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Abstract.
Our aim in this paper is to obtain error expansions in the Gauss–Turán quadrature

formula
∫ 1

−1
f(t)w(t) dt =

∑n

ν=1

∑2s

i=0
Ai,νf (i)(τν) + Rn,s(f), in the case when f is

an analytic function in some region of the complex plane containing the interval [−1, 1]
in its interior. Using a representation of the remainder term Rn,s(f) in the form
of contour integral over confocal ellipses, we obtain Rn,1(f) for the four Chebyshev
weights and Rn,2(f) for the Chebyshev weight of the first kind. Also, we get a few new
L1-estimates of the remainder term, which are stronger than the previous ones. Some
numerical results, illustrations and comparisons are also given.
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1 Introduction.

Let w be an integrable weight function on the interval (−1, 1). For approx-
imating integrals of the form I(f) =

∫ 1

−1
f(t)w(t) dt we use the Gauss–Turán

quadrature formulas with multiple nodes

Qn,s(f) =
n∑

ν=1

2s∑

i=0

Ai,νf (i)(τν) (n ∈ N; s ∈ N0),(1.1)
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which are exact for all algebraic polynomials of degree at most 2(s + 1)n − 1.
The object of this paper is to obtain an expansion for the error

Rn,s(f) = I(f) − Qn,s(f)(1.2)

in the case when f is an analytic function in some region of the complex plane
containing the interval [−1, 1] in its interior.

The nodes τν in (1.1) must be zeros of a (monic) polynomial πn(t) which min-
imizes the following integral Φ(a0, a1, . . . , an−1) =

∫ 1

−1
πn(t)2s+2w(t) dt, where

πn(t) = tn + an−1t
n−1 + · · · + a1t + a0. In order to minimize Φ we must have

∫ 1

−1

πn(t)2s+1tkw(t) dt = 0, k = 0, 1, . . . , n − 1.

These polynomials πn(t) = πn,s(t) are known as s-orthogonal (or s-self associ-
ated) polynomials with respect to the weight w. For s = 0 we have the case of
the standard orthogonal polynomials. For details and references about several
classes of s-orthogonal polynomials, as well as their generalizations known as σ-
orthogonal polynomials, and corresponding quadrature formulae with multiple
nodes, see the survey paper [13], and some very recent papers [14, 17, 23].

2 The remainder term for analytic functions.

With πn,s(z) we denote a polynomial of degree n with positive leading co-
efficient which is s-orthogonal with respect to the weight function w(t) over
(−1, 1).

Let Γ be a simple closed curve in the complex plane surrounding the interval
[−1, 1] and D be its interior. If the integrand f is an analytic function in D and
continuous on D, then we take as our starting point the well-known expression
(cf. [19, 18, 15]) of the remainder term (1.2) in the form of the contour integral

Rn,s(f) =
1

2πi

∮

Γ

Kn,s(z)f(z) dz.(2.1)

The kernel is given by

Kn,s(z) =
�n,s(z)

[πn,s(z)]2s+1
, z /∈ [−1, 1],(2.2)

where

�n,s(z) =
∫ 1

−1

[πn,s(t)]2s+1

z − t
w(t) dt, n ∈ N,(2.3)

and πn,s(t) is the corresponding (not obligatory monic) s-orthogonal polynomial
with respect to the measure dλ(t) = w(t) dt on (−1, 1). For s = 0, (2.1) and (2.2)
reduce to the corresponding formulas for the Gaussian quadratures.
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The integral representation (2.1) leads to the error estimate

|Rn,s(f)| ≤ �(Γ)
2π

(
max
z∈Γ

|Kn,s(z)|
)(

max
z∈Γ

|f(z)|
)
,(2.4)

where �(Γ) is the length of the contour Γ.
More general, if we apply the Hölder inequality to (2.1), we get

|Rn,s(f)| =
1
2π

∣
∣
∣
∣

∮

Γ

Kn,s(z)f(z) dz

∣
∣
∣
∣(2.5)

≤ 1
2π

(∮

Γ

|Kn,s(z)|r|dz|
)1/r(∮

Γ

|f(z)|r
′
|dz|

)1/r′

=
1
2π

‖Kn,s‖r‖f‖r′ ,

where 1 ≤ r ≤ +∞, 1/r + 1/r′ = 1, and

‖f‖r :=






(∮

Γ

|f(z)|r|dz|
)1/r

, 1 ≤ r < +∞,

max
z∈Γ

|f(z)|, r = +∞.

In the case r = +∞ (r′ = 1), this estimate becomes

|Rn,s(f)| ≤ 1
2π

(
max
z∈Γ

|Kn,s(z)|
)(∮

Γ

|f(z)||dz|
)

.(2.6)

Evidently, from (2.6) it follows the estimate (2.4), which was investigated in
details in [15]. The case s = 0 was studied by Gautschi and Varga ([7, 8]).

On the other side for r = 1 (r′ = +∞), the estimate (2.5) reduces to

|Rn,s(f)| ≤ 1
2π

(∮

Γ

|Kn,s(z)||dz|
)(

max
z∈Γ

|f(z)|
)
,(2.7)

which is evidently stronger than (2.4), because of inequality
∮

Γ

|Kn,s(z)||dz| ≤ �(Γ)
(
max
z∈Γ

|Kn,s(z)|
)
.

The first approach in this sense for Gaussian quadrature rules (s = 0) and
Chebyshev measures was given by Hunter [11].

Two choices of the contour Γ have been widely used: 1◦ a circle with center
at origin and radius � (> 1), and 2◦ an ellipse with foci at ±1.

In this paper we take the contour Γ as an ellipse with foci at the points ±1
and sum of semiaxes � > 1,

E� =
{

z ∈ C: z =
1
2

(�eiθ + �−1e−iθ), 0 ≤ θ < 2π

}

,(2.8)



120 G. V. MILOVANOVIĆ AND M. M. SPALEVIĆ

and consider the following four weight functions w(t) = wi(t):

(a) w1(t) = (1 − t2)−1/2, (b) w2(t) = (1 − t2)1/2+s,

(c) w3(t) = (1 − t)−1/2(1 + t)1/2+s, (d) w4(t) = (1 − t)1/2+s(1 + t)−1/2.

S. Bernstein [1] showed that the monic Chebyshev polynomial (orthogonal
with respect to w1) T̂n(t) = Tn(t)/2n−1 minimizes all integrals of the form

∫ 1

−1

|πn(t)|k+1

√
1 − t2

dt, k ≥ 0.

Thus, the Chebyshev polynomials Tn are s-orthogonal on [−1, 1] for each
s ≥ 0. Ossicini and Rosatti [19] found three other weights wi(t), i = 2, 3, 4,
for which the s-orthogonal polynomials can be identified as Chebyshev poly-
nomials of the second, third, and fourth kind: Un, Vn, and Wn, which are
defined by

Un(t) =
sin(n + 1)θ

sin θ
, Vn(t) =

cos(n + 1/2)θ
cos θ/2

, Wn(t) =
sin(n + 1/2)θ

sin θ/2
,

respectively (cf. [5]), where t = cos θ. However, such weights depend on s (see (b),
(c), (d)). Notice that the weight function in (d) can be omitted from investigation
because of Wn(−t) = (−1)nVn(t).

Following [7] and [8] we studied in [15] the magnitude of |Kn,s(z)| on the con-
tour E�. Precisely, for the weight functions wk(t) (k = 1, 2, 3) we investigated the
locations on the confocal ellipses (2.8) where the modulus of the corresponding
kernels attain their maximum values.

The cases of Gaussian rules with Bernstein–Szegő weight functions and with
some symmetric weights including especially the Gegenbauer weight were stud-
ied by Peherstorfer [20] and Schira [22], respectively. Some of the results have
been extended to Gauss–Radau and Gauss–Lobatto formulas (cf. Gautschi [5],
Gautschi and Li [6], Schira [21], Hunter and Nikolov [12], Milovanović and
Spalević [16]).

In this paper we consider error expansions and error estimates for Gauss–
Turán quadrature formulae (1.2) for weight functions (a)–(d), based on elliptical
contours. The paper is organized as follows. In Section 3 we adapt Hunter’s
approach [11] for Gaussian quadratures in order to obtain error expansions
for Gauss–Turán quadrature formulae, and then in Section 4 we obtain a few
new estimates of the remainder term (1.2). In particular, we concentrate our
attention on the weight function w1(t) and obtain some very exact estimates of
the remainder term. Some of them are the smallest, including those from [15].
In Sections 5 and 6 we study estimates of the remainder term (1.2) for the
generalized Chebyshev weights w2(t) and w3(t) (therefore, and for w4(t)), re-
spectively.
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3 An error expansion for Gauss–Turán quadrature formulae.

If f is an analytic function in the interior of E�, then it has the expansion

f(z) =
+∞∑

k=0

′αkTk(z),(3.1)

where αk = (1/π)
∫ 1

−1
(1 − t2)−1/2f(t)Tk(t) dt, which converges for all z in the

interior of E�. The prim in (3.1) denotes that the first term of the sum is
taken with factor 1/2. In terms of ξ = �eiθ (� > 1), z = (ξ + ξ−1)/2, Tk(z) is
given by

Tk(z) =
1
2
(ξk + ξ−k).(3.2)

In the sequel we need two auxiliary results (see [11]).

Lemma 3.1. If z /∈ [−1, 1], then 1/πn,s(z) =
∑+∞

k=0 β
(s)
n,kξ−n−k. Furthermore,

if w is an even function then βn,2j+1 = 0 (j = 0, 1, 2, . . .).
Proof. The zeros of πn,s(z) are real, distinct, and all contained in the open

interval (−1, 1) (cf. [9]). Then, the proof of this statement is the same as the one
of Lemma 3 in [11]. �

Now, it is not difficult to see that (cf. [10, Eq. 0.314])

1
[πn,s(z)]2s+1

=
+∞∑

k=0

β
(s)

n,k ξ−n(2s+1)−k, ξ = �eiθ, � > 1,(3.3)

where

β
(s)

n,0 =
(
β

(s)
n,0

)2s+1
, β

(s)

n,m =
1

mβ
(s)
n,0

m∑

k=1

(k(2s+1)−m+k)β(s)
n,k β

(s)

n,m−k, m ≥ 1.

In particular, if w(−t) = w(t) then

1
[πn,s(z)]2s+1

=
+∞∑

k=0

β
(s)

n,2k ξ−n(2s+1)−2k, ξ = �eiθ, � > 1.

Lemma 3.2. If z /∈ [−1, 1], �n,s(z) can be expanded as

�n,s(z) =
+∞∑

k=0

γ
(s)
n,k ξ−n−k−1.(3.4)

Furthermore, if w is an even function, then γ
(s)
n,2j+1 = 0 (j = 0, 1, . . .).
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Proof. It is well-known that if w(t) is a weight function then Dn,s(t), defined
by Dn,s(t) = [πn,s(t)]2s w(t) is also a weight function (see [4, pp. 214–226]).
The proof of (3.4) can be given in a similar way as the one of Lemma 4 in [11].
Namely, from (2.3) we have

�n,s(z) =
∫ 1

−1

Dn,s(t)
πn,s(t)
z − t

dt =
+∞∑

k=0

γ
(s)
n,k ξ−n−k−1,

where

γ
(s)
n,k = 2

∫ 1

−1

w(t)[πn,s(t)]2s+1 Un+k(t) dt (k = 0, 1, . . .).(3.5)

If w(−t) = w(t), then for each odd k the integrand in (3.5) is odd, and therefore
γ

(s)
n,k = 0. �
Now, by the substitution (3.3) and (3.4) in (2.2) we obtain

Kn,s(z) =
+∞∑

k=0

ω
(s)
n,k ξ−2n(s+1)−k−1,(3.6)

where

ω
(s)
n,k =

k∑

j=0

β
(s)

n,j γ
(s)
n,k−j .(3.7)

Theorem 3.3. The remainder term Rn,s(f) can be represented in the form

Rn,s(f) =
+∞∑

k=0

α2n(s+1)+k ε
(s)
n,k,(3.8)

where the coefficients ε
(s)
n,k are independent of f . Furthermore, if f is an even

function then ε
(s)
n,2j+1 = 0 (j = 0, 1, . . .).

Proof. By substitution (3.1) and (3.6) in (2.1) we obtain

Rn,s(f) =
1

2πi

∫

E�

(
+∞∑

j=0

′αjTj(z)
+∞∑

k=0

ω
(s)
n,k ξ−2n(s+1)−k−1

)

dz

=
+∞∑

k=0

(
1

2πi

+∞∑

j=0

′αj

∫

E�

Tj(z) ξ−2n(s+1)−k−1 dz

)

ω
(s)
n,k.

Applying Lemma 5 from [11], this reduces to (3.8), with

ε
(s)
n,0 =

1
4
ω

(s)
n,0, ε

(s)
n,1 =

1
4
ω

(s)
n,1, ε

(s)
n,k =

1
4
(
ω

(s)
n,k − ω

(s)
n,k−2

)
, k = 2, 3 . . . .(3.9)

If w(−t) = w(t) and k is odd it follows from (3.7) and Lemmas 3.1 and 3.2 that
ω

(s)
n,k = 0 and hence ε

(s)
n,k = 0. �
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Remark 3.1. Setting f(z) = T2n(s+1)+k(z), it immediately follows from (3.8)
that

ε
(s)
n,k = σ2n(s+1)+k −

n∑

ν=1

2s∑

i=0

Ai,νT
(i)
2n(s+1)+k(τν) (k = 0, 1, 2, . . .),

where σk =
∫ 1

−1
w(t)Tk(t) dt (k = 0, 1, 2, . . .). Therefore, we conclude that

|ε(s)
n,k| ≤

∫ 1

−1

w(t) dt +
n∑

ν=1

2s∑

i=0

|Ai,ν | |T (i)
2n(s+1)+k(τν)| (k = 0, 1, 2, . . .).

If s = 0 then |ε(0)
n,k| ≤ 2

∫ 1

−1
w(t) dt, and this fact can be used to obtain some

global upper bounds of the remainder term (see Hunter [11]). Unfortunately,
such a conclusion cannot be made in the general case for s > 0, because of the
difficulties in finding sharp upper bounds on |T (i)

2n(s+1)+k(τν)|.

4 Error estimates for Gauss–Turán quadrature with Chebyshev
weight function of the first kind.

If u ∈ C, |u| < 1, then

1
(1 − u)ν+1

=
+∞∑

k=ν

(
k

ν

)

uk−ν (ν = 0, 1, 2, . . .).(4.1)

In this section we consider the weight w(t) = w1(t), for which πn,s(t) = Tn(t).
Using (3.2), with ξ = �eiθ, � > 1, z = (ξ + ξ−1)/2, and (4.1), we obtain

1
[Tn(z)]2s+1

=
[
1
2
(ξn + ξ−n)

]−(2s+1)

= 22s+1 ξ−n(2s+1)

(
1

1 + ξ−2n

)2s+1

= 22s+1
+∞∑

j=0

(−1)j

(
j + 2s

2s

)

ξ−n(2s+1)−2nj .

On the other hand, according to (3.3), with πn,s(t) = Tn(t), we conclude that

β
(s)

n,k =






22s+1(−1)j

(
j + 2s

2s

)

, k = 2jn (j = 0, 1, 2, . . .),

0, otherwise.
(4.2)

According to (3.5), the coefficients in (3.4) are given by

γ
(s)
n,k = 2

∫ 1

−1

[Tn(t)]2s+1

√
1 − t2

Un+k(t) dt = 2
∫ π

0

[cosnθ]2s+1 sin (n + k + 1)θ
sin θ

dθ.
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In order to calculate this integral we use formulas 1.320.5 and 1.320.7 in [10] and
combine them with

sin(m + 1)x
sin x

= 2
[m/2]∑

k=0

′′ cos(m − 2k)x,

where the “second sign” denotes that the last summand has to be halved if m

is even. In that way we obtain the coefficients γ
(s)
n,k in an explicit form

γ
(s)
n,k =






π

22s−1

j∑

ν=0

(
2s + 1
s − ν

)

, k = 2nj, 2nj + 2, . . . , 2n(j + 1) − 2
(j = 0, 1, . . . , s − 1),

2π, k = 2sn, 2sn + 2, . . . ,

0, otherwise.

(4.3)

Remark 4.1. From (4.3) we conclude that γ
(s)
n,k > 0 for each even k, as well

as
π

22s−1

(
2s + 1

s

)

≤ γ
(s)
n,k ≤ 2π,

because of
∑s

�=0

(
2s+1
s−�

)
= 22s (cf. [15]).

4.1 First type of error estimates.

In general, the Chebyshev coefficients αk in (3.1) are unknown. However, El-
liot [3] described a number of ways of estimating or bounding them. In particular,
under our assumptions,

|αk| ≤
2
�k

(
max
z∈E�

|f(z)|
)
.(4.4)

In order to present this type of the error estimate, we take s = 2. By using
(4.2), (4.3), (3.7), and (3.9), we find ε

(2)
n,0 = 10π, ε

(2)
n,2n = −45π,

ε
(2)
n,k =

1
4
(−1)jπ(j4 + 12j3 + 49j2 + 78j + 40) (k = 2jn),

and ε
(2)
n,k = 0 otherwise. Now, by using these results, (3.8) and (4.4), we get

|Rn,2(f)| =

∣
∣
∣
∣
∣

+∞∑

k=0

α6n+k ε
(2)
n,k

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

+∞∑

j=0

α6n+2jn ε
(2)
n,2jn

∣
∣
∣
∣
∣

≤ π

2�6n

(
max
z∈E�

|f(z)|
) +∞∑

j=0

j4 + 12j3 + 49j2 + 78j + 40
�2jn

.
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In order to sum the series on the right-hand side in this estimate we need some
explicit formulas for the functions hk(t) :=

∑+∞
n=1 nktn−1 (|t| < 1). It is easy to

prove that for k ≥ 1, the following recurrence relations are valid

hk(t) = hk−1(t) + th′
k−1(t), hk(t) =

1
1 − t

[

1 + t

k−1∑

i=0

(
k

i

)

hi(t)

]

,

h0(t) =
1

1 − t
.

The previous sums
∑+∞

j=0 jν�−2jn (ν = 0, 1, 2, 3, 4) can be calculated by using
the expressions for hν(t), putting t = 1/�2n, so that we obtain

|Rn,2(f)| ≤ 2π
(
max
z∈E�

|f(z)|
) 10�4n − 5�2n + 1

(�2n − 1)5
.(4.5)

The corresponding result for s = 1 is

|Rn,1(f)| ≤ 2π
(
max
z∈E�

|f(z)|
) 3�2n − 1

(�2n − 1)3
.(4.6)

The error estimate for s = 0 has been obtained by Hunter [11] (see also Chawla
and Jain [2]):

|Rn,0(f)| ≤ 2π
(
max
z∈E�

|f(z)|
) 1

�2n − 1
.(4.7)

Remark 4.2. The error estimates (4.5), (4.6), and Hunter’s result (4.7) sug-
gest that for a general s (s ∈ N0) the estimate could be expressed in the
form

|Rn,s(f)| ≤ 2π
(
max
z∈E�

|f(z)|
) ∑s

k=0(−1)k
(
2s+1
s−k

)
�2n(s−k)

(�2n − 1)2s+1
.

4.2 Second type of error estimates.

According to (2.7) we study now the quantity Ln,s(E�) = 1
2π

∮
E�

|Kn,s(z)| |dz|,
where Kn,s(z) is given by (2.2). Since z = 1

2 (ξ + ξ−1), ξ = �eiθ, and |dz| =
2−1/2

√
a2 − cos 2θ dθ, where we put

aj = aj(�) =
1
2
(�j + �−j), j ∈ N, � > 1,(4.8)

the quantity Ln,s(E�) reduces to

Ln,s(E�) =
1

2π
√

2

∫ 2π

0

|�n,s(z)|(a2 − cos 2θ)1/2

|πn,s(z)|2s+1
dθ.(4.9)
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This integral can be evaluated numerically by using a quadrature formula.
However, if w(t) = w1(t) we can obtain explicit expressions for Ln,s(E�) or
for their bounds. By using (3.4) and (4.3), after some computation, we find

�n,s(z) =
π

22s−1

1
ξn(ξ − ξ−1)

s∑

ν=0

(
2s + 1
s − ν

)
1

ξ2νn
,(4.10)

and, according to (3.2) and (4.8), we have |Tn(z)| = 2−1/2
√

a2n + cos 2nθ, where
z = 1

2 (ξ + ξ−1) and ξ = �eiθ. For another approach to getting Kn,s(z) =
�n,s(z)/πn,s(z)2s+1 in this Chebyshev case, see [15, §3.1].

Thus, in this Chebyshev case, (4.9) reduces to

Ln,s(E�) =
2s+1

π

∫ π/2

0

|�n,s(z)|(a2 − cos 2θ)1/2

(a2n + cos 2nθ)s+1/2
dθ,(4.11)

where �n,s(z) is given by (4.10). Now, we define

Ws(�, θ) :=
s∑

ν=0

(
2s + 1

ν

)

�2ν−sei(ν−s/2)θ(4.12)

and prove the following auxiliary result:

Lemma 4.1. Let r > 0, � > 1 and x = �4r. Then

|Ws(�r, θ)|2 =
s∑

k=0

Ak cos kθ,(4.13)

where

A0 =
1

xs/2

s∑

ν=0

(
2s + 1

ν

)2

xν ,(4.14)

Ak =
2

x(s−k)/2

s−k∑

ν=0

(
2s + 1

ν

)(
2s + 1
ν + k

)

xν , k = 1, . . . , s.(4.15)

Proof. Since |Ws(�r, θ)|2 = Ws(�r, θ)Ws(�r,−θ), i.e.,

|Ws(�r, θ)|2 =
s∑

ν=0

s∑

µ=0

(
2s + 1

ν

)(
2s + 1

µ

)

�2(ν+µ−s)rei(ν−µ)θ,

we get (4.13), where

Ak =
∑

|ν−µ|=k
ν,µ=0,1,...,s

(2s + 1
ν

)(2s + 1
µ

)
�2(ν+µ−s)r, k = 0, 1, . . . , s.

For k = 0 and k ≥ 1 these coefficients reduce to (4.14) and (4.15), respectively. �
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We also need the following integral

Jk(a) =
∫ π

0

cos kθ

(a + cos θ)2s+1
dθ, a > 1, s ∈ N0.

Lemma 4.2. Let x > 1, a = (x + 1)/(2
√

x), and s ∈ N0. Then

Jk(a) =
22s+1π(−1)kxs−(k−1)/2

(x − 1)4s+1

2s∑

ν=0

(2s + ν

ν

)(2s + k

k + ν

)
(x − 1)2s−ν .(4.16)

This result can be found in the book [10, Eq. 3.616.7].
Now, we are ready to prove the following result:

Theorem 4.3. Let x = �4n and aj, A0 and Ak be defined by (4.8), (4.14) and
(4.15), respectively. Then, for the Chebyshev weight of the first kind, we have

Ln,s(E�) =
1

2s−1/2�(s+1)n

∫ π

0

√ ∑s
k=0 Ak cos kθ

(a2n + cos θ)2s+1
dθ.(4.17)

Moreover, an estimate of the form

Ln,s(E�) ≤ 2πΦs(�4n), Φs(x) =

√
Qs(x)

(x − 1)4s+1
,(4.18)

holds, where Qs(x) is an algebraic polynomial of degree 3s, defined by

Qs(x) := 2
s∑

k=0

′(−1)k

(
s−k∑

ν=0

(
2s + 1

ν

)(
2s + 1
ν + k

)

xν

)

×(4.19)

×
(

2s∑

ν=0

(2s + ν

ν

)(2s + k

k + ν

)
(x − 1)2s−ν

)

.

Proof. Let x = �4n. According to (4.10) and (4.8) we have

|�n,s(z)| =
21−2sπ

�(s+1)n
√

2(a2 − cos 2θ)1/2

∣
∣
∣
∣

s∑

ν=0

(
2s + 1

ν

)

�(2ν−s)nei(ν−s/2)2nθ

∣
∣
∣
∣

=
21/2−2sπ

�(s+1)n(a2 − cos 2θ)1/2
|Ws(�n, 2nθ)|,

where Ws is defined in (4.12). Then (4.11) becomes

Ln,s(E�) =
1

2s−3/2�(s+1)n

∫ π/2

0

|Ws(�n, 2nθ)|
(a2n + cos 2nθ)s+1/2

dθ.

Because of the periodicity of the integrand, it reduces to

Ln,s(E�) =
1

2s−1/2�(s+1)n

∫ π

0

|Ws(�n, θ)|
(a2n + cos θ)s+1/2

dθ,
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Figure 4.1: Log10 of the values Ln,s(E�), s = 0, 1, . . . , 5, as functions of �, for n = 10 (left)
and n = 50 (right).

Figure 4.2: The function x �→ log10(2πΦs(x)) for s = 0, 1, . . . , 5 (left) and Log10 of the values
Ln,2(E�) (solid lines) and their bounds given by (4.18) (dashed lines) for n = 10, 30, and 50
(right).

and then to (4.17), because of (4.13). Applying Cauchy’s inequality to (4.17) we
obtain

Ln,s(E�) ≤
√

π

2s−1/2�(s+1)n

(∫ π

0

∑s
k=0 Ak cos kθ

(a2n + cos θ)2s+1
dθ

)1/2

.(4.20)

Since a2n = (�2n + �−2n)/2 = (x + 1)/(2
√

x), using (4.14), (4.15) and (4.16)
we obtain

∫ π

0

∑s
k=0 Ak cos kθ

(a2n + cos θ)2s+1
dθ =

s∑

k=0

AkJk(a2n) =
22s+1πx(s+1)/2

(x − 1)4s+1
Qs(x),

where Qs(x) is given by (4.19). Note that deg Qs(x) = 3s. Finally, (4.20)
reduces to Ln,s(E�) ≤ 2π

√
Qs(x)/(x − 1)4s+1, where x = �4n. �

Remark 4.3. The polynomials Qs(x) in (4.19) are

Q0(x) = 1, Q1(x) = 1 − 5x + 19x2 + 9x3,

Q2(x) = 1 − 9x + 36x2 + 16x3 + 1251x4 + 1125x5 + 100x6,

Q3(x) = 1 − 13x + 78x2 − 286x3 + 1940x4 + 32964x5 + 150578x6 +

+ 148862x7 + 34251x8 + 1225x9, etc.
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Figure 4.3: Log10 of the values Ln,1(E�) (solid line) and its bounds given by (4.6) (dot-dashed
line) and (4.18) (dashed line) for n = 10 (left) and n = 50 (right).

In Figure 4.1 we presented the values of log10

(
Ln,s(E�)

)
, s = 0, 1, . . . , 5, as a

function of �, when n = 10 and n = 50. The upper graphs (for sufficiently large �)
correspond to the smaller values of s. The values of Ln,s(E�) were calculated by
using (4.17). In Figure 4.2 (left) we presented graphs x �→ log10(2πΦs(x)) for s =
0, 1, . . . , 5, where Φs(x) is given in (4.18)–(4.19). The graphs � �→ log10(Ln,s(E�))
and � �→ log10(2πΦs(�4n)) for n = 10, 30, 50 and s = 2 are also displayed in
Figure 4.2 (right). The upper graphs correspond to the smaller values of n.

The function � �→ log10(Ln,1(E�)), as well as its bounds which appear on the
right sides in (4.6) and (4.18), are given in Figure 4.3. As we can see, the second
bound (4.18) is very precise especially for larger values of n and �.

Remark 4.4. For s = 0 the estimate (4.17) reduces to the corresponding
error estimate for Gaussian quadrature obtained by Hunter (see [11, Eq. (5.7)]),
which can be expressed in the form Ln,0(E�) = 4(�2n + 1)−1K(2/(�n + �−n)),
where K(k) =

∫ π/2

0
(1−k2 sin2 θ)−1/2 dθ (|k| < 1) is the complete elliptic integral

of the first kind.

5 Error estimates for Gauss–Turán quadratures with a generalized
Chebyshev weight of the second kind.

In this section we consider a case with the weight function w2(t) = (1−t2)1/2+s

(the generalized Chebyshev weight of the second kind), for which πn,s(z) =
Un(z) = (ξn+1 − ξ−n−1)/(ξ − ξ−1). Here, we could not find a general pattern
for the coefficients β

(s)

n,k as in the case of the weight function w1(t). However, we

will show how to find β
(s)

n,k for s = 1. The cases for s > 1 are more complicated.
Taking s = 1, we have

1
Un(z)3

=
(

ξ − ξ−1

ξn+1 − ξ−n−1

)3

= ξ−3n

(

1 − 3
ξ2

+
3
ξ4

− 1
ξ6

)(

1 − 1
ξ2(n+1)

)−3

= ξ−3n

(

1 − 3
ξ2

+
3
ξ4

− 1
ξ6

) +∞∑

k=0

(
k + 2

k

)
1

ξ2(n+1)k
.
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For n ≥ 3, it is not difficult to conclude that β
(1)

n,2j(n+1) = −β
(1)

n,2j(n+1)+6 =
(
j+2

j

)
, β

(1)

n,2j(n+1)+2 = −β
(1)

n,2j(n+1)+4 = −3
(
j+2

j

)
, for j = 0, 1, . . . , and β

(1)

n,k = 0

otherwise. For n = 2 we obtain β
(1)

2,6j =
(
j+2

j

)
−

(
j+1
j−1

)
= j + 1 and β

(1)

2,6j+2 =

−β
(1)

2,6j+4 = −3
(
j+2

j

)
, for j = 0, 1, . . . , and β

(1)

2,k = 0 otherwise. Finally, for n = 1

we have that β
(1)

1,2j = (−1)j
(
j+2

j

)
for j = 0, 1, . . . , and β

(1)

1,k = 0 otherwise. In

the case n = 3, we have ε
(1)
3,8j = π

16 (2j2 + 6j + 3), ε
(1)
3,8j+4 = π

8 (3j2 + 13j + 9),

ε
(1)
3,8j+2 = ε

(1)
3,8j+6 = −π

4 (j2 + 4j + 3), for j = 0, 1, . . . , and ε
(1)
n,k = 0 otherwise.

For n > 3 and j = 0, 1, . . . , we get

ω
(1)
n,2j(n+1) = −ω

(1)
n,2j(n+1)+6 =

3π

4

(
j + 2

j

)

− π

4

(
j + 1
j − 1

)

=
π

4
(j2 + 4j + 3),

ω
(1)
n,2j(n+1)+2 = −ω

(1)
n,2j(n+1)+4 = −3ω

(1)
n,2j(n+1) = −3π

4
(j2 + 4j + 3),

and ω
(1)
n,k = 0 otherwise. Then, the formulas (3.9) become






ε
(1)
n,2j(n+1) = ε

(1)
n,2j(n+1)+8 =

π

16
(j2 + 4j + 3),

ε
(1)
n,2j(n+1)+2 = ε

(1)
n,2j(n+1)+6 = −π

4
(j2 + 4j + 3),

ε
(1)
n,2j(n+1)+4 =

3π

8
(j2 + 4j + 3),

for j = 0, 1, . . . , and ε
(1)
n,k = 0 otherwise.

In the sequel we derive the first type of error estimates for n > 3. Thus,

|Rn,1(f)| =

∣
∣
∣
∣
∣

+∞∑

k=0

α4n+k ε
(1)
n,k

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

4∑

ν=0

+∞∑

j=0

α4n+2j(n+1)+2ν ε
(1)
n,2j(n+1)+2ν

∣
∣
∣
∣
∣

≤
π(maxz∈E� |f(z)|)

2�4n

(
1
4

+
1
�2

+
3

2�4
+

1
�6

+
1

4�8

) +∞∑

j=0

j2 + 4j + 3
�2j(n+1)

,

i.e., by calculating hν(1/�2(n+1)) (ν = 0, 1, 2),

|Rn,1(f)| ≤ π(� + �−1)4(3�2n+2 − 1)
8(�2n+2 − 1)3

(
max
z∈E�

|f(z)|
)
.(5.1)

The corresponding error estimate for s = 0 has been obtained by Hunter [11],

|Rn,0(f)| ≤ π(� + �−1)2

2(�2n+2 − 1)

(
max
z∈E�

|f(z)|
)
.(5.2)

In order to give the second type of error estimates for the generalized Cheby-
shev weight of the second kind w2(t) = (1 − t2)1/2+s, we need the expression

�n,s(z) =
π

22s

1
ξn+1

s∑

ν=0

(−1)ν

(
2s + 1
s − ν

)
1

ξ2(n+1)ν
,(5.3)
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which can be derived from [15, §3.2], as well as the following result for the sum

W̃s(�, θ) :=
s∑

ν=0

(−1)ν
(2s + 1

ν

)
�2ν−sei(ν−s/2)θ.(5.4)

Lemma 5.1. Let r > 0, � > 1 and x = �4r. Then

∣
∣W̃s(�r, θ)

∣
∣2 =

s∑

k=0

(−1)kAk cos kθ,(5.5)

where the coefficients Ak are the same as in Lemma 4.1.

We omit the proof of this lemma.

Theorem 5.2. Let x = �4(n+1) and aj, A0 and Ak be defined by (4.8), (4.14)
and (4.15), respectively. Then, for the generalized Chebyshev weight of the second
kind w2(t) = (1 − t2)1/2+s, we have

Ln,s(E�) =
�−(n+1)(s+1)

22s+1/2
×(5.6)

×
∫ π

0

(a2 − cos θ)s+1

√∑s
k=0(−1)kAk cos(n + 1)kθ

(a2n+2 − cos(n + 1)θ)2s+1
dθ.

Moreover, the estimate

Ln,s(E�) ≤
π

2s

√
M2s+2(�2) Φs(�4n+4)(5.7)

holds, where

Mk(�) :=
(

� − �−1

2

)k

Pk

(
� + �−1

� − �−1

)

,(5.8)

Pk is the Legendre polynomial of degree k, and Φs is defined in (4.18) and (4.19).
Proof. According to (5.3), (4.8), and (5.4) we have

|�n,s(z)| =
π

22s�n+1
· 1
�(n+1)s

∣
∣
∣
∣

s∑

ν=0

(−1)ν

(
2s + 1

ν

)

�(2ν−s)(n+1)ei(ν−s/2)2(n+1)θ

∣
∣
∣
∣

=
π

22s�(n+1)(s+1)

∣
∣W̃s(�n+1, 2(n + 1)θ)

∣
∣,

and also |Un(z)| =
√

(a2n+2 − cos(2n + 2)θ)/(a2 − cos 2θ). In this case, because
of periodicity of the integrand, (4.11) becomes

Ln,s(E�) =
�−(n+1)(s+1)

22s+1/2

∫ π

0

(a2 − cos θ)s+1

(a2n+2 − cos(n + 1)θ)s+1/2

∣
∣W̃s(�n+1, (n + 1)θ)

∣
∣ dθ.
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Figure 5.1: Log10 of the values Ln,s(E�), s = 0, 1, . . . , 5, as functions of �, for n = 10 (left)
and n = 30 (right).

By using (5.5), it reduces to (5.6). Applying Cauchy’s inequality to (5.6) we get

Ln,s(E�) ≤ �−(n+1)(s+1)

22s+1/2

(∫ π

0

(a2 − cos θ)2s+2 dθ

)1/2

×(5.9)

×
(∫ π

0

∑s
k=0(−1)kAk cos(n + 1)kθ

(a2n+2 − cos(n + 1)θ)2s+1
dθ

)1/2

.

From [10, Eq. 3.661.3]), we obtain

1
π

∫ π

0

(a2 − cos θ)2s+2 dθ =
(

�2 − �−2

2

)2s+2

P2s+2

(
�2 + �−2

�2 − �−2

)

= M2s+2(�2).

On the other side we note that
∫ π

0

cos(n + 1)kθ

(a − cos(n + 1)θ)2s+1
dθ =

∫ π

0

cos kθ

(a − cos θ)2s+1
dθ = (−1)kJk(a) (a > 1),

because of periodicity of the integrand and Lemma 4.2. According to a2n+2 =
(�2n+2+�−2n−2)/2, we put x = �4n+4, so that a2n+2 = (x+1)/(2

√
x), and then,

the last integral in (5.9) becomes
∫ π

0

∑s
k=0(−1)kAk cos(n + 1)kθ

(a2n+2 − cos(n + 1)θ)2s+1
dθ =

s∑

k=0

(−1)kAk(−1)kJk(a2n+2)

=
22s+1πx(s+1)/2

(x − 1)4s+1
Qs(x),

where A0 and Ak are given by (4.14) and (4.15), respectively. The polynomial
Qs(x) is defined by (4.19). In this way, inequality (5.9) reduces to (5.7). �

Remark 5.1. An alternative expression for (5.8) is given by ([10, Eq. 3.616.1])
Mk(�) = (2�)−k

∑k
ν=0

(
k
ν

)2
�2ν .

In Figure 5.1 we presented the values of log10(Ln,s(E�)), s = 0, 1, . . . , 5, as a
function of �, when n = 10 and n = 30. The upper graphs correspond to the
smaller values of s. The values of Ln,s(E�) were calculated by using (5.6).
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Figure 5.2: Log10 of the values Ln,2(E�) (solid lines) and their bounds given by (5.7) (dashed
lines) for n = 10, 20, and 30 (left) and Log10 of the values Ln,s(E�) for s = 0, 1 (solid lines)
and their bounds given by (5.2) and (5.1) (dot-dashed lines) and (5.7) (dashed lines) for n = 10
(right).

The graphs � �→ log10(Ln,s(E�)) and � �→ log10(2−sπ
√

M2s+2(�2)Φs(�4n+4))
for n = 10, 20, 30 and s = 2 are displayed in Figure 5.2 (left). The upper graphs
correspond to the smaller values of n. Beside the bound (5.7) (dashed line),
in Figure 5.2 (right) we presented also the Hunter bound (for s = 0) and our
bound (for s = 1), given by (5.2) and (5.1), respectively. These bounds are given
as dot-dashed lines. The upper set of graphs correspond to s = 0 and lower
one to s = 1. As we can see, the second type of bounds (5.7) are very precise
especially for larger values of n and �.

Remark 5.2. The corresponding error estimate for Gaussian quadrature with
the Chebyshev weight function of the second kind has been obtained by Hunter
(see [11, Eq. (5.8)]). The quantity Ln,s(E�) given in (5.6), for s = 0 reduces to
Hunter’s result, which can be expressed in terms of the complete elliptic integral
of the first kind, Ln,0(E�) = (�2 + �−2)(�2n+2 + 1)−1K(2/(�n+1 + �−n−1)).

6 Error estimates for Gauss–Turán quadratures with a generalized
Chebyshev weight of the third kind.

For the special Jacobi weight function w3(t) = (1 − t)−1/2(1 + t)1/2+s (the
generalized Chebyshev weight of the third kind) we can obtain the first type of
error estimates in a similar way as for w2(t).

In this section we consider a problem how to obtain the second type of error
estimates for w3(t). According to [15, §3.3] we can find

�n,s(z) =
π

2s−1ξn+1/2(ξ1/2 − ξ−1/2)

s∑

ν=0

(
2s + 1
s − ν

)
1

ξ(2n+1)ν
.(6.1)

Since Vn(t) = cos((n + 1/2)θ)/ cos(θ/2), t = cos θ, is a Jacobi polynomial with
parameters α = −1/2, β = 1/2 (see [19, 9]), we have the following representa-
tion ([19])

Vn(z) =
T2n+1(u)

u
, u =

√
1 + z

2
.(6.2)
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Figure 6.1: Log10 of the values Ln,s(E�), s = 0, 1, . . . , 5, as functions of �, for n = 10 (left)
and n = 30 (right).

Theorem 6.1. Let x = �4n+2 and aj, A0 and Ak be defined by (4.8), (4.14)
and (4.15), respectively. Then, for the generalized Chebyshev weight of the third
kind w3(t) = (1 − t)−1/2(1 + t)1/2+s, we have

Ln,s(E�)=
21/2−s

�(n+ 1
2 )(s+1)

∫ π

0

(a1 + cos θ)s+1

√ ∑s
k=0 Ak cos(2n + 1)kθ

(a2n+1 + cos(2n + 1)θ)2s+1
dθ.(6.3)

Moreover, an estimate of the form

Ln,s(E�) ≤ 2π
√

M2s+2(�) Φs(�4n+2)(6.4)

holds, where Mk and Φs are defined by (5.8) and (4.18) and (4.19), respectively.
Proof. According to (6.1), (4.8), (4.12) and (6.2) we have

|�n,s(z)| =
π

2s−1�n+1/2
√

2 (a1 − cos θ)1/2
· 1
�(n+1/2)s

|Ws(�n+1/2, (2n + 1)θ)|

and |Vn(z)| =
√

(a2n+1 + cos(2n + 1)θ)/(a1 + cos θ). Then (4.11) becomes

Ln,s(E�) =
21/2−s

�(n+1/2)(s+1)

∫ π

0

(a1 + cos θ)s+1|Ws(�n+1/2, (2n + 1)θ)|
(a2n+1 + cos(2n + 1)θ)s+1/2

dθ,

i.e., (6.3), because of (4.13). Using [10, Eq. 3.661.3]), with a = a1 = (�+�−1)/2,
b = 1, k = 2s + 2, we find

1
π

∫ π

0

(a1 + cos θ)2s+2 dθ =
(

� − �−1

2

)2s+2

P2s+2

(
� + �−1

� − �−1

)

= M2s+2(�),

where Mk is defined in (5.8). Now, according to a2n+1 = (�2n+1 + �−2n−1)/2,
we put x = �4n+2, so that a2n+1 = (x + 1)/(2

√
x).

Finally, applying Cauchy’s inequality to (6.3), as in the proof of Theorem 5.2,
we obtain (6.4). �

In Figure 6.1 we presented the values of log10(Ln,s(E�)), s = 0, 1, . . . , 5, as a
function of �, when n = 10 and n = 30. The upper graphs correspond to the
smaller values of s. The values of Ln,s(E�) were calculated by using (6.3).
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Figure 6.2: Log10 of the values Ln,2(E�) (solid lines) and their bounds given by (6.4) (dashed
lines) for n = 10, 20, and 30 (left) and Log10 of the values Ln,s(E�) for s = 0, 1 (solid lines)
and their bounds given by (6.4) (dashed lines) for n = 10 (right).

The graphs � �→ log10(Ln,s(E�)) and � �→ log10(2π
√

M2s+2(�) Φs(�4n+2)) for
n = 10, 20, 30 and s = 2 are displayed in Figure 6.2 (left). The upper graphs
correspond to the smaller values of n.

The functions � �→ log10(L10,s(E�)) (s = 0, 1), as well as their bounds (6.4),
are also given in Figure 6.2 (right). As before, we can see that the bounds of the
second type (6.4) are very precise especially for larger values of n and �.

Remark 6.1. The corresponding error estimate for Gaussian quadrature has
been obtained by Hunter. For s = 0, (6.3) reduces to Hunter’s result (cf. [11,
Eq. (5.9)])

Ln,0(E�) =
2(� + �−1)
�2n+1 + 1

K

(
2

�n+1/2 + �−n−1/2

)

.
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13. G. V. Milovanović, Quadratures with multiple nodes, power orthogonality, and moment-

preserving spline approximation, in W. Gautschi, F. Marcellan, and L. Reichel (eds),
Numerical Analysis 2000, Vol. V, Quadrature and Orthogonal Polynomials, J. Comput.
Appl. Math., 127 (2001), pp. 267–286.
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