
BIT Numerical Mathematics (2005) 45: 91–115 c© Springer 2005
DOI: 10.1007/s10543-005-2637-9

ADIABATIC INTEGRATORS FOR HIGHLY
OSCILLATORY SECOND-ORDER LINEAR

DIFFERENTIAL EQUATIONS WITH
TIME-VARYING EIGENDECOMPOSITION�

KATINA LORENZ1, TOBIAS JAHNKE2 and CHRISTIAN LUBICH1

1Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10,
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Abstract.
Numerical integrators for second-order differential equations with time-dependent

high frequencies are proposed and analysed. We derive two such methods, called the
adiabatic midpoint rule and the adiabatic Magnus method. The integrators are based
on a transformation of the problem to adiabatic variables and an expansion technique
for the oscillatory integrals. They can be used with far larger step sizes than those
required by traditional schemes, as is illustrated by numerical experiments. We prove
second-order error bounds with step sizes significantly larger than the almost-period
of the fastest oscillations.
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1 Introduction.

The integration of highly oscillatory differential equations has been a numer-
ical challenge for a long time; see, e.g., the reviews in [6, 15]. To approximate
the solution with sufficient accuracy, step sizes far smaller than the smallest
approximate period of the oscillations must be taken with standard integrators.
An early approach to taking larger time steps in oscillatory problems has been
made by Gautschi [4], who presents trigonometric integrators for differential
equations of the form ẍ + ω2x = g(t, x) with a fixed frequency ω. His methods
extend readily to ẍ + Ax = g(t, x) with a constant, symmetric, positive semi-
definite matrix A of large norm. For this type of equations, Garćıa-Archilla,
Sanz-Serna and Skeel [3] propose and analyse the mollified impulse method, and
Hochbruck and Lubich [7] analyse Gautschi-type integrators. Grimm [5] extends
this analysis to equations with a time-dependent matrix A(t), which may be
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of large norm, but whose derivatives are supposed to be moderately bounded.
Iserles [8] uses WKB analysis to study the performance of numerical methods
for the scalar linear oscillator ẍ + a(t)x = 0, where lim supt→∞ a(t) = +∞ and
|dka(t)/dtk| = o(a(t)1/k) for k ≥ 1 and large t. As a suitable numerical method
he presents a modified Magnus method. Methods of this type are further studied
by Degani and Schiff [2].

In this paper, we consider the linear oscillatory system

ẍ(t) +
1
ε2

A(t)x(t) = 0, 0 < ε � 1,(1.1)

with a time-dependent, symmetric positive definite matrix A(t) whose deriva-
tives are bounded independently of ε. Equation (1.1) describes oscillations in a
mechanical system that at the same time moves on a slower time scale. Some
applications are folding the antenna of a satellite or the oscillations appearing
in the steering and the front axle suspension of a car [16]. Apart from this
direct practical interest, finding suitable numerical integrators for this equation
is an important prerequisite for nonlinear problems, which will be treated in
forthcoming work.

None of the known numerical methods yields an ε-independent accuracy with
step sizes h > ε when applied to (1.1). Here, we develop numerical integrators
which give ε-uniform O(h2) accuracy with large step sizes up to h = O(

√
ε).

They require only one evaluation and diagonalization of A(t) per time step.
The methods are invariant under rescaling ε → σε and A(t) → σ2A(t), since
effectively they work only with the complete matrix 1

ε2 A(t). The approach taken
here is closely related to that of [11–13] for the numerical integration of singularly
perturbed Schrödinger equations.

In Section 2 we start with reformulating (1.1) as a first-order system, which is
then transformed to adiabatic variables. The solution of the transformed differen-
tial equation is a smoother function η(t), which is more accessible to numerical
approximation. We also comment on the inhomogeneous version of (1.1). In
Sections 3 and 4, we present two time-reversible integrators for (1.1) constructed
via the transformed equation, named the adiabatic midpoint rule and the adi-
abatic Magnus method. Numerical examples are shown in Section 5, where the
new schemes are compared with methods known from the literature. The error
behaviour is illustrated both for well-separated frequencies and in the case of
an avoided frequency crossing. Finally, Section 6 gives a detailed error analysis
proving ε-uniform second-order accuracy of the proposed methods for h <

√
ε in

the case of separated frequencies. The error bounds depend on the smoothness
of the eigendecomposition of A(t), but not on bounds of derivatives of the highly
oscillatory solution x(t).

2 Transformation of the problem.

It is favourable to transform the problem instead of trying to solve Equa-
tion (1.1) directly. The reformulated equation is introduced in this section.
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2.1 Assumptions.

Let the real, symmetric and positive definite matrix A(t) be diagonalized as

A(t) = Q(t)Ω(t)2Q(t)T, Ω(t) = diag(ωk(t)),(2.1)

with an orthogonal matrix Q(t) and a diagonal matrix Ω(t) containing the eigen-
frequencies ωk(t), that is, the square roots of the eigenvalues of A(t). We assume
that the eigendecomposition is sufficiently smooth: the functions t �→ Q(t) and
t �→ Ω(t) are supposed to be three times continuously differentiable, and each of
the derivatives is bounded independently of ε.

We suppose, in addition, that the eigenfrequencies ωk(t) remain separated and
bounded away from 0: there is a δ > 0 such that for any pair ωk(t) and ωl(t)
with k �= l, the lower bounds

|ωk(t) − ωl(t)| ≥ δ, ωk(t) ≥ 1
2δ(2.2)

hold for all t ∈ [t0, tend].

2.2 Reformulation as a first-order system.

With

B(t) := A(t)1/2 = Q(t)Ω(t)Q(t)T and
1
ε
B(t)y(t) = ẋ(t),

we obtain a system of first-order ordinary differential equations(
ẋ

ẏ

)
=

1
ε

(
0 B(t)

−B(t) 0

) (
x

y

)
+

(
0 0
0 −B(t)−1Ḃ(t)

) (
x

y

)
,(2.3)

which will be the starting point for our approach. Compared with the equation
treated in [11–13], a common feature is the presence of a skew-Hermitian time-
dependent matrix multiplied by 1/ε. A major difference is the appearance of
the second term in (2.3) which changes the behaviour of solutions and poses
additional difficulties for the numerical treatment.

From the eigendecomposition (2.1) we obtain the following one for the skew-
symmetric matrix in (2.3):

H(t) :=
(

0 B(t)
−B(t) 0

)
=

(
0 1
−1 0

)
⊗ B(t) = U(t)iΛ(t)U(t)∗(2.4)

with U(t) =
1√
2

(
1 i
i 1

)
⊗ Q(t), Λ(t) =

(
Ω(t) 0

0 −Ω(t)

)
.

Here i is the imaginary unit and U∗ denotes the hermitian conjugate of the
unitary matrix U .

2.3 Transformation to adiabatic variables.

Like in [11], we now pass to a smoother variable η(t) which is called the
adiabatic variable. Up to an oscillating phase, η(t) is the coefficient vector of
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(x(t), y(t))T with respect to the eigenbasis of H(t). It is defined as

η(t) = exp
(
− i

ε
Φ(t)

)
U(t)∗

(
x(t)
y(t)

)
,(2.5)

where Φ(t) is the diagonal matrix that contains the integrals over the eigenvalues
of H(t):

Φ(t) =
∫ t

t0

Λ(s) ds, Φ = diag(φj).(2.6)

Differentiating (2.5) and substituting the result into (2.3) leads to an ordinary
differential equation for η:

η̇(t) = exp
(
− i

ε
Φ(t)

)
U(t)∗

(
0 0
0 −B(t)−1Ḃ(t)

)
U(t) exp

(
i

ε
Φ(t)

)
η(t)−(2.7)

− exp
(
− i

ε
Φ(t)

)
U(t)∗U̇(t) exp

(
i

ε
Φ(t)

)
η(t).

Equation (2.7) contains two ε-independent coupling matrices framed by rapidly
oscillating diagonal matrices exp(±iΦ(t)/ε).

One advantage of the transformed equation is that the right-hand side of (2.7)
stays bounded independently of ε and the variable η(t) is therefore smoother than
the solution of (2.3). Another good reason for working with (2.7) rather than
(2.3) is that, as ε → 0, the solutions η(t) = ηε(t) converge strongly to solutions
of a limit equation (see Section 2.5).

2.4 Notation.

We denote the coupling matrices in (2.7) by V (t) and W (t),

V = U∗
(

0 0
0 −B−1Ḃ

)
U = −1

2

(
1 −i
i 1

)
⊗ Ω−1

(
Ω̇ + [K, Ω]

)
,

W = U∗U̇ =
(

1 0
0 1

)
⊗ K,

with the skew-symmetric matrix K = QTQ̇ and the commutator [K, Ω] =
KΩ − ΩK. We let V D(t) be the diagonal part of V (t),

V D = −1
2

(
Ω−1Ω̇ 0

0 Ω−1Ω̇

)
,

and V N (t) = V (t) − V D(t) contains the off-diagonal entries. The real skew-
symmetric matrix W (t) has zero diagonal and will therefore be regrouped with
V N (t) in the following.

We introduce E(Φ) as the matrix with entries ekl(Φ) defined by

ekl(Φ) =




exp
(

i

ε
(φl − φk)

)
if k �= l,

0 otherwise.
(2.8)
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Denoting the entrywise product of matrices by •, Equation (2.7) can equivalently
be written as

η̇(t) = V D(t)η(t) +
(
E(Φ(t)) • (V N (t) − W (t))

)
η(t).(2.9)

Next, D(Λ) and D−(Λ) are defined as matrices with the entries

dkl(Λ) = λl − λk, d−kl(Λ) =

{
(λl − λk)−1 if k �= l,

0 otherwise.
(2.10)

Note that D−(Λ) is not the inverse of D(Λ), but the entrywise product yields
D(Λ) •D−(Λ) •W = W for every matrix W with zero diagonal. The definitions
of E, D, and D− apply with any diagonal matrix Φ or Λ. For Φ(t) of (2.6), we
note

d
dt

E(Φ(t)) = E(Φ(t)) • i

ε
D(Λ(t)).(2.11)

2.5 The adiabatic limit equation.

We show that the solutions η(t) = ηε(t) of (2.7) converge strongly to solutions
η∗(t) of the equation obtained by taking the weak limit for ε → 0 in (2.9),

η̇∗ = V D(t)η∗.(2.12)

The diagonal matrix V D(t) is independent of ε and so the solution of (2.12)
evolves on a time scale ∼ 1 and shows no high-frequency oscillations at all. To
estimate the difference η(t) − η∗(t) we subtract (2.12) from (2.9) to obtain

η̇ − η̇∗ = V D(η − η∗) + E(Φ) •
(
V N − W

)
η.

We integrate this equation from 0 to t, insert E(Φ(t)) = d
dtE(Φ(t)) • ε

i D
−(Λ(t))

and integrate by parts, obtaining

η(t) − η∗(t) =
∫ t

0

V D(s)(η(s) − η∗(s)) ds−

− iεE(Φ(s)) • D−(Λ(s)) •
(
V N (s) − W (s)

)
η(s)

∣∣t
0
+

+ iε

∫ t

0

E(Φ(s)) • d
ds

(
D−(Λ(s)) •

(
V N (s) − W (s)

))
η(s) ds+

+ iε

∫ t

0

E(Φ(s)) • D−(Λ(s)) •
(
V N (s) − W (s)

)
η̇(s) ds

=
∫ t

0

V D(s)(η(s) − η∗(s)) ds + O(ε),

where we use |λl(t) − λk(t)| ≥ δ. For η(0) = η∗(0) and for times t = O(1), we
conclude with the Gronwall lemma

η(t) − η∗(t) = O(ε).(2.13)
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Moreover, η∗(t) is given explicitly as

η∗(t) =
(

1 0
0 1

)
⊗ exp

(
−1

2

∫ t

0

Ω(s)−1Ω̇(s) ds

)
η(0)

=
(

1 0
0 1

)
⊗ Ω(t)−1/2Ω(0)1/2η(0).

2.6 Adiabatic invariants.

With the rescaling

η̂(t) =
(

Ω(t)1/2 0
0 Ω(t)1/2

)
η(t)

the above analysis shows, for times t = O(1),

η̂(t) = η̂(0) + O(ε),(2.14)

so that the components of η̂ are adiabatic invariants. This result is an analogue
to the quantum-adiabatic theorem of Born and Fock [1].

The function η̂ satisfies the differential equation

˙̂η(t) =
(
E(Φ(t)) • (V̂ (t) − Ŵ (t))

)
η̂(t),(2.15)

where the matrices

V̂ = −1
2

(
1 −i
i 1

)
⊗ Ω−1/2[K, Ω] Ω−1/2,

Ŵ =
(

1 0
0 1

)
⊗ Ω1/2KΩ−1/2,

again with K = QTQ̇, all have zero diagonal.
Numerical methods can be based on either of (2.9) or (2.15). We will describe

the approach via (2.9). The corresponding method for (2.15) is obtained simply
by replacing V and W with V̂ and Ŵ and noting V̂ D = 0.

2.7 Inhomogeneous problems.

The approach extends to the inhomogeneous equation

ẍ(t) +
1
ε2

A(t)x(t) =
1
ε2

f(t)

with a smooth function f(t). With the transformation

z = x − A−1f + ε2A−1 d2

dt2
(A−1f),
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we obtain

z̈ +
1
ε2

Az = ε2 d2

dt2

(
A−1 d2

dt2
(A−1f)

)
,

where dropping the ε2 term leads to an error of O(ε4) in the solution. The right-
hand term can therefore be omitted in the approximation if an accuracy O(h2)
with step sizes h > ε is desired. The truncated differential equation for z(t) is
again of the form (1.1).

Alternatively, the inhomogeneity can be directly accommodated in the adi-
abatic midpoint rule of the next section, using the inhomogeneous extension
of (2.7) which contains the additional term

exp
(
− i

ε
Φ(t)

)
U(t)∗

(
0

1
εB(t)−1f(t)

)
.

Here, however, the remaining factor 1/ε may lead to reduced accuracy.

3 The adiabatic midpoint rule.

We derive a symmetric method with an O(h3) local error. The construction
is similar to that of “Method I” for singularly perturbed Schrödinger equations
presented in [13].

3.1 Derivation of the method.

Let h be the step size and fix a time tn = t0 + nh. We start with integrating
the transformed equation (2.9) from tn−1 to tn+1 and from tn to tn +θh, getting

η(tn+1) = η(tn−1) + h

∫ 1

−1

(
E(Φ(tn + θh)) •

(
V N − W

)
(tn + θh)+(3.1)

+ V D(tn + θh)
)
η(tn + θh) dθ,

η(tn + θh) = η(tn) + h

∫ θ

0

(
E(Φ(tn + σh)) •

(
V N − W

)
(tn + σh)+(3.2)

+ V D(tn + σh)
)
η(tn + σh) dσ,

respectively. Now, we substitute the expression η(tn+θh) in (3.1) with the right-
hand side of (3.2) and replace the intermediate values V (tn+θh) and W (tn+θh)
by the Taylor expansions

V (tn + θh) = V (tn) + θhV̇ (tn) + O(θ2h2),(3.3)
W (tn + θh) = W (tn) + θhẆ (tn) + O(θ2h2).

Substituting η(tn + σh) = η(tn) + O(σh) in (3.2) then leads to

η(tn+1) = η(tn−1) + hA(tn)η(tn) + h2B(tn)η(tn) + h2C(tn)η(tn) + O(h3)
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with the matrices

A(t) =
∫ 1

−1

E(Φ(t + θh)) dθ •
(
V N (t) − W (t)

)
+ 2V D(t),(3.4)

B(t) =
∫ 1

−1

θE(Φ(t + θh)) dθ •
(
V̇ N (t) − Ẇ (t)

)
,(3.5)

C(t) =
∫ 1

−1

(
E(Φ(t + θh)) •

(
V N (t) − W (t)

))
×(3.6)

×
∫ θ

0

E(Φ(t + σh)) •
(
V N (t) − W (t)

)
dσ dθ +

+
∫ 1

−1

θE(Φ(t + θh)) dθ •
(
V N (t) − W (t)

)
V D(t)+

+ V D(t)
∫ 1

−1

∫ θ

0

E(Φ(t + σh)) dσ dθ •
(
V N (t) − W (t)

)
.

These are the basic equations for the construction of the numerical method.
We need sufficiently accurate approximations to A(tn), B(tn), and C(tn). First,
V (tn) and W (tn) are replaced by Vn and Wn given by

Vn = −1
2

(
1 −i
i 1

)
⊗ Ω(tn)−1(Ω̇n + [Kn, Ω(tn)]),(3.7)

Wn =
(

1 0
0 1

)
⊗ Kn,

with the symmetric difference quotients

Ω̇n =
1
2h

(
Ω(tn+1) − Ω(tn−1)

)
, Kn =

1
2h

Q(tn)T
(
Q(tn+1) − Q(tn−1)

)
.

We denote by V D
n the diagonal part of Vn, and by V N

n = Vn−V D
n the off-diagonal

part. The diagonals of Kn and hence also Wn are set to zero, since K(t) and
W (t) have zero diagonal. The corresponding derivatives are approximated by

V̇n =
1
h

(Vn+1/2 − Vn−1/2), Ẇn =
1
h

(Wn+1/2 − Wn−1/2),(3.8)

where

Vn+1/2 = −1
2

(
1 −i
i 1

)
⊗ Ω−1

n+1/2

(
Ω̇n+1/2 + [Kn+1/2, Ωn+1/2]

)
,(3.9)

Wn+1/2 =
(

1 0
0 1

)
⊗ Kn+1/2,

with

Ωn+1/2 = 1
2

(
Ω(tn+1) + Ω(tn)

)
, Ω̇n+1/2 =

1
h

(
Ω(tn+1) − Ω(tn)

)
,

Kn+1/2 =
1
2h

(
Q(tn+1) + Q(tn)

)T(
Q(tn+1) − Q(tn)

)
.
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Next, we make a quadratic phase approximation in E(Φ) appearing in A(tn),
B(tn), and C(tn):

Φ(tn + θh) ≈ Φ(tn) + θhΛ(tn) + 1
2θ2h2Λ̇(tn).(3.10)

Here, the derivative Λ̇(tn) is approximated by the symmetric difference quotient

Λ̇n =
1
2h

(
Λ(tn+1) − Λ(tn−1)

)
=

(
1 0
0 −1

)
⊗ Ω̇n(3.11)

and the integral Φ(tn) =
∫ tn

t0
Λ(s) ds is approximated by Φn defined recursively

by the Simpson rule,

Φn+1 = Φn−1 +
h

3
(
Λ(tn+1) + 4Λ(tn) + Λ(tn−1)

)
.(3.12)

With these approximations we replace the oscillatory matrix-valued function
E(Φ(tn + θh)) by

En(θ) = E(Φn + θhΛ(tn) + 1
2θ2h2Λ̇n)(3.13)

= E(Φn) • E(θhΛ(tn)) • E(1
2θ2h2Λ̇n),

and so we arrive at the following scheme:

ηn+1 = ηn−1 + hÃnηn + h2B̃nηn + h2C̃nηn,(3.14)

where, with the matrices with zero diagonal abbreviated as

Zn = V N
n − Wn, Żn = V̇ N

n − Ẇn,(3.15)

we have the following approximations to the matrices A(tn), B(tn), C(tn) of
(3.4)–(3.6):

Ãn =
∫ 1

−1

En(θ) dθ • Zn + 2V D
n ,(3.16)

B̃n =
∫ 1

−1

θEn(θ) dθ • Żn,(3.17)

C̃n =
∫ 1

−1

(
En(θ) • Zn

)(∫ θ

0

En(σ) dσ • Zn

)
dθ +(3.18)

+
(∫ 1

−1

θEn(θ) dθ • Zn

)
V D

n + V D
n

(∫ 1

−1

∫ θ

0

En(σ) dσ dθ • Zn

)
.

3.2 Computing the oscillatory integrals.

An expansion technique similar to that of [13] is now used to compute the
oscillatory integrals in (3.16)–(3.18). We start with the integral in B̃n. Integration
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by parts yields�

∫ 1

−1

θE(θhΛ(tn)) • E(1
2θ2h2Λ̇n) dθ(3.19)

= E(θhΛ(tn) + 1
2θ2h2Λ̇n) •

•
(

θ
ε

ih
D−(Λ(tn)) −

(
ε

ih
D−(Λ(tn))

)•2)∣∣∣∣
1

θ=−1

−

−
∫ 1

−1

E(θhΛ(tn) + 1
2θ2h2Λ̇n) •

•
(

θ
ε

ih
D−(Λ(tn)) −

(
ε

ih
D−(Λ(tn))

)•2)
•

• θ
ih2

ε
D(Λ̇n) dθ,

with the matrices D(Λ) and D−(Λ) defined by (2.10). The last integral is of
magnitude O(h) and hence

∫ 1

−1

θE(θhΛ(tn) + 1
2θ2h2Λ̇n) dθ = I1 + O(h) with(3.20)

I1 = J • E1 − J • J • E0,(3.21)

E1 = θE(θhΛ(tn) + 1
2θ2h2Λ̇n)

∣∣1
θ=−1

,(3.22)

E0 = E(θhΛ(tn) + 1
2θ2h2Λ̇n)

∣∣1
θ=−1

,(3.23)

J =
ε

ih
D−(Λ(tn)).(3.24)

Next, we look at the integral in Ãn. Again we integrate by parts and use (3.20):

∫ 1

−1

E(θhΛ(tn) + 1
2θ2h2Λ̇n) dθ = I0 + O(h2)(3.25)

with I0 = J • E0 − J • I1 •
ih2

ε
D(Λ̇n).

The term C̃n is more complicated. It consists of three terms, contains double
integrals and both matrix multiplication and entrywise multiplication. For the
inner integral in the first term we obtain by partial integration as above

∫ θ

0

En(σ) dσ = J • (En(θ) − En(0)) + O(h),(3.26)

� X•2 denotes the entrywise power, i.e. X•2 = X • X.
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and hence the first term of C̃n becomes
∫ 1

−1

(
E(Φn + θhΛ(tn) + 1

2θ2h2Λ̇n) • Zn

)
×

×
(
E(Φn + θhΛ(tn) + 1

2θ2h2Λ̇n) • J • Zn

)
dθ−

−
∫ 1

−1

(
E(Φn) • E(θhΛ(tn) + 1

2θ2h2Λ̇n) • Zn

)
×

×
(
E(Φn) • J • Zn

)
dθ + O(h).

We note that

(E(Φ) • M1)(E(Φ) • M2) = (E(Φ) + I) • (M1M2)

holds by definition of E(Φ) for all diagonal matrices Φ and all matrices M1, M2

with zero diagonal; I denotes the identity matrix. Applying this equality and
integrating gives

(
E(Φn) • J • E0 + 2I

)
•

(
Zn(J • Zn)

)
−

−
(
E(Φn) + I

)
•

(
(J • E0 • Zn)(J • Zn)

)

as an approximation to the first term of C̃n with an error of O(h).
The second term of C̃n is similar to B̃n and can be integrated in the same way,

yielding
( ∫ 1

−1

θEn(θ) dθ • Zn

)
V D

n =
(
E(Φn) • I1 • Zn

)
V D

n + O(h).

The third term again contains a double integral. With (3.26) and (3.25) it gives

V D
n

( ∫ 1

−1

∫ θ

0

En(σ) dσ dθ • Zn

)

= V D
n

(
E(Φn) • J • J • E0 • Zn

)
− 2V D

n

(
E(Φn) • J • Zn

)
+ O(h).

Altogether, we obtain an O(h)-approximation Cn to C̃n as

Cn =
(
E(Φn) • J • E0 + 2I

)
•

(
Zn(J • Zn)

)
−(3.27)

−
(
E(Φn) + I

)
•

(
(J • E0 • Zn)(J • Zn)

)
+

+
(
E(Φn) • I1 • Zn

)
V D

n +

+ V D
n

(
E(Φn) • J • J • E0 • Zn

)
− 2V D

n

(
E(Φn) • J • Zn

)
,

and now we can implement the method in the following way.

3.3 The algorithm of the adiabatic midpoint rule.

Let ηn, ηn−1, Q(tn), Q(tn−1), Ω(tn), Ω(tn−1), Φn, Φn−1, Vn−1/2, Wn−1/2 be
given from previous steps. Then, proceed as follows for step n + 1:
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1. Evaluate A(tn+1), diagonalize

A(tn+1) = Q(tn+1)Ω(tn+1)2Q(tn+1)T

and determine U(tn+1) and Λ(tn+1) from (2.4).
2. Compute Vn, Wn, Vn+1/2, Wn+1/2, V̇n, Ẇn, and Λ̇n with (3.7)–(3.11), and

Zn, Żn with (3.15).
3. Compute J , E0, E1, I0, I1 with (3.21)–(3.25).
4. Compute An = E(Φn) • I0 • Zn + 2V D

n .
5. Compute Bn = E(Φn) • I1 • Żn.
6. Compute Cn with (3.27).
7. Update ηn+1 = ηn−1 + hAnηn + h2Bnηn + h2Cnηn.

8. Compute Φn+1 with (3.12).
9. Transform back from η to (x, y) and ẋ:

(
xn+1

yn+1

)
= U(tn+1) exp

(
i

ε
Φn+1

)
ηn+1,

ẋn+1 =
1
ε

Q(tn+1)Ω(tn+1)Q(tn+1)Tyn+1.

Note that the method, though complicated to formulate, requires just one eval-
uation and diagonalization of A(t) per time step. Care should be taken that
the ordering of the eigenvalues in Ω(t) stays the same for all time steps and
that the diagonalization of A(t) does not produce artificial sign changes of the
eigenvectors.

As starting step, we use

η1 = η0 + hA0η0 + h2B0η0 + h2C0η0

with integration from 0 to 1 instead of −1 to 1. For the computation of W0, V0,
Ẇ0, V̇0, Φ1, and Λ0 with the above formulas, we need two additional evaluations
of A at t1/2 = t0 + h/2 and t−1/2 = t0 − h/2.

4 The adiabatic Magnus method.

4.1 A symmetric Magnus method.

Magnus [14] represents the solution of a linear differential equation

η̇(t) = L(t)η(t)

with a time-dependent matrix L(t) as

η(t) = exp(M(t))η(t0),

where M(t) is given by the Magnus series
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M(t) =
∫ t

t0

L(τ) dτ − 1
2

∫ t

t0

[ ∫ τ

t0

L(σ) dσ, L(τ)
]

dτ +

+
1
4

∫ t

t0

[ ∫ τ

t0

[ ∫ σ

t0

L(µ) dµ, L(σ)
]
dσ, L(τ)

]
dτ +

+
1
12

∫ t

t0

[ ∫ τ

t0

L(σ) dσ,

[ ∫ τ

t0

L(µ) dµ, L(τ)
]]

dτ + · · · .

The brackets [·, ·] denote the commutator [X, Y ] = XY − Y X. For a numerical
treatment, the series is truncated and the integrals are replaced by quadrature
approximations; see, e.g., [10].

We want the method to be time-symmetric, so we take the mean of one step
forward in time and the inverse of one step backward in time. We put

M±
n = h

∫ 1

−1

L(tn + θh) dθ ∓ h2

2

∫ 1

−1

[ ∫ θ

−1

L(tn ± σh) dσ, L(tn ± θh)
]

dθ,

Mn = (M+
n + M−

n )/2,

and set
ηn+1 = exp(Mn)ηn−1.

In our case of the differential equation (2.9) with

L(t) = V D(t) + E(Φ(t)) • (V N (t) − W (t)),

the calculation of the integrals is the crucial point because the matrix func-
tion L(t) is highly oscillatory. In a similar situation, Iserles [9] proposes to use
Filon quadrature. However, since here only one evaluation of L(t) per time step
is desired, we apply the techniques presented in the previous section. Again,
Φ(tn + θh), V (tn + θh), and W (tn + θh) are replaced by the corresponding
Taylor expansions. These substitutions lead to terms which are identical or very
similar to (3.16), (3.17), and (3.18), and the techniques developed to compute
the integrals of the previous section can again be applied. We omit the details
of the construction and just state the algorithm.

4.2 The algorithm of the adiabatic Magnus method.

1. to 5. Proceed as for the adiabatic midpoint rule.
6. Compute

Cn = 1
2 (E(Φn) • J • E0 + 2I) • [Zn, J • Zn] +

+ 1
4 [E(Φn) • J • E1 • Zn, E(Φn) • J • E0 • Zn] +

+ 1
2 [E(Φn) • I1 • Zn, V D

n ].

7. Compute Mn and ηn+1:

Mn = hAn + h2Bn + h2Cn,

ηn+1 = exp(Mn)ηn−1.
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8. to 9. Proceed as for the adiabatic midpoint rule.
A starting step can be obtained as for the adiabatic midpoint rule or by modi-
fying the Magnus step.

5 Numerical experiments.

In this section, we illustrate the performance of the adiabatic integrators. We
use a simple model problem which shows the characteristic features that appear
also in higher-dimensional situations. With a parameter δ, let

A(t) =
(

(t + 3)2 + δ2 3δ(t + 2)
3δ(t + 2) (2t + 3)2 + δ2

)
=

(
t + 3 δ

δ 2t + 3

)2

.

The diagonalization A(t) = Q(t)Ω(t)2Q(t)T is given by

Ω(t) =
(

3
2 t + 3 + 1

2

√
t2 + 4δ2 0

0 3
2 t + 3 − 1

2

√
t2 + 4δ2

)
,

Q(t) =
(

cos ξ(t) − sin ξ(t)
sin ξ(t) cos ξ(t)

)
with ξ(t) = π

4 + 1
2 arctan

(
t
2δ

)
.

The parameter δ > 0 has a strong influence on the behaviour of the eigenfre-
quencies of A(t) and on the solution of (2.9). To show this influence, we will
consider the following examples where in all cases, the solutions are computed
on the interval [−1, 1] with ε = 0.01:

• For δ = 1, the eigenfrequencies of A(t) stay well separated at all times t
and the norm of the coupling matrix W stays rather small, as can be seen
in Figure 5.1, left-hand side.

• For δ = 0.1, the eigenfrequencies of A(t) show a so-called avoided crossing
(Figure 5.1, in the middle), i.e. the eigenvalues approach each other until
t ≈ 0, where they almost intersect and then separate again. The minimal
distance between eigenvalues is 2δ. This behaviour is accompanied by a
sudden increase of coupling between the corresponding components, as can
be seen in Figure 5.1 (lower row) where the norm of W (t) is plotted. There
is no significant variation in the norm of the other coupling matrix V (t).

• For δ = 0.01, both effects – the approach of the eigenfrequencies and the
growth of the coupling – increase (Figure 5.1, right-hand side). It is not
visible in the figure that the two frequencies do not intersect.

The two methods presented above are compared with other numerical schemes:

• Gautschi’s method [4] applied to Equation (1.1),

xn+1 − 2 cos
(

h

ε
B(tn)

)
xn + xn−1 = 0;

• the Magnus method of order 2 applied to (2.3),(
xn+1

yn+1

)
= exp

(∫ tn+1

tn

L(t) dt

) (
xn

yn

)
,

where now L(t) is the combined matrix on the right-hand side of (2.3);
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Figure 5.1: Upper row: Eigenfrequencies ωk(t) for δ = 1 (left-hand side), δ = 0.1 (in the
middle), and δ = 0.01 (right-hand side). Lower row: ‖W (t)‖ for the same values of δ.

• the modified Magnus method of classical order 4 as presented by Iserles [8].
In the Magnus methods, the occurring integrals are approximated by Gaussian
quadrature of order 4. Since these methods require more than one function
evaluation per time step, we do not only display the error versus the step size,
but also the error versus the number of function evaluations.

5.1 Well-separated frequencies.

For δ = 1, the frequencies stay well separated at all times t. In Figure 5.2, we
illustrate the improvement obtained from transforming the original differential
equation (1.1) to Equation (2.7). On the left-hand side, the first solution compo-
nent of (1.1) is displayed and on the right-hand side that of (2.7). As predicted
by (2.13), the oscillations of η are of magnitude O(ε) around a smooth solution
of the adiabatic limit equation (2.12).

The average error in η is plotted in logarithmic scale versus the step size in
Figure 5.3 and versus the number of required function evaluations in Figure 5.4.
For small step sizes h < ε, the Modified Magnus method shows order 4, the other
methods order 2 as expected. For the more interesting range h > ε, the accuracy
of most schemes is subject to resonances for certain values of h. The Gautschi
method is obviously the least accurate one, but in fact it is still by far more
accurate than standard integrators like, e.g., the trapezoidal rule (not displayed).
The adiabatic integrators show comparable accuracy to the Magnus schemes for
ε = 0.01, but they are considerably more accurate for smaller values of ε. The
differences are even more pronounced in the numbers of matrix evaluations.
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Figure 5.2: Left-hand side: First entry of the solution of the original equation (1.1) (ε = 0.01,
δ = 1). Centre: First entry of the solution of the transformed equation (2.7). Right-hand side:
Magnification of the region marked by the small box.

Figure 5.3: Error versus step size of the adiabatic midpoint rule (solid line) and the adiabatic
Magnus method (bold solid line) compared with other schemes: the modified Magnus method
of order 4 (dotted line), the standard Magnus method (dashed line) and the Gautschi method
(crosses); δ = 1.

Figure 5.4: Error versus the number of function evaluations for the same methods and data
as before.
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Figure 5.5: Left-hand side: First entry of the solution of the original equation (1.1). Right-hand
side: First entry of the solution of the transformed equation (2.7); ε = 0.01, δ = 0.01.

Figure 5.6: Error versus step size for the same methods as before, ε = 0.01.

5.2 Almost-crossing of frequencies.

Figure 5.5 shows what happens if δ is reduced to ε and the eigenfrequencies of
A(t) pass through an avoided crossing. At t ≈ 0, where these eigenvalues have
their minimal distance, the entries of η(t) leave their range of O(ε) around a
smooth function and jump to new levels, since (2.13) ceases to be valid. Before
the avoided crossing, the situation is similar to the case considered before and
our methods apply with very small errors. The main part of the error comes
from the avoided crossing.

As is shown in Figure 5.1, W (t) changes rapidly during the avoided crossing,
but the methods approximate this matrix only piecewise linearly. The finite
difference approximations in (3.7)–(3.9) lose accuracy now that W (t) changes
abruptly. In addition, some of the entries 1/(λl − λk) of the matrix D−(Λ)
become large during the close encounter of the eigenvalues.

Figure 5.6 compares the errors of the adiabatic midpoint rule and the adiabatic
Magnus method with those of the other numerical schemes described above. On
the left-hand side, δ is chosen as

√
ε and on the right-hand side, δ = ε = 0.01.

Most of the graphs are much smoother than in the first examples, because now
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it is not the small scale oscillations that sum up to the main error, but the non-
adiabatic transitions on the larger scale. For δ =

√
ε and for h > ε, the range of

step sizes we are interested in, the new methods show comparable results to the
modified Magnus method, whereas the standard Magnus method seems to have
more difficulties in this example. Again, the Gautschi method shows the lowest
accuracy.

For δ = ε (right-hand side of Figure 5.6) or smaller values of δ, the jump of
η gets steeper and the Magnus methods benefit from their fourth-order integral
approximation. The adiabatic integrators lose accuracy in the narrow transition
zone. It can be expected that the behaviour is improved by an adaptive step size
selection, possibly using only a linear phase approximation for Φ(t), as in [11].

6 Error analysis.

In this section, we give a rigorous proof of the observed second-order accuracy
for the adiabatic midpoint and Magnus methods for large step sizes up to h <

√
ε.

6.1 Error of the adiabatic midpoint rule.

General assumptions for the whole section are:

1. A(t) is a real, symmetric and positive definite matrix with the diagonalization
A(t) = Q(t)Ω(t)2Q(t)T for every t ∈ [t0, tend].

2. The eigenfrequencies ωk(t) remain separated and bounded away from 0: there
is a δ > 0 such that for any pair ωk(t) and ωl(t) with k �= l, the lower bounds

|ωk(t) − ωl(t)| ≥ δ, ωk(t) ≥ 1
2δ

hold for all t ∈ [t0, tend].
3. The functions t �→ Q(t) and t �→ Ω(t) are three times continuously differen-

tiable with derivatives bounded independently of ε.
4. The initial values satisfy ‖x(0)‖ ≤ C0 and ‖ẋ(0)‖ ≤ C0/ε with a constant C0

independent of ε.
5. The time step h satisfies h <

√
ε.

The time step restriction is much weaker than the condition h � ε required for
standard integrators.

Theorem 6.1. Let ηn and xn, ẋn denote the approximations given by the
adiabatic midpoint rule and assume that conditions 1–5 hold. Then, the errors
at tn = t0 + nh ∈ [t0, tend] are bounded by

‖ηn − η(tn)‖ ≤ C1h
2,

‖xn − x(tn)‖ + ε‖ẋn − ẋ(tn)‖ ≤ C2h
2,

where the constants C1 and C2 depend only on δ of Assumption 2, on the bounds
of the derivatives in Assumption 3, on the bounds of the initial values, and on
the length of the time interval. In particular, C1 and C2 are independent of ε,
h, and n with tn ∈ [t0, tend].
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Proof. For convenience, we give the proof only for h > ε. The less interesting
case h < ε can be treated by similar arguments. In some aspects, the error
analysis is similar to the error analysis of [12] and we refer to that paper for
some details we omit here. As in [12], the main part of the proof is to show that
the local error is of size O(h3),

∥∥η(tn+1) −
(
η(tn−1) + hAnη(tn) + h2Bnη(tn) + h2Cnη(tn)

)∥∥ ≤ Ch3(6.1)

with a constant C independent of ε. The statement of Theorem 6.1 then follows
from a discrete version of Gronwall’s lemma and the estimate for x and y is a
consequence of the transformation (2.5) and the accuracy of the Simpson rule.
To prove (6.1), we use the following notations.

• Define Ân, B̂n, and Ĉn as in (3.4), (3.5), and (3.7), respectively, but with
W (tn) replaced by Wn, V (tn) replaced by Vn and the same replacements
made for Ẇ (tn) and V̇ (tn).

• Define Ǎn, B̌n, and Čn as in (3.16), (3.17), and (3.18), respectively, but with
Φn replaced by Φ(tn) and Λ̇n replaced by Λ̇(tn).

With this definitions, the local error can be split into four parts

η(tn+1) −
(
η(tn−1) + hAnη(tn) + h2Bnη(tn) + h2Cnη(tn)

)
= η(tn+1) −

(
η(tn−1) + hÂnη(tn) + h2B̂nη(tn) + h2Ĉnη(tn)

)
+(6.2)

+
(
hÂn + h2B̂n + h2Ĉn

)
η(tn) −

(
hǍn + h2B̌n + h2Čn

)
η(tn)+(6.3)

+
(
hǍn + h2B̌n + h2Čn

)
η(tn) −

(
hÃn + h2B̃n + h2C̃n

)
η(tn)+(6.4)

+
(
hÃn + h2B̃n + h2C̃n

)
η(tn) −

(
hAn + h2Bn + h2Cn

)
η(tn)(6.5)

with the following interpretation: (6.2) is the error resulting from replacing the
intermediate values of W and V via (3.3), (3.7), and (3.8) and from freezing
η(tn +σh) ≈ η(tn). Replacing Φ(tn +θh) by the Taylor expansion is the origin of
difference (6.3). The approximation of Φ(tn) by the Simpson rule (3.12) causes
(6.4), whereas (6.5) is introduced by solving the integrals approximately, as it is
done in Section 3.2.

For simplicity, we denote with C indistinguished constants and instead of

sup
t

‖W (t)‖, sup
t

‖V (t)‖, sup
t

‖Λ̈(t)‖, sup
t

∥∥∥∥ ∂3

∂t3
U(t)

∥∥∥∥, . . .

where the suprema are taken over all t ∈ [t0, tend], we use the short forms

‖W‖, ‖V ‖, ‖Λ̈‖,
∥∥∥∥ ∂3

∂t3
U

∥∥∥∥, etc.

One difference to the terms occuring in [12] is the presence of a second coupling
matrix V in all A(tn), B(tn), and C(tn). By splitting this matrix in a diagonal
part V D and a part with zero diagonal V N , we can treat the difference V N −W
with the techniques from [12] and only add the term containing V D. Other
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additional terms occur in C(tn), which here contains two terms with double
integrals and one term similar to B(tn).

6.1.1 Estimating (6.2).

One can easily conclude the following estimates for (3.7) and (3.8)

‖W (tn) − Wn‖ ≤ Ch2 ‖∂3U‖, ‖V (tn) − Vn‖ ≤ Ch2 ‖∂3B‖,

‖Ẇ (tn) − Ẇn‖ ≤ Ch ‖∂3U‖, ‖V̇ (tn) − V̇n‖ ≤ Ch ‖∂3B‖,

and derive

‖W (tn + θh) − Wn − θhẆn‖ ≤ Ch2(‖∂3U‖ + ‖Ẅ‖), analogously

‖V (tn + θh) − Vn − θhV̇n‖ ≤ Ch2(‖∂3B‖ + ‖Ẅ‖), and

‖W (tn + θh) − Wn‖ ≤ Ch‖Ẇ‖ + O(h2),

‖V (tn + θh) − Vn‖ ≤ Ch‖V̇ ‖ + O(h2).

Using |σ| ≤ 1 we get the estimate ‖η(tn + σh) − η(tn)‖ ≤ Ch ‖V − W‖ from

η(tn + σh) − η(tn) = h

∫ σ

0

(
E(Φ(tn + ξh)) •

(
V N − W

)
(tn + ξh)

)
η(tn + ξh)+

+ V D(tn + ξh)η(tn + ξh) dξ.

With these inequalities, we can compute the following bound for (6.2)

Ch3(‖∂3B‖+‖∂3U‖+‖V̈ −Ẅ‖+‖V̇ −Ẇ‖ ‖V −W‖+‖V −W‖3+‖V −W‖2‖V ‖).

6.1.2 Estimating (6.3).

We denote with θ3h3R(t, θh) the remainder of the Taylor expansion (3.10),
i.e.

Φ(t + θh) = Φ(t) + θhΛ(t) + 1
2θ2h2Λ̇(t) + θ3h3R(t, θh), and ‖R(t, θh)‖ ≤ C‖Λ̈‖.

Moreover, we define a matrix-valued and with respect to t continuously differ-
entiable function by

F (t, x) = D(R(t, x)) •
∫ 1

0

E(ξx3R(t, x)) dξ =
ε

ix3

(
E(x3R(t, x)) − E(0)

)

for x �= 0, and by the corresponding limit for x = 0. F (t, x) is bounded by

‖F (t, x)‖ = C‖R(t, x)‖ ≤ C‖Λ̈‖.(6.6)
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We start with a part of (6.3), using this definition and get

(hÂn + h2B̂n) − (hǍn + h2B̌n)

= hE(Φ(tn)) •
∫ 1

−1

E
(
θhΛ(tn) + 1

2θ2h2Λ̇(tn)
)
•

• iθ3h3

ε
F (tn, θh) dθ •

(
V N

n − Wn

)
+

+ O(h4).

Now, we examine the integral more closely, which is exactly the same as in [12].
Omitting further details, integration by parts yields

∫ 1

−1

E
(
θhΛ(tn) + 1

2θ2h2Λ̇(tn)
)
• iθ3h3

ε
F (tn, θh) dθ

=
∫ θ

−1

E(σhΛ(tn)) dσ • E
(

1
2θ2h2Λ̇(tn)

)
• iθ3h3

ε
F (tn, θh)

∣∣∣∣
1

θ=−1

−

−
∫ 1

−1

∫ θ

−1

E(σhΛ(tn)) dσ • d
dθ

(
E

(
1
2θ2h2Λ̇(tn)

)
• iθ3h3

ε
F (tn, θh)

)
dθ.

With
∫ θ

−1

E(σhΛ(tn)) dσ =
ε

ih
D−(Λ(tn)) •

(
E(θhΛ(tn)) − E(−hΛ(tn))

)

and

d
dθ

(
E

(
1
2θ2h2Λ̇(tn)

)
• iθ3h3

ε
F (tn, θh)

)

=
iθh2

ε
D(Λ̇(tn)) • E

(
1
2θ2h2Λ̇(tn)

)
• iθ3h3

ε
F (tn, θh)+

+ E
(

1
2θ2h2Λ̇(tn)

)
• ih3

ε

d
dθ

(
θ3F (tn, θh)

)
,

this enables the estimate

‖(hÂn + h2B̂n)η(tn) − (hǍn + h2B̌n)η(tn)‖ ≤ C
h3

δ
‖Λ̈‖ ‖V − W‖ + O(h4).

Besides the above conclusions, we have used that, by assumption, h2

ε ≤ 1 and
that

‖D(Λ̇(tn))‖ ≤ C, ‖F (tn, θh)‖ ≤ C‖Λ̈‖, ‖D−(Λ(tn))‖ ≤ C

δ
,∥∥∥∥ d

dθ

(
θ3F (tn, θh)

)∥∥∥∥ ≤ C‖F (tn, θh)‖ + O(h).
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The difference between the first terms of Ĉn − Čn is the same occuring in [12]
and can be rewritten as

∫ 1

−1

(
E

(
Φ(tn) + θhΛ(tn) + 1

2θ2h2Λ̇(tn)
)
• iθ3h3

ε
F (tn, θh) •

(
V N

n − Wn

))
×

×
(∫ θ

0

E
(
Φ(tn + σh)

)
•

(
V N

n − Wn

)
dσ

)
dθ +

+
∫ 1

−1

(
E

(
Φ(tn) + θhΛ(tn) + 1

2θ2h2Λ̇(tn)
)
•

(
V N

n − Wn

))
×

×
(∫ θ

0

E
(
Φ(tn) + σhΛ(tn) + 1

2σ2h2Λ̇(tn)
)
• iσ3h3

ε
F (tn, σh) •

•
(
V N

n − Wn

)
dσ

)
dθ.

With the inequalities mentioned above and the assumption h2

ε ≤ 1, we can
estimate the norm of this difference by Ch ‖Λ̈‖ ‖V − W‖2 + O(h2) and turn
to the difference of the second terms, which can be treated like the difference
B̂n − B̌n. It holds that

∥∥∥∥
( ∫ 1

−1

θE(Φ(tn + θh)) dθ −
∫ 1

−1

θE
(
Φ(tn) + θhΛ(tn) + 1

2θ2h2Λ̇(tn)
)
dθ

)
•

•
(
V N

n − Wn

)
V D

n

∥∥∥∥ ≤ Ch‖Λ̈‖ ‖V − W‖ ‖V ‖ + O(h2);

and the same estimate is valid for the difference of the third terms of Ĉn − Čn,
because of their similarity to the first terms.

Altogether, (6.3) is bounded by

Ch3‖Λ̈‖ ‖V − W‖
(

1
δ

+ ‖V − W‖ + ‖V ‖
)

.

6.1.3 Estimating (6.4).

The errors of the Simpson rule (3.12) and the difference quotient (3.11) are

‖Φ(tn) − Φn‖ ≤ Ch4 ‖∂3Λ‖,
‖Λ̇(tn) − Λ̇n‖ ≤ Ch2 ‖∂3Λ‖.

By using the assumption ih2

ε ≤ 1, we conclude directly

‖Ǎn − Ãn‖ ≤ Ch2 ‖∂3Λ‖ ‖V − W‖.

Since ‖B̌n − B̃n‖ and ‖Čn − C̃n‖ only produce errors of higher order, we get the
bound Ch3 ‖∂3Λ‖ ‖V − W‖ for (6.4).
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6.1.4 Estimating (6.5).

We have

B̃n − Bn = E(Φn) •
( ∫ 1

−1

θE
(
θhΛ(tn) + 1

2θ2h2Λ̇n

)
dθ − I1

)
•

(
V̇ N

n − Ẇn

)
.

The error made in (3.19) can easily (see [12]) be transformed to
∫ 1

−1

θE
(
θhΛ(tn) + 1

2θ2h2Λ̇n

)
dθ − I1

= −hD−(Λ(tn)) • D(Λ̇n) •

•
∫ 1

−1

(
θE(θhΛ(tn)) + E(−hΛ(tn))−

−
∫ θ

−1

E(σhΛ(tn)) dσ

)
• θE

(
1
2θ2h2Λ̇n

)
dθ,

from which we conclude∥∥∥∥
∫ 1

−1

θE
(
θhΛ(tn) + 1

2θ2h2Λ̇n

)
dθ − I1

∥∥∥∥ ≤ C
h

δ
.(6.7)

Next, we examine

Ãn −An = E(Φn) •
(∫ 1

−1

E
(
θhΛ(tn) + 1

2θ2h2Λ̇n

)
dθ−

−
(

ε

ih
D−(Λ(tn)) • E0 − hD−(Λ(tn)) • D(Λ̇n) • I1

))
•

•
(
V N

n − Wn

)
.

From Equation (3.25), it follows that
∥∥∥∥

∫ 1

−1

E
(
θhΛ(tn) + 1

2θ2h2Λ̇n

)
dθ − ε

ih
D−(Λ(tn)) • E0

∥∥∥∥ ≤ C
h

δ

and with (6.7)

‖Ãn −An‖ ≤ C

(
h

δ

)2

‖V − W‖,

since the remainder term is similar to (3.19).
Together with (6.7), we get the estimate

‖(hÃn + h2B̃n)η(tn) − (hAn + h2Bn)η(tn)‖ ≤ Ch3

(
‖V − W‖

δ2
+

‖V̇ − Ẇ‖
δ

)
.

Analogously, it can be shown that

‖h2C̃nη(tn) − h2Cnη(tn)‖ ≤ C
h3

δ2
‖V − W‖

(
‖V − W‖ (1 + δ) + 2‖V ‖δ + ‖V ‖

)
.
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This is the final estimate to complete the proof of statement (6.1).
The error of the starting step is also bounded by O(h2) as can be seen by

similar arguments. �

6.2 Error of the adiabatic Magnus method.

Theorem 6.2. Under the assumptions of Theorem 6.1, the errors of the
adiabatic Magnus method introduced in Section 4 are bounded by

‖ηn − η(tn)‖ ≤ C1h
2,

‖xn − x(tn)‖ + ε‖ẋn − ẋ(tn)‖ ≤ C2h
2,

with constants C1 and C2 depending on the same terms as in Theorem 6.1.
Proof. Truncating the Magnus series after the first commutator is known

to cause a local error of O(h5) if the product of the step size and the highest
frequency is small, but this estimate is not uniform in ε. Nevertheless, the trun-
cation error is still O(h3) uniformly in ε even with h > ε, since all truncated
terms of the Magnus expansion contain at least three integrals and since the
integrand is uniformly bounded with respect to ε. The other errors (induced by
the use of Taylor expansions, difference quotients and approximate evaluations
of the integrals) can be estimated as it was done in the proof of Theorem 6.1. �
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