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Abstract.
Peer two-step W-methods are designed for integration of stiff initial value problems

with parallelism across the method. The essential feature is that in each time step
s ‘peer’ approximations are employed having similar properties. In fact, no primary
solution variable is distinguished. Parallel implementation of these stages is easy since
information from one previous time step is used only and the different linear systems
may be solved simultaneously. This paper introduces a subclass having order s−1 where
optimal damping for stiff problems is obtained by using different system parameters in
different stages. Favourable properties of this subclass are uniform stability for realistic
stepsize sequences and a superconvergence property which is proved using a polynomial
collocation formulation. Numerical tests on a shared memory computer of a matrix-free
implementation with Krylov methods are included.

AMS subject classification (2000): 65L06, 65Y05.
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1 Introduction.

Recently the authors introduced a new class of time integration methods for
the solution of large and stiff initial value problems

y′ = f(t, y), t0 ≤ t ≤ te, y(t0) = y0 ∈ R
n,(1.1)

[10]. These methods have an inherent parallelism across the method since they
employ s stages which are totally independent within the actual time step.
These stages depend on values from the previous step only leading to a two-
step structure. An important difference to most standard schemes is that no
extraordinary solution variable for y with distinguished properties is computed.
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All s stage solutions are peers sharing essentially the same accuracy and stability
properties. As an example, singly-implicit methods being almost L-stable exist
up to order 7 [10]. Also, the methods do not suffer from order reduction in stiff
problems [11]. Method parallelism may be attractive in a computing environment
with moderate parallelism using a black-box implementation of the right-hand
side f . On large scale computers this parallelism still may simplify load balanc-
ing in adaptive space discretizations. Many approaches for parallel integration
methods use parallel iteration schemes for non-parallel methods, e.g., [2, 6, 1].
A recent survey on classes of General Linear Methods with inherent parallelism
can be found in [3].

The form of the ‘Parallel Peer two-Step W-Methods’ (PPSW-methods) is as
follows. In each time step from tm to tm+1 = tm + hm solutions Ymi

∼= y(tmi),
i = 1, . . . , s, are computed as approximations at the points

tmi := tm + hmci, i = 1, . . . , s,(1.2)

which are not restricted to the time interval [tm, tm+1]. This means that the
off-step nodes ci are not confined to [0, 1]. The time step consists of s linearly
implicit stages, i = 1, . . . , s,

(I − γihmTm)Ymi =
s∑

j=1

(bijI + hmγijTm)Ym−1,j +(1.3)

+hm

s∑

j=1

aijf(tm−1,j , Ym−1,j),

where the reals γi > 0, bij , γij , aij are the parameters of the method. The
matrix Tm should be an approximation of the Jacobian fy(tm, y(tm)) for sta-
bility reasons only. We point out that the right-hand side in (1.3) only uses
information Ym−1,j from the previous time step and the left-hand side describes
s independent linear systems. The solution of these systems is expected to cause
the main computational effort for realistic stiff problems of large dimension
n. In [10] the first two authors analyzed the simpler, singly-implicit case for
these schemes where the matrix in all s stage equations is the same, γi ≡ γ,
i = 1, . . . , s. Such schemes may be used in sequential computations and it was
found in [10], indeed, that they may already be competitive in this setting with
existing standard codes. Still, the results were not fully satisfactory since singly-
implicit methods lack optimal damping properties for very stiff problems. For
parallel implementations the general multi-implicit case with different γi is ap-
propriate. With these methods optimal stiff damping is possible with the choice
A = (aij)s

i,j=1 = −Γ, Γ = (γij)s
i,j=1 and we will consider only such methods

in this paper. The diagonal matrix of the system parameters γi is denoted by
G := diag(γi).

While stability for very stiff problems is easily accomplished for the schemes
(1.3), zero stability is not. This problem is aggravated through the fact that the
coefficient matrices of nontrivial methods depend on the stepsize ratio

σm := hm/hm−1 ≤ σ̄,(1.4)
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which we assume to be bounded from above (but not from below) by a positive
constant. This makes it necessary to distinguish coefficients Am, Γm, Gm and
Bm = (bij)s

i,j=1 from different time steps by the index m. Accuracy and stability
questions are discussed in Section 2. There, we also employ a special choice of
the diagonal parameter matrix Gm introduced in [11] leading to a simple form
of all coefficient matrices in a certain basis. This allows to prove uniform bounds
for matrix products like BmBm−1 · · ·B1 and establishes the existence of stable
peer methods of order s − 1 for arbitrary s.

In Section 3 we discuss a polynomial collocation formulation of these special
peer methods which may be of theoretical interest. However, we use this version
also for proving superconvergence of order s for constant stepsizes and special
parameter choices. Accuracy and stability requirements still leave many degrees
of freedom in the parameters of the methods. Here additional criteria may be
discussed having a positive influence on method performance. For instance, large
norms of the coefficients Bm, Am may lead to severe amplification of errors in
nonlinear problems and numerical computations. Since all coefficient matrices
are constructed in a monomial basis and transformed back by a Vandermonde
similarity transformation we try to achieve moderate norms by analyzing the
condition of this transformation in Section 5 for a special class of nodes ci. A
short discussion of variations in the form of the schemes (1.3) follows in Section 6.
We conclude the paper with implementation details and numerical experiments
on a parallel computer. Two example problems from parabolic systems are solved
with an implementation using Krylov methods and compared with other existing
software. One multi-implicit peer method constructed in [14] by brute-force
search is included in the tests. Although it lacks the sound theoretical basis
of the methods considered here it performs better in a few cases.

2 High order methods with structural stability.

Order conditions for the PPSW-methods have been derived in [10] by consid-
ering the local residuals

hm∆mi := (I − γihmTm)y(tmi) −
s∑

j=1

(bijI + hmγijTm)y(tm−1,j) −(2.1)

−hm

s∑

j=1

aijy
′(tm−1,j), i = 1, . . . , s.

Although the singly-implicit case γi ≡ γ was considered only in [10] these
conditions hold identically for arbitrary γi and have the form

Γ(q): γic
k
i +

s∑

j=1

γij(cj − 1)kσ−k
m = 0, 0 ≤ k = 0 < q,(2.2)

AB(q): ck
i −

s∑

j=1

bij

(
cj − 1
σm

)k

−k

s∑

j=1

aij

(
cj − 1
σm

)k−1

= 0, 0 ≤ k < q.(2.3)
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For fixed nodes these order conditions are linear restrictions on the remaining
parameters of the method. So s conditions can be applied without difficulty and
by requiring Γ(s) and AB(s) the following matrix representations are obtained
[10]

Γm := −GmΘm, Θm := V S(σm)PV −1,(2.4)
Bm := Θm − σmAmV DFT

0 V −1.(2.5)

These equations use the Vandermonde matrix V := (cj−1
i )s

i,j=1, the Pascal
matrix P :=

((
j−1
i−1

))s

i,j=1
, the shift F0 := (δi−1,j)s

i,j=1, where δij means the
Kronecker symbol, and the diagonal matrices D := diag(1, . . . , s) and

S(σ) := diag(1, σ, . . . , σs−1).(2.6)

Considering the linear test problem y′ = λy with Re λ ≤ 0 and using Tm = λ
the stability matrix of the scheme is obtained as

M(z) := (I − zGm)−1(Bm + zβm), z = hmλ,

see [10]. The matrix βm := Am+Γm governs the behaviour of the scheme for very
stiff problems since M(∞) = −G−1

m βm. In the paper [10], where singly-implicit
methods with Gm = γI were discussed, it was not possible to choose optimal stiff
damping M(∞) = 0 due to loss of zero stability. In the present paper, however,
we will demonstrate that this restriction does not hold for general multi-implicit
methods (1.3) since we can choose βm = 0 and still preserve zero stability. For
such methods the stability matrix takes the simple form

M(z) = (I − zGm)−1Bm, Am = −Γm.(2.7)

With this choice stability and damping for z → ∞ are very satisfactory. There-
fore we discuss only this version in the rest of the paper and write these stiffly
accurate methods down with the time stepping vectors Ym = (Ymi)s

i=1,

(I − hmGm ⊗ Tm)Ym = (Bm ⊗ I)Ym−1 +(2.8)
+hm(Am ⊗ I)

(
f(Ym−1) − (I ⊗ Tm)Ym−1

)
.

The stability of these schemes for z → 0 is still an issue. In [10] it was shown
that Mm(0) = Bm has the form

Bm = (I − GmE)Θm, E = V DFT
0 V −1.(2.9)

Equations (2.4) and (2.9) indicate that it is convenient to get rid of the common
similarity transform with the Vandermonde matrix and to consider

B̃m := V −1BmV = S(σm)P − G̃mDFT
0 S(σm)P,

G̃m := V −1GmV.
(2.10)

The matrix S(σm)P is upper triangular with diagonal entries σi−1
m , i = 1, . . . , s

and DFT
0 S(σm)P is strictly upper triangular. Hence, we observe that the simple
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choice Gm = γI is ruled out by the requirement of zero stability for σm > 1, see
[10]. The structure of the matrix G̃ has to be rich enough to cancel large entries
in the main diagonal of S(σm)P .

The multi-implicit methods in [14] were found by a brute force search with
coefficients

γ
(m)
i =

γ̄0i

1 + σmγ̄1i
, i = 1, . . . , s − 1.(2.11)

With this σ-dependent ansatz larger stepsize ratios σ̄ in (1.4) could be obtained.
The last parameter γs was determined by one condition AB(s + 1), i.e.,

1
γs

= σ

s∑

j=1

1
1 + σ − cj

,(2.12)

ensuring local order s for the stage approximation Yms. This property may be
used in stepsize control, see Section 7.

In this paper, however, we construct another class of stable methods explicitly.
The construction is based on the fact that we associate the s parameters γ

(m)
i

(their choice may also depend on σm) with the function values of a polynomial
gm at the nodes ci, i.e.

γ
(m)
i = gm(ci), i = 1, . . . , s, gm(x) =

s−1∑

j=0

g
(m)
j xj .(2.13)

Introducing the diagonal matrix C = diag(ci) this means that we have Gm =
gm(C). However, it is our purpose to exploit the triangular structure of the
different matrices in B̃m, (2.10), where the transformed matrix G̃m appears.

Lemma 2.1. Let φ(x) =
∏s

i=1(x − ci) =
∑s

j=0 φjx
j be the node polynomial

and consider the corresponding Frobenius companion matrix

F :=





0 0 . . . −φ0

1 0 . . . −φ1

. . . . . .
...

1 −φs−1



 .

Then, with parameters γ
(m)
i as defined in (2.13) we have

G̃m = V −1gm(C)V = gm(F ) =
s−1∑

j=0

g
(m)
j F j .

Proof. From the property cs
i = −

∑s
j=1 φj−1c

j−1
i follows CV = V F , or

V −1CV = F . �
It is easily seen that the matrix power F j , j < s, has exactly j nontrivial

subdiagonals. For general polynomials gm the dependence on the coefficients φj
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may be quite complicated in this representation of G̃m. However, we note that a
representation which is linear in the coefficients φj and the elements of the last
row of G̃m is possible and was given in [11].

In (2.10) the matrix G̃m is multiplied by the matrix FT
0 and its columns are

shifted to the right. So, the subdiagonals of G̃m move to the diagonal of B̃m and
the product G̃mDFT

0 is still upper triangular if gm is a linear polynomial. Based
on this observation we now introduce the family of multi-implicit peer two-step
W-methods (1.3) based on the choice

γ
(m)
i = g

(m)
0 + g

(m)
1 ci, i = 1, . . . , s ⇐⇒ G̃m = g

(m)
0 I + g

(m)
1 F,(2.14)

which is a special case of formula (20) in [11]. With (2.14) G̃m has Hessenberg
form. This choice leads to the following explicit form

B̃m =
(
I − g

(m)
1 D̂ − g

(m)
0 FT

0 D̂
)
S(σm)P(2.15)

of the matrix that governs zero stability. The matrix D̂ = diag(0, 1, 2, . . . , s− 1)
is a shifted version of D. For later reference we note that this formula for B̃ is
independent of the nodes ci and extends to arbitrary s ∈ N. Hence, each matrix
B̃m may be regarded as a principal submatrix of an infinite triangular matrix.
The eigenvalues of B̃m are given by the diagonal elements

b̃ii = σi−1
m

(
1 − (i − 1)g(m)

1

)
, i = 1, . . . , s.(2.16)

With this choice, zero-stability even for variable stepsizes is easily obtained.

Theorem 2.2. Let the coefficients of the method (1.3) be chosen with Am =
−Γm = GmΘm and Bm according to (2.9). Then with positive parameters γ

(m)
i

of the form (2.14) with g
(m)
1 ∈ [g∗, g∗] ⊆ (0, 2

s−1 ) and bounded g
(m)
0 , there exists

σ̄ > 1 such that ρ(Bm) = 1 holds for σm ≤ σ̄. Moreover, for time grids obeying
σm ≤ σ̄ the following products are uniformly bounded,

‖BmBm−1 · · ·Bm−k‖ ≤ K, 0 ≤ k ≤ m, tm ≤ te.

Proof. Using parameters g
(m)
1 from the indicated interval it holds that q :=

maxs
i=2 |1−(i−1)g(m)

1 | < 1 in (2.16). So, with any σ̄ ∈ (1, 1/q1/(s−1)) the diagonal
elements of B̃ satisfy b̃11 = 1 and |b̃ii| ≤ σ̄s−1q < 1, i = 2, . . . , s, for σm ≤ σ̄.
Optimal estimates for σ̄ are presented after the proof. From the triangular form
of B̃m follows that ρ(Bm) = 1 with only one simple eigenvalue of unit modulus.
Since all matrices B̃m have triangular form the bound ‖BmBm−1 · · ·Bm−k‖ ≤
κ‖B̃mB̃m−1 · · · B̃m−k‖ holds with the condition number κ = ‖V ‖‖V −1‖ of the
Vandermonde matrix. With the assumed restrictions on the parameters g0, g1

and σm there exists a nonnegative upper triangular matrix B̄ such that |B̃m| ≤ B̄
entrywise. This matrix also has spectral radius ρ(B̄) = 1 and only one single
eigenvalue with modulus one. Hence, its powers are uniformly bounded. Since
|B̃mB̃m−1 · · · B̃m−k| ≤ B̄k+1 the statement follows. �
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Remark 2.1. It is easily seen that the supremum σsup of all stepsize ratios
σm > 1, where a choice of g1 with ρ(B) < 1 is possible, is the root of the
polynomial equation (cf. [11])

(s − 2)σs−1 − (s − 1)σs−2 − 1 = 0,

in the interval (0, 2/(s − 1)). The corresponding parameter g1 is related to this
one by (1 − g1)σsup = 1. The following table contains numerical estimates for
these values truncated to 4 digits.

s 3 4 5 6 7 8
σsup 2.414 1.678 1.444 1.330 1.262 1.218
g1 0.5858 0.4039 0.3075 0.2481 0.2078 0.1788

(2.17)

The parameter g
(m)
0 is only slightly restricted by the positivity of the parame-

ters γ
(m)
i in (2.14),

g
(m)
0 > −g

(m)
1 min

i
ci, g

(m)
1 > 0,(2.18)

which we assume throughout the paper. Still, the choice of g
(m)
0 has some

influence on the stability constant K in Theorem 2.2.

3 Polynomial formulation of peer methods.

It is plain that the order conditions Γ(q), AB(q) from the last section are
rules for general polynomials of degree q − 1. Considering only stiffly accurate
methods with Am = −Γm we now write down these conditions for a polynomial
p of degree q − 1 and obtain

Γ(q):
∑s

j=1 γijp(cj) = γip(1 + σmci),

AB(q):
∑s

j=1 bijp(cj) = p(1 + σmci) − γiσmp′(1 + σmci),
(3.1)

i = 1, . . . , s. Here, it makes sense to consider the coefficients γi as being function
values of the polynomial gm introduced in (2.13). Interpolating the s summa-
tion results in (3.1) by a polynomial ψ of degree at most s − 1, i.e., ψ(ci) =∑s

j=1 bijp(cj), i = 1, . . . , s, yields the exact result

ψ(t) = p(1 + σmt) − σmgm(t)p′(1 + σmt),(3.2)

as long as max{q, deg(gm)+q−1} ≤ s−1. This means that under the assumptions
of Theorem 2.2 the identity (3.2) is true for polynomials p of degree s − 1 since
gm has degree one. We now introduce the interpolation operator associated with
the nodes ci, i.e.,

Q : C0 → Πs−1, f �→ p, p(ci) = f(ci), i = 1, . . . , s.(3.3)

Here, Πk denotes the space of all polynomials with degree not greater than
k ∈ N. It is now possible to simplify the peer method (2.8) with these notations.
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If p ∈ Πs−1 is the polynomial which interpolates the approximations of the
previous times step, p(ci) = Ym−1,i, i = 1, . . . , s, then the right-hand side of
(2.8) is interpolated by the polynomial

p(1 + σmt) − σmgm(t)p′(1 + σmt) − hmgm(t)
(
(Qf(p)) − Tmp

)
(1 + σmt).

Here, (Qf(p))(1 + σmt) means that the interpolation polynomial of the data
f(p(ci)), i = 1, . . . , s, is evaluated at 1 + σmt. For general differential equations
this polynomial has degree s. However, for the test equation y′ = λy and the
choice Tm = λ the last term vanishes and the expression reduces to the poly-
nomial ψ from Equation (3.2). Considering now the interpolating polynomial
r ∈ Πs−1 of the most recent approximations, r(ci) = Ymi, i = 1, . . . , s, the stage
equations (2.8) correspond to the collocation conditions (1 − zgm(ci))r(ci) =
ψ(ci), i = 1, . . . , s, with z = hmλ. They can be written in the form

Q
(
(1 − zgm)r

)
= ψ = p(1 + σm·) − σmgm p′(1 + σm·).(3.4)

For z = 0 we obtain the solution r = ψ. However, for z 
= 0 the expression
(1−zgm)r has degree s and the interpolation error of Q((1−zgm)r) is a constant
multiple of the node polynomial φ. In this case the collocation equation (3.4)
may be solved easily, again.

Lemma 3.1. Let the peer method (2.8) with coefficient matrix (2.9) and a
linear coefficient polynomial gm(c) = g0 + g1c be applied to the test equation
y′ = λy, Reλ ≤ 0 with initial values Ym−1,i = p(ci), i = 1, . . . , s, and p ∈ Πs−1.
Let z = hmλ 
= 0 and (2.18) be satisfied and define w := (1/z − g0)/g1. Then,
the collocation equation (3.4) is solved by the polynomial

r(c) =
ψ(c)φ(w) − ψ(w)φ(c)(

1 − zgm(c)
)
φ(w)

,(3.5)

ψ(c) = p(1 + σmc) − σmgm(c)p′(1 + σmc).

Proof. Since (1− zgm)r ∈ Πs it holds that Q((1− zgm)r) = (1− zgm)r−µφ
with an unknown constant µ. Hence, the collocation equation (3.4) is equivalent
with the polynomial identity

(1 − zgm)r = ψ + µφ.

Since the factor 1 − zgm vanishes at the point c = w the constant turns out to
be µ = −ψ(w)/φ(w). The point w is not a zero of φ due to assumption (2.18).
Hence, the assertion (3.5) follows. �

Remark 3.1. (a) The function in (3.5) is indeed a polynomial of degree s− 1
since the nominator vanishes at the point c = w which is a simple zero of the
denominator.

(b) The two polynomials r and p representing the solution in two adjacent
intervals do not fit continuously, in general. However, by considering

r(c) − p(1 + σmc) =
g(c)

(
zp(1 + σmc) − σmp′(1 + σmc)

)
− φ(c)ψ(w)/φ(w)

1 − zgm(c)
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it is seen that the jump at nodes c = ci, 1 ≤ i ≤ s, is proportional to the residual
of the extrapolated polynomial p(1+σm·) in the transformed differential equation
y′ = zy.

The simple case z = 0 is of special interest in Lemma 3.1. Since we will apply
the following considerations in the next section with constant stepsize only, we
will also restrict this discussion to the case σm = 1 where the coefficients of
the method do not depend on m. Then the time stepping operator mapping the
interpolating polynomial p(ci) = Ym−1,i, i = 1, . . . , s, of Ym−1 to the interpolator
r(ci) = Ym,i, i = 1, . . . , s, of Ym = BYm−1 is given by

B: Πk → Πk, p �→ r, r(c) = p(1 + c) − g(c)p′(1 + c),(3.6)

with k = s − 1, see (3.4). However, it is important to note that this mapping
B is indeed an endomorphism of

⋃
k≥0 Πk since g has degree one. This property

corresponds to the upper triangular structure of B̃m in (2.15) since B̃m is the
matrix representation of B in the monomial basis {cj−1 : 1 ≤ j ≤ k}. One
advantage of this property is the ability to write the image of the difference of
two arbitrary polynomials p1, p2 as the difference of the images

p1 − p2 ∈ Πs−1 ⇒ B
(
Q(p1 − p2)

)
= B(p1 − p2) = Bp1 − Bp2.

The eigenfunctions of the operator B may be ordered by increasing degree. The
first ones are computed easily.

Lemma 3.2. Let g(t) = g0 + g1t be given. Then, 1 ∈ Π0 is the eigenfunction
of B with eigenvalue λ1 = 1, and g − 1 ∈ Π1 is its eigenfunction belonging to
λ2 = 1 − g1.

Proof. The identity B1 = 1 is trivial. And the linear polynomial g is mapped
to Bg = g1 + (1 − g1)g, which yields B(g − 1) = Bg − 1 = (1 − g1)(g − 1). �

This result shows that the coefficient function g = 1 + (g − 1) is just the
sum of the first two eigenfunctions of B. It has an important consequence for the
structure of the solution mapping M(z) : p �→ r in (3.5) which corresponds to the
stability matrix M(z) in (2.7). If we consider the image of the first eigenfunction
p = 1 in (3.5) for z ∼= 0 the quotient ψ(w)/φ(w) = O(zs) may be neglected.
With ψ = p = 1 we obtain

r = M(z)1 = (1 + zg)1 + O(z2) = 1 + z1 + z(g − 1) + O(z2)(3.7)
= (1 + z)1 + z(g − 1) + O(z2).

Since λ1 = 1 is a simple eigenvalue of M(0) = B : Πs−1 → Πs−1 there exists a
smooth curve λ1(z) = 1 + O(z) near z = 0. And the decomposition (3.7) into
eigenfunctions shows that λ1(z) = 1 + z + O(z2), cf. [16, §2.9]. Since all other
eigenvalues are smaller than one in absolute value at z = 0, there is some hope
for acceptable A(α)-stability properties of these PPSW schemes. We remind that
all eigenvalues vanish in the other limit z → ∞.
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4 Higher order and superconvergence.

For stiffly accurate methods (2.8) satisfying Γ(s), AB(s) the leading error term
in stage i is given by,

hm∆mi

=
hs

m−1

s!
y(s)(tm−1)

(
(1 + σmci)s −

s∑

j=1

bijc
s
j − σms

s∑

j=1

γijc
s−1
j

)
+(4.1)

+O(hs+1
m−1)

=
hs

m−1

s!
y(s)(tm−1)

(
φ(1 + σmci) − γiσmφ′(1 + σmci)

)
+(4.2)

+O(hs+1
m−1),

see (2.1) and [10, 14]. We recall that φ is the node polynomial of the method.
Improving the order of the scheme by one requires that the hs

m−1 term vanishes
in (4.2) in all stages i = 1, . . . , s. Such methods of order s = 4 have indeed been
constructed in [14] by exploiting full freedom in the choice of the parameters γi.
With the restrictions imposed by (2.18), however, no satisfactory methods could
be found having global order s. Still, cancelling the O(hs)-error in the last stage
only by (2.12) has its merits in error control, see Section 7.

In [10] superconvergence of order s was observed with constant stepsizes even
for singly-implicit PPSW methods. This superconvergence effect may also be
beneficial with high accuracy computations when stepsize ratios cluster around
one. The analysis given in [10] showed the cancellation of the leading error term
for certain values of the single parameter γ. The essential property used there
was the nilpotency of the lower block of the matrix B̃ beyond the first row
using tedious algebraic computations. Here, we present a simpler proof using
the collocation formulation of the peer method. Two properties are essential in
proving superconvergence. The first one is due to the eigenvalue distribution of
B which leads to zero stability. Since one is the only eigenvalue not lying in the
open unit disc, the powers Bn converge to a rank-one matrix. Hence,

lim
n→∞

Bn = B∞ = 1vT, vT1 = 1,(4.3)

where v is the left eigenvector to the eigenvalue 1 of the matrix B. The corre-
sponding right eigenvector is the vector 1 of ones, of course. The second essential
property is the triangular form of B̃ in (2.15) which is equivalent with the
operator B in (3.6) being an endomorphism of any space Πk, k ≥ 0.

As in [10, Theorem 9] we consider the errors Xm = (Ymi − y(tmi))s
i=1 for

constant stepsize hm ≡ h. Then, all matrices Bm are identical and we may drop
the index m. And it is no restriction to consider the scalar case n = 1 for ease
of writing. The error recursion reads

Xm = BXm−1 − h∆m + O(h‖Xm−1‖ + h2‖∆m‖)

= −h

m−1∑

j=0

Bj∆m−j + BmX0 +
m−1∑

j=1

O(h‖Xm−j‖ + h2‖∆m−j+1‖).
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Again, only the sum
∑m−1

j=0 Bj∆m−j needs consideration, all other terms are of
order hs for sufficiently small initial errors X0. If the eigenvalues of B satisfy
λ1 = 1, |λi| < 1, i ≥ 2, then we have ρ(B − B∞) < 1, see (4.3), and the series∑∞

j=0 ‖Bj − B∞‖ converges since Bj − B∞ = (B − B∞)j . Hence, the O(hs−1)
term in Xm may be isolated in the form

Xm = −hB∞
m−1∑

j=0

∆m−j + O
(

m−1
max
j=0

‖Xj‖
)

+ O
(
h

m
max
j=1

‖∆j‖
)
.(4.4)

Next we look at the leading hs−1-terms of the local errors ∆m−j ∈ R
s. By (4.2)

they lie in a one-dimensional subspace of R
s spanned by the vector

(
φ(1 + ci) − γiφ

′(1 + ci)
)s

i=1
=

(
φ(1 + ci) − g(ci)φ′(1 + ci)

)s

i=1
.

We note that its components have the form (Bφ)(ci) with the mapping B from
(3.6) in Πs. Since the degree of Bφ exceeds s − 1, the identity (3.2) for the
interpolating polynomial ψ ∈ Πs−1 of the data (Bφ)(ci), i = 1, . . . , s, has to be
modified

ψ = Q
(
φ(1 + ·) − gφ′(1 + ·)

)
= Bφ − µφ,(4.5)

see (3.3), with the constant µ = 1
s! (Bφ)(s) = 1 − sg′. Now it is clear that

superconvergence occurs if the leading term B∞ψ in the global error vanishes.

Theorem 4.1. Let the method (2.8) satisfy AB(s) and Γ(s). Let the stepsize
h be constant and the parameters (2.14) be fixed with g1 ∈ (0, 2/s). Then, for
a sufficiently smooth solution y and initial errors X0 = O(hs) the error Xm

satisfies

Xmi = −hs(B∞φ)(ci)
g1

(s − 1)!

m∑

j=1

y(s)(tm−j) + O(hs), i = 1, . . . , s, m ≥ 1.

Moreover the properties B∞φ = 0 and Xmi = O(hs) hold, if the system
(I − B)u = φ has a solution u ∈ Πs, i.e., if the problem

g(t)u′(1 + t) − u(1 + t) + u(t) = φ(t), u(0) = 0,(4.6)

is solvable for u ∈ Πs.
Proof. By (4.4) and (4.5) the hs−1 term in the global error may be written

in the form

Xmi = −
(
B∞

s−1ψ
)
(ci)

hs

s!

m∑

j=1

y(s)(tm−j) + O(hs).

Here, B is considered as a mapping Πs−1 → Πs−1 and we have added the index
in the notation Bs−1 in order to indicate the considered domain since the number
of eigenvalues depends on it. The powers of Bs−1 converge to B∞

s−1 as long as
the eigenvalues satisfy 1 − (i − 1)g1 ∈ (−1, 1], i = 1, . . . , s, see (2.16). By (4.5)
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the polynomial ψ ∈ Πs−1 is the difference ψ = Bsφ − µφ of two polynomials of
higher degree s. Since Bs is an extension of Bs−1 we may easily write Bs−1ψ =
Bsψ = B2

sφ−µBsφ. But proceeding to higher powers we have to make sure that
the sequence Bm

s converges, as well. Here, the condition g1 ∈ (0, 2
s ) is required.

Then we see that

B∞
s−1ψ = B∞

s (Bsφ − µφ) = (1 − µ)B∞
s φ.

Since 1−µ = sg1 
= 0 holds superconvergence occurs iff B∞
s φ = 0. This happens

if φ has no component in the one-dimensional eigenspace of Bs belonging to the
eigenvalue one. This is true, if φ lies in the range of I −Bs, i.e., if there exists a
polynomial u ∈ Πs with (I − Bs)u = φ. Then,

B∞
s φ = (B∞

s − B∞
s )u = 0.

Since the kernel of I − Bs consists of all constant functions, we may choose
u(0) = 0 to make a possible solution unique. Then, the problem (I − Bs)u = φ
is equivalent with (4.6). �

Remark 4.1. By the Fredholm alternative the equation (I − B)p = φ is
solvable iff φ ⊥ Ker(I − B)∗. In order to avoid difficulties in defining the ad-
joint B∗ we consider again the matrix representation B̃ of B in the monomial
basis. Due to the triangular structure (2.15) of B̃ the components of the left
eigenvector ṽ to the simple eigenvalue one are independent of the size of the
matrix and the nodes ci. The theorem shows that superconvergence with order s
occurs for an s-stage method if the inner product of ṽ and the coefficient vector
(ϕT, 1) = (φ0, . . . , φs−1, 1) of the node polynomial φ vanishes, i.e. if

(ṽ1, . . . , ṽs+1)
(

ϕ
1

)
= 0.(4.7)

A conveniently scaled version of the vector ṽ is
(
i!gi−1

1 ṽi

)
i≥1

=
(
1, 1 − g0, 2(1 − g0)2 − g1, 6(1 − g0)3 − 9g1(1 − g0) + 2g2

1 , . . .
)
.

Looking for appropriate parameters g0, g1 one has to obey the restrictions im-
posed by zero-stability and positivity γi > 0 in (2.18).

5 Conditioning of the Vandermonde matrix.

Order s−1 and zero stability of the scheme may be obtained for arbitrary nodes
ci. In order to make a sensible choice for the remaining free parameters one should
look for other criteria that may influence the properties of PPSW-methods. We
recall that the stability analysis was performed for a linear autonomous model
problem and after a change from a Langrangian to a monomial basis, see (2.10).
This operation eliminated the nodes almost totally from the discussion. However,
in practice, the scheme is applied to nonlinear problems and operates on function
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values Ymi. In a realistic analysis of nonlinear or numerical errors the norms of
the coefficient matrices A, B,Γ play a role, cf. [13]. It is to be expected that a
large condition of the ubiquitous basis matrix V , see (2.4), (2.5), affects those
norms adversely and may lead to serious error proliferation. This situation can
be avoided to some extent if the condition

condp(V ) = ‖V ‖p‖V −1‖p, p ∈ {2, F},(5.1)

of the Vandermonde matrix is of moderate size. For the following analysis the
isometric Euclidean (p = 2) and Frobenius norms (p = F ) are of interest and
appropriate nodes could be constructed by minimizing (5.1) for one of these
norms. However, without restrictions on the nodes this is a very difficult task,
cf. [7]. We therefore will make the analysis tractable by exploiting well-known
properties of Chebyshev polynomials and consider only stretched Chebyshev
nodes

ci = µ + ν cos
(

2s + 1 − 2i

2s
π

)
, i = 1, . . . , s.(5.2)

We introduce the Chebyshev polynomials

χk(ξ) := cos(k arccos(ξ)), k ≥ 0,(5.3)

and their transformed counterparts

q1(c) :=
1√
2
, qk(c) = χk−1

(
c − µ

ν

)
, k ≥ 2.(5.4)

So, for s ≥ 1 the polynomial φ(c) = 2(ν/2)sqs+1(c) has the zeros (5.2). It is
well known that Chebyshev polynomials satisfy certain orthogonality relations.
Hence, the polynomials q1, . . . , qs form an orthonormal basis in the discrete inner
product with the nodes (5.2), [5],

2
s

s∑

i=1

qk(ci)qj(ci) = δjk, 1 ≤ k, j ≤ s.(5.5)

Introducing the upper triangular matrix Ψ = (qjk)s
j,k=1 of the coefficients of

qk(c) =
∑k

j=1 cj−1ν1−jqjk we see that the matrix

(
qk(ci)

)s

i,k=1
= V S(ν)−1Ψ(5.6)

has orthogonal columns due to (5.5). By Taylor expansion, the elements of Ψ
are obtained as q11 = 1/

√
2 and

qjk =
1

(j − 1)!
χ

(j−1)
k−1 (ξ0), k ≥ 2, ξ0 := −µ

ν
.(5.7)

Its entries may be easily computed recursively by differentiation of the Cheby-
shev recursion χk(ξ) = 2ξχk−1(ξ) − χk−2(ξ), k ≥ 2. For example, the leading
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4 × 4-blocks of any matrix Ψ, s ≥ 4, and its inverse are

Ψ =





1√
2

ξ0 2ξ2
0 − 1 ξ0(4ξ2

0 − 3)
1 4ξ0 3(4ξ2

0 − 1)
2 12ξ0

4



 ,

Ψ−1 =





√
2 −

√
2ξ0

√
2(2ξ2

0 + 1) −
√

2ξ0(2ξ2
0 + 3)

1 −2ξ0 3ξ2
0 + 3

4
1
2 −3

2ξ0
1
4



 .

Due to the orthogonality relation (5.5) the condition of V may be expressed in
terms of the parameters µ, ν alone.

Lemma 5.1. Consider the Vandermonde matrix V built with the nodes (5.2).
Let Ψ = (qjk)s

j,k=1 be the matrix of the Taylor coefficients (5.7). Then,

cond(V ) = cond(S(ν)−1Ψ),

where the condition number may be computed in the spectral or the Frobenius
matrix norm.

Proof. By (5.5) the matrix Q = (qk(ci))s
i,k=1 satisfies QTQ = s

2I. Now, with
(5.6) follows V = QΨ−1S(ν) and V TV = s

2S(ν)(Ψ−1)TΨ−1S(ν). So, indeed
we have ‖V ‖ = s

2‖Ψ−1S(ν)‖ in any unitarily invariant norm. An analogous
computation for V −1 proves the lemma since the scaling factor s/2 drops out. �

The computation of the spectral condition cond2 is very difficult. So, for
convenience, we discuss the Frobenius condition condF . And for implementation
purposes of the PPSW methods the last node will be fixed at cs = 1. This
couples the parameters µ, ν and the condition cond(V ) is a rational function of
the stretching factor ν alone,

K(ν) := condF (S(ν)−1Ψ), where µ = 1 − ν cos
(

π

2s

)
.

In fact, νs−1K(ν) is a polynomial. Table 5.1 shows the values for the condition
K(1

2 ), which corresponds to nodes ci ∈ (0, 1], and numerically computed minimal
values for the function K(ν). Apparently, the parameters at the minimum behave
like νmin

∼= 1 + 1
2s−3/2 leading to nodes (5.2) with c1 < −1. Since the minimum

of K is rather flat and it is a slight practical advantage to have nodes in [−1, 1]
we decided to use stretched Chebyshev points

cC
i :=

cos
(

2s+1−2i
2s π

)

cos
(

π
2s

) , i = 1, . . . , s,(5.8)

contained in the interval [−1, 1]. The row labelled KC in the table contains
the values corresponding to (5.8) and shows that this choice is nearly optimal.
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Table 5.1: Vandermonde condition numbers and minima

s = 3 4 5 6 7 8

K(1/2) 23.682 132.27 747.56 4257.2 24369 140001

K(νmin) 4.5497 10.678 25.403 60.861 146.31 352.31

νmin 1.2098 1.1502 1.1172 1.0951 1.0795 1.0682

KC 4.5826 10.919 26.328 63.641 154.01 372.73

Compared to nodes ci ∈ [0, 1] we see a dramatic decrease of the condition of
the Vandermonde matrix. For example, with s = 6 stages the ratio K(1

2 )/KC

is about 66 and this decrease is even more pronounced when the exact spectral
condition is computed. In fact, for s = 6 the condition cond2(V ) drops from
3896.1 for ν = 1/2 to 41.44 for the points (5.8) by a factor of 94. This improve-
ment is visible in the numerical performance of higher-order methods (1.3). So,
in Section 7 all methods with s ≥ 4 stages are based on the stretched nodes
(5.8). Unfortunately, the great width of the interval [−1, 1] leads to relatively
large differences between the smallest and largest parameters γ1 and γs. This
is an issue when iterative methods are used for the stage equations since the
condition of the matrix I − hγiT is roughly hγi‖T‖ if the logarithmic norm of
hγiT is small. Due to this fact, for methods with s ≤ 3 stages there is still an
advantage of using nodes in a smaller interval.

6 Variants of peer methods.

Considering the explicit form of the coefficient matrices Bm = Θm −GmEΘm

(2.9), and Am = −Γm = GmΘm (2.4) of a PPSW-method (2.8) of order at least
s− 1 one sees that the system matrix I −hmGm ⊗Tm appears on its right-hand
side, too. Hence, this scheme may be written in the form

(I − hmGm ⊗ Tm)
(
Ym − (Θm ⊗ I)Ym−1

)
(6.1)

=
(
(GmΘm) ⊗ I

)(
hmf(Ym−1) − σm(E ⊗ I)Ym−1

)
.

Here, the relation EΘm = σmΘmE [10] was used. This version has the form of
a corrector equation with the extrapolated values Ỹm := (Θm ⊗ I)Ym−1 as a
predictor and is well suited for implementing these methods. In fact, it is the
only possible implementation if Tm is only defined implicitly by using an iterative
method for the corresponding system with the matrix I − hmGm ⊗ f ′(·) which
we will do in the next section. In this context (6.1) has the additional advantage
that the right-hand side is of order hs

m for smooth solutions and only a small
correction term needs to be computed. In fact, according to the interpretation
(3.1) the expression f(Ym−1) − σm(E ⊗ I)Ym−1 is the difference between the
computed derivative f(Ym−1) and a difference approximation σm(E ⊗ I)Ym−1

of it. This error indicator is then extrapolated by the multiplication with Θm.
Writing the right-hand side of (6.1) in its original form, (Θm ⊗ I)f(Ym−1) −

(EΘm ⊗ I)Ym−1, a different interpretation is, that the difference approximation
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(E ⊗ I)Ỹm of the extrapolated solution is compared with the extrapolated func-
tion values (Θm⊗I)f(Ym−1). Here, one might expect improvements by replacing
this extrapolated information by more actual evaluations of f . This leads to the
following ‘one-leg’ version

Ỹm := (Θm ⊗ I)Ym−1,

(I − hmGm ⊗ Tm)(Ym − Ỹm) = (Gm ⊗ I)
(
hmf(Ỹm) − (E ⊗ I)Ỹm

)(6.2)

of the peer method. It is easily seen, that this version has the same order as
(6.1) with identical coefficients. Also, the stability matrix (2.7) is the same. For
more general problems, however, the schemes may behave differently. In fact,
(6.2) may be interpreted as one simplified Newton step with initial guess Ỹm for
the following implicit peer methods introduced in [11],

Ym − hm(Gm ⊗ I)f(Ym) =
(
(I − GmE) ⊗ I

)
Ỹm.(6.3)

This is the stiffly accurate version of (4) in [11] with Am = 0. Numerical ex-
periments in [11] showed an improved performance of (6.3) compared to (6.1)
for some very stiff, singularly perturbed problems. However, there is no order
reduction for both schemes (6.3) and (6.1), and for less stiff problems there
was no significant difference with sequential computations. From the practical
point of view, however, there are some notable differences between the two
peer-W versions. In an implementation of (6.1) on a distributed system each
processor computes its own solution Ymi and the function evaluation f(Ymi)
and communicates both to all other processors. For (6.2) however, processor
number i may receive all old approximations Ym−1,j , j = 1, . . . , s, compute its
own predictor Ỹmi, the corresponding evaluation f(Ỹmi), and solve its linear
n×n-system. Then, it sends only its new approximation Ymi to all others using
half the communication of (6.1) for large problems. On a system with common
memory however, (6.1) has the advantage that computed function evaluations
f(Ym−1) can be re-used after a step rejection. In the numerical tests of the next
section the version (6.1) is used.

7 Numerical experiments.

Automatic stepsize control requires some means for estimating the local error.
In the class of peer methods we consider again the two possibilities for such an
estimate mentioned in [10]. For higher-order methods (e.g., s ≥ 4) the solution
Yms may be compared with a predictor of order s − 2. For low order methods
especially, a sound higher-order estimate O(hs) of the local error may be ob-
tained by using one ‘superconsistent’ stage Yms with ∆ms = O(hs) in (4.1).
This additional order condition (2.12) may be satisfied by a proper choice of the
parameter g

(m)
0 in (2.14). Based on these additional approximations the stepsize

control is performed in a standard way with absolute and relative tolerances atol
and rtol.

Since the class of multi-implicit PPSW methods is designed for parallel com-
puting we performed tests on a SunFire computer with shared memory and 24
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processors (Ultra III, 900 MHz, 8 MB Cache). Only the simple parallelism across
the method is exploited by computing the s stages on s processors in parallel. Of
course, additional processors could be used to parallelize the evaluation of the
right-hand side f (parallelism across the system) to further reduce computing
time. However, such measures are problem-dependent and were not used in our
tests. Direct methods for the solution of the stage systems are not attractive for
solving the stage equations, since the high cost of a LU- or QR-decomposition
limits the possible speed-up in parallel back substitutions. Also for reasons of
efficiency iterative methods are an obvious alternative and we decided to use
Krylov methods having favourable properties in the stiff ODE background. For
each stage system the Arnoldi FOM method [9] is applied independently until a
stopping criterion of the form

residual ≤ rktol · atol(7.1)

is satisfied where atol is the absolute tolerance for the global integration error.
Unfortunately, two reasons may lead to large differences in the iteration num-
bers for the different stages. The first one comes from the predictor-corrector
interpretation of (6.1), where the right-hand sides and the corrections Ymi − Ỹmi

are much smaller for the first stages. This happens especially for c1 < 0, where
the computation of Ỹm1 is no extrapolation at all. The second reason lies in
the speed of convergence of FOM which is related to the condition number of
the matrix I − hγiJ , J = f ′(Ym−1,s). For a dissipative matrix J , satisfying
yTJy ≤ 0, y ∈ R

n, this condition number is proportional to γih‖J‖. Here,
the choice (2.14) leads to slower convergence for stages with ci

∼= 1 where the
iteration already started with an inferior initial guess. In order to simplify the
synchronization of the processors, the iteration in all stages is performed until
the system for Yms satisfies (7.1) with rktol given in Table 7.1.

The following multi-implicit peer methods have been selected for the presen-
tation. The methods mipeer’s’ use all the features developed in this paper. They
have order s − 1 and use γi from (2.14). The parameter g1 is taken from (2.17)
and g0 is determined to satisfy (4.7) yielding superconvergence for σ = 1.

The better conditioning with Chebyshev nodes is not yet decisive for three
stages. So, for s = 3 we include the method misup3. Here g0 is determined
to satisfy (2.12) leading to order s = 3 in the last stage. This higher stage
is used for error estimation and stepsize control. A detailed description of the
methods is given in Table 7.1, where the last two columns contain the angle of
L(α) stability and the iteration tolerance rktol in (7.1). The values for g0, g1 are
rounded to 4 digits. With the parameters specified in Table 7.1 the coefficients
Am = −Γm and Bm of the peer method are uniquely determined by (2.4),
(2.14) and (2.9). Since the method mipeer6 from this class has shown no further
improvement in performance we omit its results from the presentation. However,
from [14] we include the special multi-implicit peer method PPSW2-5 with nodes
c = (−1.09,−0.229, 0.51, 0.63, 1) and γs from (2.12). The other parameters γi,
i = 1, . . . , s − 1 have the form (2.11) with
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Table 7.1: Peer methods used in the numerical experiments

Method ci σ̄ g1 g0 α rktol

misup3 –0.094,0.242,1 2 0.386 (2.12) 88.8 0.1

mipeer3 cC
i , (5.8) 2 0.5858 0.9057 90 0.1

mipeer4 cC
i , (5.8) 1.4 0.4039 0.5443 90 0.1

mipeer5 cC
i , (5.8) 1.3 0.3075 0.3756 89.8 0.01

(γ̄0i)s−1
i=1 = (0.2066, 0.1544, 0.32, 0.3304),

(γ̄1i)s−1
i=1 = (0.5811, 0.4917, 0.5887, 0.4688).

These peer methods are compared with the Krylov codes VODPK [4] and
ROWMAP [15] and the Runge–Kutta–Chebyshev code RKC [12, 8]. We note
that the Krylov codes may profit from a good preconditioning while RKC does
not. However, in our tests no preconditioning was applied. Unfortunately, we are
not aware of any freely available code using parallel integration methods with
iterative solution of stage equations which could have been used instead.

The test problems are two parabolic equations discretized in space.

DIFFU: A nonautonomous 2D diffusion equation

ut = uxx + uyy + f(t, x, y), t ∈ [0, 10], (x, y) ∈ [0, 1]2.

The function f and the initial and Dirichlet boundary conditions are given
by the exact solution u(t, x, y) = sin(πx) sin(πy)(1 + 4xy sin t). Discretiza-
tion with second-order central differences on a 100 × 100 grid gives a stiff
linear ODE-system of dimension n = 10000.

RADIATION: This is the radiation-diffusion problem described in [8]. It consists
of two coupled parabolic equations with nonlinear diffusion and a very stiff
reaction term which produces a steep front for the chosen mass number
Z0 = 5. Discretization on two uniform cell centered meshes with 50 × 50
and 100 × 100 cells is considered.

The results are given for atol = rtol from 10−1 − 10−6. For the hard RADIA-
TION problem some methods, especially VODPK, fail for crude tolerances.

In the linear problem all mipeer methods behave smoothly with a clear lead
for the higher order methods. The superiority of those methods compared to,
e.g., RKC is mainly due to the parallelization. The picture changes at the non-
linear RADIATION problem. Here, the higher-order mipeer methods need sharp
tolerances to show their potential. As a rule of thumb one might say, that misup3
leads for crude tolerances, mipeer5 for strong ones and that mipeer4 shows the
best overall performance. And the difference to the non-parallel methods RKC,
ROWMAP and VODPK is even larger for the RADIATION problem. We want
to note, that the speed-up for an s-stage peer method is near to the optimal
value s compared to the computing time of the same method on one processor.
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Figure 7.1: Results for DIFFU.

Figure 7.2: Results for RADIATION, 50 × 50-mesh.
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Figure 7.3: Results for RADIATION, 100 × 100-mesh.

It is interesting to look at the hand-made method PPSW2-5 which is not
backed by a strong stability result as in Theorem 2.2. Although it has problems
for crude tolerances it sometimes outperforms all other methods. This is a clear
motivation for future research on wider classes of peer methods.

Conclusions.

A special subclass of multi-implicit peer W-methods with high order has been
investigated in this paper having a fairly strong theoretical background. Uniform
stability estimates for realistic time grids can be proved and a polynomial collo-
cation formulation widens the range of the applicable analysis. Additional results
are concerned with superconvergence for constant stepsize and the condition of
Vandermonde matrices. These results are used as additional criteria for choosing
remaining free parameters in the subclass and lead to a quite deterministic con-
struction principle. Numerical experiments show that an efficient implementation
of these methods is possible and competitive with existing software. However,
comparison with a hand-optimized method not belonging to this class indicates
that superior peer methods may still be found in extensions of it.
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