x1(1 − x2
1 − x2

2) sin(BH(t))2,(4.1)
ẋ2(t) = x1 + x2(1 − x2

1 − x2
2) sin(BH(t))2,

x1(0) = 0.8,

x2(0) = 0.1,

where BH(t) denotes a fractional Brownian process with Hurst exponent H =
0.45.

In this example, the quantity

e(h) = E
(

sup
t0≤tn≤T

‖x(tn) − y(tn)‖
)

is used to estimate the order β of strong convergence of the LL scheme, where
the simulated trajectory y = (y1, y2) of x = (x1, x2) is computed by the LL
scheme with step size h. The estimated order β̂ is obtained from the slope of
the straight line fitted to the set of points {log2(hi), log2(ê(hi))}i=1,...,p, where
ê(hi) denote the estimate of e(h) computed as in [12]. For it, the simulations are
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Table 4.1: Uniform discretization er-
rors for the LL method applied to the
Example 2.

h ê(h) ±∆(h)

2−4 0.00850166 ±0.00013116

2−5 0.00464681 ±0.00000740

2−6 0.00253053 ±0.00004795

2−7 0.00135831 ±0.00000253

2−8 0.00070590 ±0.00000901

2−9 0.00035127 ±0.00000464

arranged into M batches with K trajectories y(t) in each. Thus, computing the
error for the jth trajectory of the ith batch by

êi,j(h) = sup
t0≤tn≤T

‖x(tn) − yi,j(tn)‖,

and the sample mean error of the ith batch and of all batches by

êi(h) =
1
K

K∑
j=1

êi,j(h), and ê(h) =
1
M

M∑
i=1

êi(h)

respectively, the confidence interval for ê(h) can be computed by

[ê(h) − ∆(h), ê(h) + ∆(h)],

where

∆(h) = t1−α/2,M−1

√
σ̂2

e(h)
M

, σ̂2
e(h) =

1
M − 1

M∑
i=1

|êi(h) − ê(h)|2,

and t1−α/2,M−1 denotes the 1 − α/2 percentile of the Student’s t distribution
with M − 1 degrees for the significance level 0 < α < 1.

Specifically, the simulations were arranged into M = 20 batches of K = 100
trajectories for each step size hi = 2−(i+3), with i = 1, . . . , 6. The significance
level was taken α = 0.1. Table 4.1 shows the estimated values of e(hi) and their
respective 90% confidence interval.

Figure 4.2 shows the straight line fitted to the points {log2(ê(hi))}i=1,...,6.
The estimated slope of these lines is β̂ = 0.9154 ± 0.0272. Note that this result
corroborate the theoretical estimate β = 2H = 0.90 given by Theorem 3.2.

Figure 4.3 shows the comparison between the Euler scheme and the LL scheme
for the step size h = 2−5. Notice that the phase-space of the LL approximation
is very similar to that of the true solution. By the other hand, as time increases,
the approximation obtained by the Euler scheme tends to be very different from
the actual solution.
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Figure 4.2: Estimated values of the errors e(h) obtained from the application of the LL method
in the integration of Example 2 with different step sizes h.

Figure 4.3: Phase portrait of trajectories obtained by the Euler method and the LL method
in the integration of the Example 2 with step size h = 2−5.

Equation (4.1) as well the equation in the next example are random versions
of an ODE consider in [9] to study the dynamics of the LL scheme.

Example 3. Consider the RDE

ẋ1(t) = −x2 + x1(B(t)2 − x2
1 − x2

2),
ẋ2(t) = x1 + x2(B(t)2 − x2

1 − x2
2),

x1(0) = x2(0) = 0.1

in the time interval 0 ≤ t ≤ 64, where B(t) is a standard Brownian motion.
Figure 4.4 shows a comparison between the Euler scheme and the LL scheme
for two different step sizes. Notice that the approximation provided by the Euler
scheme does not reconstruct at all the actual dynamics of the systems. In fact
the scheme explodes at time t = 29. Thus, the left top panel in the figure shows
the Euler approximation only for 0 ≤ t ≤ 29. In contrast, the LL scheme shows
a well performance for both step sizes.
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Figure 4.4: Phase portrait of trajectories obtained by the Euler method and the LL method
in the integration of the Example 3 with step sizes h = 2−5 and h = 2−9.
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