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Abstract.

In this note new Rosenbrock methods for ODEs, DAEs, PDEs and PDAEs of index 1
are presented. These solvers are of order 3, have 3 or 4 internal stages, and fulfil certain
order conditions to obtain a better convergence if inexact Jacobians and approximations
of ∂f

∂t
are used. A comparison with other Rosenbrock solvers shows the advantages of

the new methods.
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1 Introduction.

Many complex physical phenomena can be described by the help of systems of
algebraic equations, ordinary and partial differential equations. These systems
are often called partial differential algebraic equations (PDAEs) and are semidis-
cretized in space by finite differences, volumes, and elements, i.e. the equations
are transformed into a system of ordinary differential and algebraic equations.
This procedure is well-known as the vertical method of lines. For our numerical
experiments, it has been integrated into the finite element package MooNMD,
see [JM04] for more information.

In this paper the implicit ODE or DAE

(1.1) Mu̇ = f(t, u), u(t0) = u0

is to be solved numerically by the help of so called Rosenbrock methods. The
matrix M may be singular and the function f is given. System (1.1) has the
negative property that the problem may be stiff, i.e. explicit solvers may fail
when solving the system. There are several methods which are more effective for
stiff ODEs and DAEs as explicit solvers:
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• The fully implicit Runge–Kutta methods (IRK methods) are a first attempt
to approximate the solution of (1.1) since IRK methods have very good
stability properties, but in general nonlinear equations have to be solved.
A famous scheme is Radau5 (see [HW96]). In [Roc89], IRK methods are
developed to solve DAEs.

• The solution of nonlinear equations can be simplified or even avoided by
means of diagonally-implicit RK methods (DIRK methods), which are a spe-
cial case of IRK methods, and linearly implicit RK methods (LIRK meth-
ods) like adaptive RK methods or the popular Rosenbrock–Wanner methods
(ROW methods). In each step of a LIRK method, only one system of linear
equations has to be solved. The price of this is that the stability proper-
ties are not so good as those of the implicit RK methods. Furthermore the
Jacobian has to be computed. This approximation can be avoided if the so-
called W-methods are used, which work with rather arbitrary matrices as
long as stability is not important. Of course, the convergence can be accel-
erated if this matrix is a good approximation of the Jacobian J , for example
Ostermann created Rosenbrock methods with J = f ′ + O(h) (i.e. [Ost88]).
Standard books on this topic are [HW96] and [SW92]. In [SW92] one can
find many hints about the classification of W-methods. DIRK methods for
DAEs can be found in [Cam99].

• The LIRK methods have the disadvantage that the linear systems may be
large. Thus the size of these linear systems should be reduced. This can be
done with an Arnoldi process as in the code ROWMAP (see [WSP97]).

• In [HLS98], Lubich and Hochbruck use the so-called exponential integrators.
• ODEs and DAEs can also be solved numerically with (implicit) multistep

methods, e.g. Petzold developed the code DASSL (i.e. [BCP96]) and Brown,
Hindmarsh, and Byrne the well-known code VODE (see [BBH89]), which
only solves ODEs.

In the following we concentrate on Rosenbrock methods. It is well-known that
solvers for (1.1) may exhibit order reduction if they are applied to large ODE
systems resulting, e.g., from the semidiscretization in space of parabolic prob-
lems. Rosenbrock methods can decrease this order reduction if some additional
conditions are fulfilled. Moreover, many Rosenbrock solvers need the Jacobian
and the time derivative of the right-hand side f in each time-step. In [Lan01],
Lang compares Rosenbrock methods for several problems (PDEs, PDAEs of
index 1 and of index 2), but all methods need an exact approximation of the
Jacobian. The only exception is the order 2 method ROS2 from [VSBH99]. In
this paper we propose third order Rosenbrock methods with 3 and 4 internal
stages, which need only an approximation of the Jacobian. The time derivative
can be neglected. Unfortunately, W-methods using an approximation of the Ja-
cobian have some disadvantages (see [Lan01]), but if such methods are applied
as usual Rosenbrock methods, i.e. the Jacobian is evaluated exactly, they are
able to approximate the numerical solution very well (see [VSBH99]).

In particular, the new methods are attractive candidates for the numerical
solution of the large ODE systems mentioned above. The numerical comparisons
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presented at the end of the paper illustrate the good qualities of the methods in
both academic and more practical problems.

The paper is structured as follows. First we consider the consistency of Rosen-
brock methods for several classes of problems. In Section 3 we construct three
new Rosenbrock methods of order 3 with 3 internal stages. We prove that there
exists no Rosenbrock method for PDAEs of index 1 with three internal stages.
Therefore we develop in Section 4 new Rosenbrock W-methods with four internal
stages which have different properties. Two of the methods need only three in-
stead of four function evaluations, a third method is stiffly accurate and the last
W-method is of order 4 for ODEs. In the last section we present some numerical
examples.

2 Consistency and stability of Rosenbrock methods.

We start with a short overview on some stability concepts.

Definition 2.1. An ODE-solver is called non-expansive on a class F of ex-
plicit (i.e. M = I) initial value problems (1.1) in R

q, if for an arbitrary dis-
cretization Iτ of the interval [t0,∞) the inequality

(2.1) ‖um+1 − vm+1‖ ≤ ‖um − vm‖
holds for all τ and for two approximations um and vm of two different initial
values u0 and v0 in some vectornorm in R

q and all problems in F .

Definition 2.2. An ODE-solver is called A-stable, if the method is non-
expansive on the class

{f : f(t, u) = λu,Re λ ≤ 0}.

Definition 2.3. An A-stable one-step method is called strongly A-stable or
L-stable if the stability function satisfies

lim
Re z→−∞

|R0(z)| < 1 or lim
Re z→−∞

|R0(z)| = 0,

respectively.

Definition 2.4. An s-stage Rosenbrock method is given by

ki := τ f

(
told + αi τ, uold +

i−1∑
j=1

αij kj

)

+ τ W

i∑
j=1

γij kj + τ2γiT, i = 1, . . . , s(2.2)

unew := uold +
s∑

i=1

bi ki
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where s is the number of internal stages, αij , γij , bi are the parameters of
the method, W := f ′(told, uold), T := ḟ(told, uold), αi :=

∑i−1
j=1 αij , and γi :=∑i−1

j=1 γij .

The parameters αij , γij , and bi should be chosen in such a way that certain
order conditions are fulfilled to obtain a sufficient consistency order. A derivation
of these conditions with Butcher series can be found in [HW96]. Here we only
summarize the conditions up to the order 3 for s = 3:

(2.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A1) b1 + b2 + b3 = 1,

(A2) b2β2 + b3β3 = 1
2 − γ,

(A3a) b2α
2
2 + b3α

2
3 = 1

3 ,

(A3b) b3β2β32 = 1
6 − γ + γ2,

where we use the abbreviations βij := αij + γij and βi :=
∑i−1

j=1 βij . We
get an additional consistency condition if we set W := f ′(told, uold) + O(h)
(see [SW92], [HW96], and [SW79]):

(2.4) (B2) b2α2 + b3α3 = 1
2 .

For arbitrary matrices W we get the following order conditions (see [SW92],
[HW96], and [SW79]):

(2.5)

⎧⎪⎨
⎪⎩

(C3a) b3α32α2 = 1
6 ,

(C3b) b3α32β2 = 1
6 − γ

2 ,

(C3c) b3β32α2 = 1
6 − γ

2 .

Theorem 2.1. Let a consistent Rosenbrock method of order 3 with 3 internal
steps be given. The method is consistent of order 3 with J = f ′ + O(h) and
T = 0, if and only if the conditions (B2) and (C3c) are fulfilled.

Proof. The proof runs by the help of Taylor series expansions with a subse-
quent comparison of the coefficients which have to satisfy the conditions (A1),
(A2), (A3a), (A3b), (B2), and (C3c).

If a Rosenbrock method is applied for semidiscretized parabolic PDEs or
PDAEs, the following condition should be satisfied to avoid order reduction
(see [LO95] and [LV01]):

(2.6) b�Bj(2B2e − α2) = 0, 1 ≤ j ≤ 2

with B := (βij)s
i,j=1, α2 := (α2

1, . . . , α
2
s)�, and e := (1, . . . , 1)� ∈ R

s. With (2.3)
we can simplify (2.6) to (see [LV01])

(2.7)

{
(D3a) b3β32α

2
2 = 1

6 − 2
3γ,

(D3b) γ = 1
2 + 1

6

√
3.
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The above Rosenbrock type methods can be extended to semi-explicit DAEs
of the form

(2.8)
M u̇(t) = f(t, u(t), v(t)), u(t0) = u0,

0 = g(t, u(t), v(t)),

where the matrices M and gv are regular. Then the DAE (2.8) has index 1.

Definition 2.5. An s-stage Rosenbrock method for problem (2.8) is given by⎛
⎝ t(i)

u(i)

v(i)

⎞
⎠ :=

⎛
⎝ told

uold

vold

⎞
⎠ +

i−1∑
j=1

αij

⎛
⎝ τ

kj

lj

⎞
⎠,

(
unew

vnew

)
:=

(
uold

vold

)
+

s∑
i=1

bi

(
ki

li

)
,

(
M ki

0

)
:= τ

(
f

(
t(i), u(i), v(i)

)
g

(
t(i), u(i), v(i)

)
)

+ τW

i∑
j=1

γij

(
kj

lj

)
+ τ2 γi T,(2.9)

where

W :=
(

fu(told, uold, vold) fv(told, uold, vold)
gu(told, uold, vold) gv(told, uold, vold)

)
,

T :=
(

ḟ(told, uold, vold)
ġ(told, uold, vold)

)
.

The parameters of the method are αij, γij , and bi.

To obtain convergence, the Rosenbrock method should fulfil certain order con-
ditions for both the ODE and the algebraic part. These consistency properties
can again be derived via Butcher series technique (see [HW96]).

For a third-order method with 3 internal steps we get the algebraic condition

(2.10) (E3) b2ω22α
2
2 + b3(ω32α

2
2 + ω33α

2
3) = 1,

where (ωij)s
i,j=1 = B−1. From [LV01] we know the following result.

Lemma 2.2. A Rosenbrock method which satisfies (A1)–(A3b) and (D3a)–
(D3b) fulfils (E3), too.

Proof. See [LV01].

The stability function of (2.3) is given by

R0(z) = 1 + zb�(I − zB)−1e,

in particular for s = 3 we obtain with (A1), (A2), and (A3b)

R0(z) =
(−1 − 18γ2 + 6γ3 + 9γ)z3 + (−18γ2 − 3 + 18γ)z2 + (18γ − 6)z − 6

6(−1 + z γ)3
.

A Rosenbrock method with 3 internal stages, i.e. s = 3, is L-stable if and only if

(2.11) −1 − 18 γ2 + 6 γ3 + 9 γ = 0.
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3 Methods of order 3 with 3 internal stages.

3.1 An L-stable method for ODEs with J = fu + O(h) and T = 0.

A Rosenbrock method applied on ODEs with J = fu +O(h) and T = 0 should
satisfy the order conditions (A1), (A2), (A3a), (A3b), (B2), and (C3c). Moreover
we choose γ such that the scheme becomes L-stable, i.e. we add equation (2.11)
and have γ ≈ 0.436. The method should need only two function evaluation, i.e.
we have α21 = α31, α32 = 0. Finally we set b3 = 1

2 and b̂3 = 5
36 . Our order

conditions simplify to

b1 + b2 = 1
2 , β32α2 = 1

3 − γ,

2b2β2 + β3 = 1 − 2γ, β2β32 = 1
3 − 2γ + 2γ2,

(2b2 + 1)α2 = 1, b̂1 + b̂2 = 31
36 ,

(2b2 + 1)α2
2 = 2

3 , b̂2β2 + 5β3
36 = 1

2 − γ.

This system of equations can easily be solved and the solution can be found in
Table 3.1. We call our new L-stable method ROS3w, where w stands for methods
which need only an approximation of J . The embedded method is of order 2,
fulfils (A1) and (A2), and is strongly A-stable with R(∞) ≈ 0.69.

Table 3.1: Set of coefficients for ROS3w.

γ = 4.358665215084590e-01e

α21 = 6.666666666666666e-01e γ21 = 3.635068368900681e-01e
α31 = 6.666666666666666e-01e γ31 = −8.996866791992636e-01e
α32 = 0.000000000000000e+00e γ32 = −1.537997822626885e-01e

b1 = 2.500000000000000e-01e b̂1 = 7.467047032740110e-01e

b2 = 2.500000000000000e-01e b̂2 = 1.144064078371002e-01e

b3 = 5.000000000000000e-01e b̂3 = 1.388888888888889e-01e

Next we ask for a method satisfying the above order conditions as well as
condition (C3a) and (C3b). The answer is negative.

Lemma 3.1. It is impossible to create a Rosenbrock method which satisfies
(A1), . . . , (A3b), (C3a), and (C3b).

Proof. From (C3a) we have

α32 =
1

6b3α2
.

Inserting into (C3b) yields
β2

6α2
=

1
6
− γ

2
and

β2 = α2(1 − 3γ).
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It follows with (A3b)

b3β32α2 =
1
6 − γ + γ2

1 − 3γ
.

Together with (C3a) we get γ = 1
2 . Then (A3b) and (C3b) imply that α32 = β32,

but this is a contradiction to (C3a) and (C3c).

3.2 An L-stable method for index 1 DAEs with J = fu + O(h) and T = 0.

For index 1 DAEs the condition (E3) should be fulfiled, i.e. we have the consis-
tency conditions (A1), (A2), (A3a), (A3b), (B2), (C3c), and (E3). Moreover γ is
determined by equation (2.11), i.e. γ ≈ 0.436 and our scheme becomes L-stable.
The free parameters are b2, b̂2, and α32. First we note that (E3) can be simplified
to

γb2α
2
2 + b3(γα2

3 − β32) = γ2

using (ωij)3i,j=1 = B−1. With (B2) we get the order condition

(3.1) b3β32α
2
2 =

1
3
γ − γ2.

Dividing (3.1) by (C3c) leads to

α2 =
1
3γ − γ2

1
6 − γ

2

≈ 0.87.

With (B2) and (A3a) we can determine b3 and α3. The remaining coefficients
can be determined easily and are given in Table 3.2, The embedded method is
strongly A-stable with R(∞) ≈ 0.28. We call the method ROS3Dw, where D
stands for DAE of index one.

Table 3.2: Set of coefficients for ROS3Dw.

γ = 4.3586652150845900e-01

α21 = 8.7173304301691801e-01 γ21 = 4.7532138161945031e-01
α31 = 3.8213294371763229e-01 γ31 = −9.7712149572940343e-01
α32 = 0.0000000000000000e+00 γ32 = −1.0731056295754648e-01

b1 = 1.1863142804796199e-01 b̂1 = 3.6180340134778349e-01

b2 = 3.3333333333333333e-01 b̂2 = 2.5000000000000000e-01

b3 = 5.4803523861870473e-01 b̂3 = 3.8819659865221651e-01

3.3 A method for index 1 PDAEs with J = fu + O(h) and T = 0.

We start with the following result.

Lemma 3.2. For s = 3 there is no L-stable Rosenbrock method of order 3,
which fulfils the PDE conditions (D3a)–(D3b).
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Proof. An L-stable method satisfies

6γ3 − 18γ2 + 9γ − 1 = 0

but (D3b) is not a root of this equation.

Lemma 3.3. For s = 3, there exists no Rosenbrock method of order 3 which
satisfies (A1), (A2), (B2), (A3a), (A3b), (C3c), (D3a), (D3b), and α21 ≤ 1.

Proof. Using (D3b) we find b3β32α
2
2 �= 0 in (D3a) and b3β32α2 �= 0 in (C3c).

Dividing (D3a) by (C3c) leads to

α2 =
1
6 − 2

3γ
1
6 − 1

2γ
=

1 − 4γ

1 − 3γ
= 2

(
1
2

+
1
6

√
3
)

= 2γ.

Lemma 3.4. For s = 3, a Rosenbrock method of order 3 which fulfils (A1),
(A2), (B2), (A3a), (A3b), (C3c), (D3a), and (D3b) cannot satisfy (C3b).

Proof. Using (D3b) we find b3β32α
2
2 �= 0 in (D3a). Consequently, β2 = 0 in

(A3b) due to (D3b). But this is a contradiction to (C3b).

Theorem 3.5. There exists no W-method of order 3 with 3 internal steps.

Proof. It follows from Lemma 3.1.

In the following a Rosenbrock method is constructed which fulfils the following
conditions: (A1), (A2), (A3a), (A3b), (B2), (C3c), (D3a), and (D3b). Here, the
free parameters are b̂2, α31, and α32. The remaining coefficients can be deter-
mined as in the previous sections and are listed in Table 3.3. The method and
the embedded method are strongly A-stable with R(∞) =

√
3 − 1 ≈ 0.73. The

method is called ROS3Pw, where P stands for parabolic problems.

Table 3.3: Set of coefficients for ROS3Pw.

γ = 7.8867513459481287e-01

α21 = 1.5773502691896257e+00 γ21 = −1.5773502691896257e+00
α31 = 5.0000000000000000e-01 γ31 = −6.7075317547305480e-01
α32 = 0.0000000000000000e+00 γ32 = −1.7075317547305482e-01

b1 = 1.0566243270259355e-01 b̂1 = −1.7863279495408180e-01

b2 = 4.9038105676657971e-02 b̂2 = 3.3333333333333333e-01

b3 = 8.4529946162074843e-01 b̂3 = 8.4529946162074843e-01

4 Methods of order 3 with 4 internal stages.

In the last section we have shown that there exists no Rosenbrock W-method
of order 3 with 3 internal stages. In the following we consider Rosenbrock
W-methods with four internal stages and start with some order conditions.
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4.1 Order conditions.

The order conditions in the case s = 4 read as (see [HW96])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A1) b1 + b2 + b3 + b4 = 1,

(A2) b2β2 + b3β3 + b4β4 = 1
2 − γ,

(A3a) b2α
2
2 + b3α

2
3 + b4α

2
4 = 1

3 ,

(A3b) b3β32β2 + b4(β42β2 + β43β3) = 1
6 − γ + γ2,

(B2) b2α2 + b3α3 + b4α4 = 1
2 ,

(C3a) b3α32α2 + b4(α42α2 + α43α3) = 1
6 ,

(C3b) b3α32β2 + b4(α42β2 + α43β3) = 1
6 − γ

2 ,

(C3c) b3β32α2 + b4(β42α2 + β43α3) = 1
6 − γ

2 .

Lemma 4.1. The conditions for PDEs (2.6) can be simplified by the help of
(A1), (A2), (A3a), and (A3b) to

⎧⎪⎨
⎪⎩

(D3a) b4β32β43α
2
2 = 2γ4 − 2γ3 + 1

3γ2,

(D3b) b3β32α
2
2 + b4

(
β42α

2
2 + β43α

2
3

)
= 2γ3 − 3γ2 + 2

3γ,

(D3c) b4β43β32β21 = 0.

Remark 4.1. The expressions b3β32α
2
2 + b4(β42α

2
2 + β43α

2
3) and b4β43β32β21

are known as part of the order conditions for 4th-order Rosenbrock methods
(see [HW96]).

The algebraic order condition reads as

(E3) b2ω22α
2
2 + b3

(
ω32α

2
2 + ω33α

2
3

)
+ b4

(
ω42α

2
2 + ω43α

2
3 + ω44α

2
4

)
= 1.

Lemma 4.2. A Rosenbrock method which satisfies (A1)–(A3b) and (D3a)–
(D3c) fulfils (E3), too.

Proof. Invert B and use (A3a), (D3a), and (D3b) to get (E3).

A Rosenbrock method of order 3 with 4 internal steps is L-stable if

(4.1) b4β43β32β21 = −γ4 + 3γ3 − 3
2
γ2 +

1
6
γ.

Lemma 4.3. A Rosenbrock method which satisfies (A1)–(A3b) and (D3a)–
(D3c) is L-stable if the condition

(4.2) γ4 − 3γ3 +
3
2
γ2 − 1

6
γ = 0

is satisfied, i.e. γ ≈ 0.44.
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Proof. From (D3c) and (4.1) it follows (4.2) which has the solutions

γ ∈ {2.41, 0.16, 0.44}.
The method can only be L-stable if γ = .43586 (see [HW96]).
Lemma 4.4. Let a Rosenbrock method which satisfies (A1)–(A3b) and (D3a)–

(D3c) be given. The embedded method satisfying (A1) and (A2) is L-stable, too, if

(4.3) b̂4 =
1

β3β43

[
γ3 − 2γ2 +

1
2
γ

]
.

Proof. We start with the expression

lim
z→∞

(
1 + zb�(I − zB)−1e

)
= 0.

Inserting the definitions of b and B leads to

−γ3(b1 + b2 + b3 + b4) + γ2(b2β2 + b3β3 + b4β4) + γ4

+ b4β21β32β43 − γ(b3β32β2 + b4(β42β2 + β43β3)) = 0.

Moreover (D3a) and (D3c) imply β2 = 0. With (A1) and (A2) we obtain the
above statement.

4.2 Two L-stable W-methods for PDAEs with 3 function evaluations.

In this section Rosenbrock W-methods are described which need only 3 func-
tion evaluations. First we note that it is impossible to create a method using
only two function evaluations.

Lemma 4.5. There exists no Rosenbrock W-method of order 3 with 4 internal
stages which fulfils (A1)–(C3c) and α21 = α31 = α41, α32 = α42 = α43 = 0.

Proof. This follows from (C3a).

In what follows we need the fact that α21 �= 0 and α43 �= 0.

Lemma 4.6. There exists no L-stable Rosenbrock W-method of order 3 with 4
internal stages which fulfils (A1)–(C3c) and α21 = 0.

Proof. We consider condition (D3a). Inserting α21 = 0 yields

2γ4 − 2γ3 +
1
3
γ2 = 0,

but this is a contradiction to the L-stability.

Lemma 4.7. There exists no L-stable Rosenbrock W-method of order 3 with 4
internal stages which fulfils (A1)–(C3c) and α43 = 0.

Proof. We consider condition (C3b). Since (D3a) and (D3c) imply β2 = 0 we
get 1

6 − γ
2 = 0, but this is a contradiction to the L-stability.
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These two lemmas imply that it is possible to create L-stable W-methods only
if α31 = α32 = 0 or α31 = α21 and α32 = 0. We start with the case α31 = α32 = 0.

We choose the free coefficients of the first method ROS34PW1a as follows:
α31 = α32 = 0, α42 := 1

6α2
, α43 = 1

2 , b3 = 1
4 and b̂4 as in (4.3). Note that α3 = 0.

First, (D3a) and (D3c) imply β2 = 0. The coefficient α21 can be determined
with (C3c) and (D3b). We obtain α21 = (2γ3 − 3γ2 + 2/3γ)/(1/6− γ/2). From
(C3a) we get b4 and with (B2) and (A3a) we get α4 and b2. The remaining
coefficients can be determined easily and are given below in Table 4.1. The
letters in ROS34PW1a have the following meanings: 34 stands for order 3 with
4 internal stages, W for W-method and 1a is an internal number.

Table 4.1: Set of coefficients for ROS34PW1a.

γ = 4.358665215084590e-01e

α21 = 2.218787467653286e+00e γ21 = −2.218787467653286e+00e
α31 = 0.000000000000000e+00e γ31 = −9.461966143940745e-02e
α32 = 0.000000000000000e+00e γ32 = −7.913526735718213e-03e
α41 = 1.208587690772214e+00e γ41 = −1.870323744195384e+00e
α42 = 7.511610241919324e-02e γ42 = −9.624340112825115e-02e
α43 = 5.000000000000000e-01e γ43 = 2.726301276675511e-01e

b1 = 3.285609536316354e-01e b̂1 = −2.500000000000000e-01e

b2 = −5.785609536316354e-01e b̂2 = 0.000000000000000e+00e

b3 = 2.500000000000000e-01e b̂3 = 2.500000000000000e-01e

b4 = 1.000000000000000e+00e b̂4 = 1.000000000000000e+00e

For our second method we set α31 = α21, α32 = 0, α42 = 0, α43 = 1/10,
b3 = 1/4 and b̂4 as in (4.3). Note that α2 = α3. Again we have β2 = 0. From
(C3c) and (D3b) we obtain α2 = (2γ3−3γ2 +2/3γ)/(1/6−γ/2). The remaining
coefficients can be determined in same way as for ROS34PW1a. They are given
below in Table 4.2.

Table 4.2: Set of coefficients for ROS34PW1b.

γ = 4.358665215084590e-01e

α21 = 2.218787467653286e+00e γ21 = −2.218787467653286e+00e
α31 = 2.218787467653286e+00e γ31 = −2.848610224639349e+00e
α32 = 0.000000000000000e+00e γ32 = −5.267530183845237e-02e
α41 = 1.453923375357884e+00e γ41 = −1.128167857898393e+00e
α42 = 0.000000000000000e+00e γ42 = −1.677546870499461e-01e
α43 = 1.000000000000000e-01e γ43 = 5.452602553351021e-02e

b1 = 5.495647928937977e-01e b̂1 = −1.161024191932427e-03e

b2 = −5.507258170857301e-01e b̂2 = 0.000000000000000e+00e

b3 = 2.500000000000000e-01e b̂3 = 2.500000000000000e-01e

b4 = 7.511610241919324e-01e b̂4 = 7.511610241919324e-01e
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4.3 A stiffly accurate W-method for PDAEs.

Definition 4.1. A Rosenbrock method satisfying

(4.4) βsi = bi, i = 1, . . . , s, and αs = 1

is called stiffly accurate.

Methods which satisfy the condition (4.4) yield asymptotically exact results
for the problem u̇ = λ(u − ϕ(t)) + ϕ̇(t). The order conditions can be written as
follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A1’) b1 + b2 + b3 = 1 − γ,

(A2’) b2β2 + b3β3 = 1
2 − 2γ + γ2,

(A3a) b2α
2
2 + b3α

2
3 = 1

3 − γ,

(A3b’) b3β32β2 = 1
6 − 3

2γ + 3γ2 − γ3,

(B2’) b2α2 + b3α3 = 1
2 − γ,

(C3a’) b3α32α2 + γ(α42α2 + α43α3) = 1
6 ,

(C3b’) b3α32β2 + γ(α42β2 + α43β3) = 1
6 − γ

2 ,

(C3c’) b3β32α2 = 1
6 − γ + γ2,

(D3a’) b3β32α
2
2 = 2γ3 − 2γ2 + 1

3γ,

(D3c’) b3β32β2 = 0.

Note that the condition (D3a) and (D3b) are equivalent if the Rosenbrock
method is stiffly accurate. The free parameters of our method are α42 := 0
and α43 := 1. First β2 = 0 (by (D3c’)) and α2 can determined by (D3a’) and
(C3c’). From (C3b’) we get β3 and from (A2’) b3. Using the conditions (B2’)
and (A3a’) yields b2 and α3. The remaining coefficients of ROS34PW2 can be
computed easily and are listed in Table 4.3. The embedded method is strongly
A-stable with R(∞) ≈ 0.48.

Table 4.3: Set of coefficients for ROS34PW2.

γ = 4.3586652150845900e-01

α21 = 8.7173304301691801e-01 γ21 = −8.7173304301691801e-01
α31 = 8.4457060015369423e-01 γ31 = −9.0338057013044082e-01
α32 = −1.1299064236484185e-01 γ32 = 5.4180672388095326e-02
α41 = 0.0000000000000000e+00 γ41 = 2.4212380706095346e-01
α42 = 0.0000000000000000e+00 γ42 = −1.2232505839045147e+00
α43 = 1.0000000000000000e+00 γ43 = 5.4526025533510214e-01

b1 = 2.4212380706095346e-01 b̂1 = 3.7810903145819369e-01

b2 = −1.2232505839045147e+00 b̂2 = −9.6042292212423178e-02

b3 = 1.5452602553351020e+00 b̂3 = 5.0000000000000000e-01

b4 = 4.3586652150845900e-01 b̂4 = 2.1793326075422950e-01
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4.4 A W-method for PDAEs satisfying 4-th order conditions for ODEs.

From [HW96] we get the following 4-th order conditions for ODEs
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(A4a) b3β32α
2
2 + b4(β42α

2
2 + β43α

2
3) = 1

12 − γ
3 ,

(A4b) b4β43β32β21 = 1
24 − γ

2 + 3
2γ2 − γ3,

(A4c) b2α
3
2 + b3α

3
3 + b4α

3
4 = 1

4 ,

(A4d) b3α3α32β2 + b4α4(α42β2 + α43β3) = 1
8 − γ

3 .

It follows with (D3b) and (D3c) that

(4.5)
1
24

− γ

2
+

3
2
γ2 − γ3 = 0,

hence we have γ ≈ 1.06857.

Lemma 4.8. A Rosenbrock W-method satisfying (A1)–(D3c), (A4a), and (A4b)
cannot be L-stable.

Proof. This follows from (4.1) and (4.5).

Lemma 4.9. Let a Rosenbrock W-method satisfying (A1)–(A4d) be given.
There exists no embedded method of order 3.

Proof. Let us assume that an embedded method of order 3 exists. Then this
embedded method satisfies condition (A1)–(A3b). From [HW96] we know that
these equations form the linear system

(4.6)

⎛
⎜⎜⎝

1 1 1 1
0 β2 β3 β4

0 α2
2 α2

3 α2
4

0 0 β32 β42β2 + β43β3

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

b̂1

b̂2

b̂3

b̂4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

1
1
2 − γ

1
3

1
6 − γ + γ2

⎞
⎟⎟⎠.

If the matrix (4.6) is regular, it follows b̂i = bi, i = 1, . . . , 4 and the approximation
û cannot be used for step size control. Therefore it has to be required that the
matrix in (4.6) is singular, i.e.

(
β2α

2
4 − β4α

2
2

)
β32β2 =

(
β2α

2
3 − β3α

2
2

)
(β42β2 + β43β3).

From the previous sections we know β2 = 0, hence the singularity condition
simplifies to

β3α
2
2β43β3 = 0.

It follows β3 = 0, α2 = 0 or β43 = 0. But this is a contradiction to (4.5), (A3b),
(C3b), and (D3a).

As free parameters we choose α3 = 2α4, α2 = 4α4, and α32 = 3
4 . Again

we have β2 = 0. Then we determine the coefficients b2, b3, and b4 by (A2a),
(B2), and (A4c). The conditions (C3c), (D3a), and (D3b) can be used to ob-
tain β32, β42, and β43. Note that this system of equations is nonlinear and is
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not uniquely solvable. The computation of the remaining coefficients is straight
forward. The embedded method satisfies (A1), (A2), (B2) and b̂4 = 0. The coef-
ficients of ROS34PW3 are listed in Table 4.4. The method is strongly A-stable
with R(∞) ≈ 0.63, and the embedded method with R(∞) ≈ 0.43, resp.

Table 4.4: Set of coefficients for ROS34PW3.

γ = 1.0685790213016289e+00

α21 = 2.5155456020628817e+00 γ21 = −2.5155456020628817e+00
α31 = 5.0777280103144085e-01 γ31 = −8.7991339217106512e-01
α32 = 7.5000000000000000e-01 γ32 = −9.6014187766190695e-01
α41 = 1.3959081404277204e-01 γ41 = −4.1731389379448741e-01
α42 = −3.3111001065419338e-01 γ42 = 4.1091047035857703e-01
α43 = 8.2040559712714178e-01 γ43 = −1.3558873204765276e+00

b1 = 2.2047681286931747e-01 b̂1 = 3.1300297285209688e-01

b2 = 2.7828278331185935e-03 b̂2 = −2.8946895245112692e-01

b3 = 7.1844787635140066e-03 b̂3 = 9.7646597959903003e-01

b4 = 7.6955588053404989e-01 b̂4 = 0.0000000000000000e+00

5 Comparison of Rosenbrock methods and numerical results.

All examples are solved numerically by the help of the FEM-package
MooNMD3.0 (see [JM04]) on a uniform spatial grid consisting of 1024 quad-
rangles, i.e. h = 2−5. We compare our new methods with other well-known
Rosenbrock methods such as ROS3P, ROWDAIND2, RODAS3, RODAS, and
RODASP. An overview of the selected Rosenbrock methods can be found in
Table 5.1.

We apply these schemes to a PDE, an index-1 PDAE and the Navier–Stokes
equations with different right-hand sides. For the definition of the index of linear
PDAEs we refer to the paper [RA05]. In [Ran04] can be found a discussion about
the perturbation index of the Navier–Stokes equations and its semi-discretized
version which has index 2. Note, that we make a pressure correction after each
time step of our computations. Hence it seems appropriate to solve the Navier–
Stokes equations with index-1 schemes. The calculations at the end of this section
confirm this rating.

The global error ε is measured in the discrete L2-norm (‖ε‖l2(N)), and the
numerically observed temporal order of convergence is computed by

qnum = log2

( ‖ε‖l2(N)

‖ε‖l2(2N)

)
.

In this section, the letter J is used to denote a time interval.

Example 5.1. Let Ω := (0, 1)2, J := (0, 1), and consider the PDE system

(5.1)
{

u̇ − ∆u + v = f1, in J × Ω,
v̇ − ∆v − λv = f2, in J × Ω.
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Table 5.1: Properties of the selected Rosenbrock methods.

name s p index 1 index 2 PDEs R(∞) stiffly reference
acc.

ROS3P 3 3 yes no yes 0.73 no [LV01]

ROWDAIND2 3 3 yes yes no 0 yes [LR90]

ROS3w 3 3 yes no no 0 no see Sect. 3.1

ROS3Dw 3 3 yes no no 0 no see Sect. 3.2

ROS3Pw 3 3 yes no yes 0.73 no see Sect. 3.3

ROS34PW2 4 3 yes no yes 0 yes see Sect. 4.3

ROS34PW3 4 4 yes no yes 0.63 no see Sect. 4.4

RODAS3 3 3 yes no no 0 yes [SGG+97]

RODAS 6 4 yes no no 0 yes [HW96]

RODASP 6 4 yes no yes 0 yes [Ste95]

The prescribed solution has the form

u(t, x, y) = t2(1 − x)(1 − y)xy,

v(t, x, y) = 10 − (10 + t)e−t(1 − x)(1 − y)xy.

In the numerical tests, we have used homogeneous Dirichlet boundary conditions
at the whole boundary. The initial conditions and the functions f1 and f2 are
chosen such that (u, v)� is the closed form solution of (5.1). The computations
were carried out with λ = −10, bilinear finite elements and time steps τN = 1

10·2N

with N = 0, 1, . . . , 5. Note that for any t the solution can be represented exactly
by the discrete functions.

Figure 5.1: Example 5.1, global error vs. time step τN = 1/10 · 2N .

The results are presented in Figure 5.1, Table A.1, and Table A.2. First we note
that RODASP gave the best results since it is a fourth order method designed for
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parabolic problems. Considering the second component RODAS gave very good
results, too. The best schemes with order 3 are ROS34PW2 and ROS34PW3.

Example 5.2. We consider the PDE (5.1) with the solution

u(t, x, y) = t2(2 − x)(2 − y)xy,

v(t, x, y) = 10 − (10 + t)e−t(2 − x)(2 − y)xy.

The right-hand side (f1, f2)�, the Dirichlet boundary conditions, and the initial
conditions are taken from the exact solution. As in the previous example, we
set λ = −10. The problem is solved with bilinear continuous finite elements
and a sequence of time steps τN = 1

10·2N with N = 0, 1, . . . , 5 (see Figure 5.2,
Table A.3, and Table A.4).

Figure 5.2: Example 5.2, global error vs. time step τN = 1/10 · 2N .

It can be observed that the 4th-order method RODASP gave the best results.
The numerically observed order of convergence for the methods satisfying the
conditions for the PDE (ROS3P, ROS3Pw, and the ROS34PW-family) drops
down to approximately 2.5 · · ·3 (see Table A.3 and Table A.4). The remaining
third order methods (ROWDAIND2, ROS3w, ROS3Dw, RODAS3, and RODAS)
have more severe order reduction. Their numerically observed order of conver-
gence drops down to approximately 1.75 · · · 2. This is due to the fact that the
problem includes time-dependent Dirichlet boundary conditions. A discussion
about these phenomena can be found in [LO95].

Example 5.3. Let again Ω := (0, 1)2, J := (0, 1), and consider the PDAE

(5.2)
{

u̇ − ∆u − ∆v + xux + yuy − u + v = f1, in Ω,

−∆u − ∆v + u2 + v2 = f2, in Ω.

Note that (5.2) has the perturbation index ip = 1. The Dirichlet boundary
conditions, the initial condition and the functions f1 and f2 are taken from the
exact solution

u(t, x, y) = (2x + y) sin t,

v(t, x, y) = (x + 3y) cos t.
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We solve (5.2) by the help of linear continuous finite elements and a sequence
of time steps τN = 1

10·2N with N = 0, 1, . . . , 5. Since the solution is linear in x
and y, the semidiscretization is exact. The Jacobian is computed exactly. The
global error and the numerical order of convergence are presented in Figure 5.3,
Table A.5, and Table A.6.

Figure 5.3: Example 5.3, global error vs. time step τN = 1/10 · 2N .

First we note that RODASP is again the best method. This is due to fact
that it is a fourth order scheme. For the u2-component it can be observed that
the method RODAS yield very good results, too, especially for large step sizes.
Again the methods for semidiscretized PDEs give better results as the methods
for DAEs.

Example 5.4. Let J := (0, 1) and Ω := (0, 1)2. We consider the Navier–Stokes
equations

(5.3)

u̇ − Re−1∆u + (u · ∇)u + ∇p = f in J × Ω,
∇ · u = 0 in J × Ω,

u = g on J × ∂Ω,
u(0, x) = u0 x ∈ Ω,

where Re denotes the positive Reynolds number. The right-hand side f , the
initial condition u0 and the non-homogeneous Dirichlet boundary conditions are
chosen such that

u1(t, x, y) = t3y2,

u2(t, x, y) = t2x,

p(t, x, y) = tx + y − (t + 1)/2

is the solution of (5.3). Moreover we set Re = 1. We used the Q2/P disc
1 -discretiza-

tion on a uniform mesh which consists of squares with an edge length h = 1/64
and solved the problem with variable time step sizes. The Jacobian is computed
exactly. Note that for any t the solution can be represented exactly by the discrete
functions. Hence, all occurring errors will result from the temporal discretization.
During the calculations we have to deal with 33 282 d.o.f. for the velocity and
11 288 d.o.f. for the pressure. After each time step a pressure correction is done.
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Figure 5.4: Example 5.4, global error vs. CPU-time.

The numerical results are presented in Figure 5.4. Considering the velocity
error u it can be observed that for large tolerances RODASP is the best scheme.
For small tolerances all methods are able to reduce the global error to approxi-
mately 10−7 or 10−8. Only the schemes RODAS3 and ROWDAIND2 have little
problems for medium tolerances.

Let us now consider the pressure error. Here we get a different impression.
RODASP gives only for large tolerances the best results. For small tolerances
ROS34PW3 is the best method. Bad results are obtained with the schemes
RODAS3 and RODAS. Both methods do not have not the full order 3. The
method ROWDAIND2 gives very good results for small tolerances, too. The
methods ROS3P and ROS3Pw give nearly the same good results.

Example 5.5. We consider the Navier–Stokes equations (5.3) with Dirichlet
boundary conditions on the whole boundary and with the solution

u1(t, x, y) = t3y2,

u2(t, x, y) = exp(−50t)x,

p(t, x, y) = (10 + t) exp(−t)(x + y − 1).

The computations were carried out with Re = 1, a spatial grid consisting of
squares of edge length h = 1/32, and variable time step sizes. This gives 8 450
velocity d.o.f. and 3 072 pressure d.o.f. for the Q2/P disc

1 finite element discretiza-
tion.

Note, that the component u2 decreases very fast to zero. Therefore it is not
surprising that the methods have great problems to solve the problem at least for
large tolerances. The numerical results are shown in Figure 5.5. Again RODASP
give fine results. Bad results are again obtained with RODAS3. The best results
are obtained with ROS34PW3 for both components.

Example 5.6. The following problem can be found in [Cho68] and has the
solution

u1 = − cos(nπx) sin(nπy) exp(−2n2π2t/τ̂),
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Figure 5.5: Example 5.5, global error vs. CPU-time.

u2 = sin(nπx) cos(nπy) exp(−2n2π2t/τ̂),

p = − 1
4 (cos(2nπx) + cos(2nπy)) exp(−4n2π2t/τ̂).

For the relaxation time τ̂ = Re = 1000, this is a solution of the Navier–Stokes
equations (5.3) consisting of an array of opposite-signed vortices which decay
exponentially as t → ∞.

In the numerical tests, we have used Dirichlet boundary conditions on the
whole boundary. The right hand side f , the initial condition u0 and the non-
homogeneous Dirichlet boundary conditions are chosen such that (u1, u2, p)� is
the closed form solution of (5.3) for a given set of parameters. We will present
computations for the relaxation time τ̂ = 1, the vortex configuration n = 4, the
final time t = 1 with different Reynolds numbers on a fixed spatial grid. The
grid consisted of squares with edge length h = 1/64. On this grid, the Q2/P disc

1

finite element discretization possesses 33 282 d.o.f. for the velocity and 12 288
d.o.f. for the pressure. Moreover the problem is solved with variable step sizes.

The results are presented in Figure 5.6. The velocity error in l2(J, H1(Ω)) is
reduced to the discretization error in space by all methods. The best results
for the pressure error l2(J, L2(Ω)) are obtained with ROWDAIND2, ROS3P,

Figure 5.6: Example 5.6, global error vs. CPU-time.
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ROS34PW2, ROS34PW3 and RODASP. The worst results were obtained with
RODAS3 and ROS3Pw.

Example 5.7. The flow around a cylinder which will be considered was defined
as a benchmark problem in [ST96] and studied numerically in detail in [Joh04].
Figure 5.7 presents the flow domain. The right-hand side of the Navier–Stokes
equations (5.3) is f = 0, the final time is t̄ = 8 and the inflow and outflow
boundary conditions are given by

u(t, 0, y) = u(t, 2.2, y) = 0.41−2 sin(πt/8)(6y(0.41 − y), 0) m s−1, 0 ≤ y ≤ 0.41.

On all other boundaries, the no-slip condition u = 0 is prescribed. The Reynolds
number of the flow, based on the mean inflow, the diameter of the cylinder and
the prescribed viscosity ν = 10−3 m2 s−1, is 0 ≤ Re(t) ≤ 100.

Figure 5.7: Example 5.7, the channel with the cylinder.

Figure 5.8: Example 5.7, the coarsest grid (level 0).

The coarsest grid (level 0) is presented in Figure 5.8. All computations have
been carried out on level 3 of the spatial grid refinement resulting in 107 712
velocity d.o.f. and 39 936 pressure d.o.f. The time step was chosen to be τ = 0.01.

The characteristic values of the flow are the drag coefficient cd(t) and the lift
coefficient cl(t) at the cylinder. These coefficients can be computed by

cd(t) = −20 [(ut, vd) + (ν∇u,∇vd) + ((u · ∇)u, vd) − (p, ·∇vd)]
cl(t) = −20 [(ut, vl) + (ν∇u,∇vl) + ((u · ∇)u, vl) − (p, ·∇vl)]

for all functions vd ∈ (H1(Ω))2 with (vd)|S = (1, 0)� and vd vanishes on all
other boundaries and for all test functions vl ∈ (H1(Ω))2 with (vl)|S = (0, 1)�

and vl vanishes on all other boundaries, respectively. Another benchmark value
in [ST96] is the difference of the pressure between the front and the back at the
cylinder at the final time p(8, 0.15, 0.2)−p(8, 0.25, 0.2). Reference values for this
difference and the maximal values of the drag and the lift coefficient are given
in [Joh04].
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Figure 5.9: Example 5.7, lift coefficient and zoom around the maximal lift value.

The computations were done with the Backward Euler scheme (BWE), the
Crank–Nicolson scheme (CN), the fractional-step-θ-scheme (FS), ROS3P, ROW-
DAIND2, ROS3Pw, ROS34PW2, and ROS34PW3. The other Rosenbrock meth-
ods used in the previous examples are neglected since the computing effort is
too high or the accuracy is too small. We compare our Rosenbrock schemes with
BWE, CN and FS since these methods are often used to solve this problem. For
more informations about the schemes the reader is referred to [Emm01].

Figure 5.9 shows the lift and drag coefficients and the pressure difference as
functions of time. In all graphs, also the reference curve from [Joh04] is given.
We see that BWE produced the most inaccurate results. This is the only method
which is, for this time step length, unable to generate the correct oscillations in
the lift coefficient. From the zoom of lift coefficient curve (right in Figure 5.9) it
becomes obvious that all methods are relatively close the reference curve. The
best results were obtained by the Rosenbrock methods.

In Table 5.2 the pressure difference at time t = 8 is given. We present the
value itself, its deviation from the reference value given in [Joh04] and the rel-

Table 5.2: Pressure difference at t = 8, ∆pref = −0.1116 from [Joh04].

method ∆p ∆p − ∆pref

∣∣∣∆p−∆pref

∆pref

∣∣∣ ∗ 100%

BWE −1.17553e-01 −5.9531e-03 5.53e+00

CN −1.10304e-01 1.2956e-03 1.16e+00

FS −1.10170e-01 1.4301e-03 1.28e+00

ROS3P −1.11683e-01 −8.3245e-05 7.46e-02

ROWDAIND2 −1.11750e-01 −1.4972e-04 1.34e-01

ROS3Pw −1.11653e-01 −5.2525e-05 4.71e-02

ROS3PW2 −1.11570e-01 3.0263e-05 2.71e-02

ROS3PW3 −1.11572e-01 2.7619e-05 2.47e-02
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ative error. The best result are obtained with ROS3PW2 and ROS3PW3. All
Rosenbrock methods produce quite accurate results which are much better than
the results obtained with the implicit θ-schemes. Also for this value, the results
from BWE are the most inaccurate. One reason is probably the damping which
is introduced by the BWE.

As an illustrative conclusion, we present Figure 5.10 as an extension of Fig-
ure V.1 from the book by Lang (see [Lan01, p. 57]) which shows a suggestion

Figure 5.10: Suggestions for the selection of Rosenbrock methods.
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for the selection of Rosenbrock methods. A main difference between both fig-
ures is the point that Figure 5.10 does not know the “index-0” case since
a perturbation index is used. Moreover the authors would like to suggest the
W-methods ROS3Pw and ROS34PW2 for solving MOL-DAEs of index 2. Last
but not least ROS2 may be a rather inaccurate scheme to solve problems where
an exact evaluation of the Jacobian is not possible. A better choice may be
the W-methods ROS3Dw, ROS3Pw, and ROS34PW2. In the books by Brenan,
Campbell and Petzold [BCP96] and by Hairer, Lubich and Roche [HLR89] can
be found schemes which are able to solve problems of index 3.
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A Numerically observed temporal order of convergence.

A.1 Example 5.1.

Table A.1: u-component of Example 5.1. Error and numerical order of convergence.

τ 1
10

1
20

1
40

1
80

1
160

ROS3P ‖ε‖l2(J,H1) 5.64e-07 8.77e-08 1.07e-08 1.66e-09 1.66e-08
qnum 2.68 3.03 2.69 −3.32

ROWDAIND2 ‖ε‖l2(J,H1) 2.44e-05 4.59e-06 7.39e-07 1.09e-07 1.19e-08
qnum 2.41 2.63 2.77 3.19

ROS3w ‖ε‖l2(J,H1) 8.62e-05 1.53e-05 2.45e-06 3.64e-07 5.27e-08
qnum 2.49 2.65 2.75 2.79

ROS3Dw ‖ε‖l2(J,H1) 6.77e-05 1.26e-05 2.05e-06 3.08e-07 4.48e-08
qnum 2.42 2.62 2.74 2.78

ROS3Pw ‖ε‖l2(J,H1) 3.97e-07 6.13e-08 7.73e-09 1.40e-09 1.66e-08
qnum 2.69 2.99 2.46 −3.57

ROS34PW2 ‖ε‖l2(J,H1) 1.40e-07 1.84e-08 3.31e-09 4.82e-10 9.23e-10
qnum 2.93 2.47 2.78 −0.94

ROS34PW3 ‖ε‖l2(J,H1) 1.33e-07 1.92e-08 3.76e-09 5.85e-10 3.89e-10
qnum 2.80 2.35 2.68 0.59

RODAS3 ‖ε‖l2(J,H1) 4.99e-05 8.83e-06 1.37e-06 2.00e-07 3.23e-08
qnum 2.50 2.68 2.78 2.63

RODAS ‖ε‖l2(J,H1) 2.23e-07 2.66e-08 3.27e-09 9.39e-09 3.34e-10
qnum 3.07 3.03 −1.52 4.81

RODASP ‖ε‖l2(J,H1) 5.42e-10 7.70e-11 4.35e-10 4.84e-09 2.69e-10
qnum 2.82 −2.50 −3.48 4.17
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Table A.2: v-component of Example 5.1. Error and numerical order of convergence.

τ 1
10

1
20

1
40

1
80

1
160

ROS3P ‖ε‖l2(J,H1) 1.72e-05 3.51e-06 6.28e-07 1.02e-07 2.43e-08
qnum 2.30 2.48 2.63 2.07

ROWDAIND2 ‖ε‖l2(J,H1) 7.58e-05 1.70e-05 3.03e-06 4.71e-07 6.60e-08
qnum 2.16 2.49 2.69 2.83

ROS3w ‖ε‖l2(J,H1) 2.57e-04 5.37e-05 9.42e-06 1.47e-06 2.12e-07
qnum 2.26 2.51 2.68 2.79

ROS3Dw ‖ε‖l2(J,H1) 1.94e-04 4.33e-05 7.87e-06 1.25e-06 1.82e-07
qnum 2.16 2.46 2.66 2.78

ROS3Pw ‖ε‖l2(J,H1) 3.05e-05 4.77e-06 7.25e-07 1.07e-07 2.43e-08
qnum 2.67 2.72 2.76 2.14

ROS34PW2 ‖ε‖l2(J,H1) 6.22e-06 1.11e-06 1.77e-07 2.56e-08 2.48e-09
qnum 2.49 2.64 2.79 3.37

ROS34PW3 ‖ε‖l2(J,H1) 1.97e-05 2.52e-06 2.88e-07 2.83e-08 3.66e-09
qnum 2.96 3.13 3.35 2.95

RODAS3 ‖ε‖l2(J,H1) 1.61e-04 3.32e-05 5.65e-06 8.52e-07 1.16e-07
qnum 2.28 2.55 2.73 2.88

RODAS ‖ε‖l2(J,H1) 6.60e-07 3.57e-08 6.51e-09 1.33e-08 5.29e-09
qnum 4.21 2.45 −1.03 1.33

RODASP ‖ε‖l2(J,H1) 5.15e-08 3.82e-09 1.88e-09 8.19e-09 6.55e-10
qnum 3.76 1.02 −2.13 3.64

A.2 Example 5.2.

Table A.3: u-component of Example 5.2. Error and numerical order of convergence.

τ 1
10

1
20

1
40

1
80

1
160

ROS3P ‖ε‖l2(J,H1) 6.99e-06 1.10e-06 1.39e-07 1.51e-08 2.12e-09
qnum 2.66 2.99 3.21 2.83

ROWDAIND2 ‖ε‖l2(J,H1) 4.02e-04 1.12e-04 3.21e-05 9.37e-06 2.76e-06
qnum 1.84 1.81 1.78 1.76

ROS3w ‖ε‖l2(J,H1) 8.93e-04 2.21e-04 6.10e-05 1.79e-05 5.27e-06
qnum 2.01 1.86 1.77 1.76

ROS3Dw ‖ε‖l2(J,H1) 1.44e-03 4.10e-04 1.18e-04 3.44e-05 9.89e-06
qnum 1.81 1.79 1.78 1.80

ROS3Pw ‖ε‖l2(J,H1) 4.93e-06 7.72e-07 9.95e-08 1.14e-08 1.81e-09
qnum 2.68 2.96 3.13 2.65

ROS34PW2 ‖ε‖l2(J,H1) 1.77e-06 2.37e-07 2.66e-08 3.77e-09 6.65e-09
qnum 2.90 3.16 2.82 −0.82

ROS34PW3 ‖ε‖l2(J,H1) 1.69e-06 2.38e-07 4.63e-08 7.45e-09 2.72e-09
qnum 2.83 2.36 2.64 1.45

RODAS3 ‖ε‖l2(J,H1) 1.11e-03 3.17e-04 9.15e-05 2.66e-05 7.65e-06
qnum 1.81 1.79 1.78 1.80

RODAS ‖ε‖l2(J,H1) 2.85e-05 8.39e-06 2.44e-06 6.84e-07 1.78e-07
qnum 1.76 1.78 1.84 1.95

RODASP ‖ε‖l2(J,H1) 7.19e-09 8.26e-10 2.58e-09 8.03e-10 9.73e-10
qnum 3.12 −1.64 1.68 −0.28
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Table A.4: v-component of Example 5.2. Error and numerical order of convergence.

τ 1
10

1
20

1
40

1
80

1
160

ROS3P ‖ε‖l2(J,H1) 2.44e-04 5.10e-05 9.66e-06 1.68e-06 2.76e-07
qnum 2.26 2.40 2.52 2.61

ROWDAIND2 ‖ε‖l2(J,H1) 1.18e-03 3.45e-04 9.51e-05 2.67e-05 7.73e-06
qnum 1.78 1.86 1.83 1.79

ROS3w ‖ε‖l2(J,H1) 2.73e-03 6.64e-04 1.67e-04 4.66e-05 1.38e-05
qnum 2.04 1.99 1.84 1.75

ROS3Dw ‖ε‖l2(J,H1) 4.19e-03 1.22e-03 3.42e-04 9.66e-05 2.75e-05
qnum 1.78 1.83 1.82 1.81

ROS3Pw ‖ε‖l2(J,H1) 2.86e-04 4.76e-05 7.94e-06 1.29e-06 2.03e-07
qnum 2.58 2.59 2.62 2.67

ROS34PW2 ‖ε‖l2(J,H1) 9.29e-05 1.76e-05 3.02e-06 4.89e-07 7.23e-08
qnum 2.40 2.54 2.63 2.76

ROS34PW3 ‖ε‖l2(J,H1) 1.75e-04 2.30e-05 2.76e-06 3.19e-07 4.20e-08
qnum 2.93 3.06 3.11 2.92

RODAS3 ‖ε‖l2(J,H1) 3.21e-03 9.30e-04 2.62e-04 7.44e-05 2.12e-05
qnum 1.79 1.83 1.82 1.81

RODAS ‖ε‖l2(J,H1) 3.40e-05 1.62e-05 5.70e-06 1.72e-06 4.66e-07
qnum 1.07 1.51 1.72 1.89

RODASP ‖ε‖l2(J,H1) 8.10e-07 6.81e-08 9.79e-09 5.78e-10 2.40e-09
qnum 3.57 2.80 4.08 −2.05

A.3 Example 5.3.

Table A.5: u-component of Example 5.3. Error and numerical order of convergence.

τ 1
10

1
20

1
40

1
80

1
160

ROS3P ‖ε‖l2(J,H1) 2.35e-04 3.89e-05 6.34e-06 1.01e-06 1.55e-07
qnum 2.59 2.62 2.65 2.70

ROWDAIND2 ‖ε‖l2(J,H1) 1.64e-04 5.71e-05 1.90e-05 6.05e-06 1.82e-06
qnum 1.52 1.59 1.65 1.73

ROS3w ‖ε‖l2(J,H1) 4.75e-04 1.16e-04 3.46e-05 1.09e-05 3.32e-06
qnum 2.03 1.74 1.66 1.72

ROS3Dw ‖ε‖l2(J,H1) 7.33e-04 2.34e-04 7.40e-05 2.25e-05 6.45e-06
qnum 1.65 1.66 1.72 1.80

ROS3Pw ‖ε‖l2(J,H1) 2.52e-04 3.83e-05 5.71e-06 8.45e-07 1.23e-07
qnum 2.72 2.74 2.76 2.78

ROS34PW2 ‖ε‖l2(J,H1) 6.99e-05 7.44e-06 8.59e-07 1.27e-07 1.85e-08
qnum 3.23 3.11 2.76 2.78

ROS34PW3 ‖ε‖l2(J,H1) 1.73e-04 2.23e-05 2.83e-06 3.52e-07 4.23e-08
qnum 2.96 2.98 3.01 3.06

RODAS3 ‖ε‖l2(J,H1) 6.97e-04 2.00e-04 5.96e-05 1.77e-05 5.02e-06
qnum 1.80 1.75 1.75 1.82

RODAS ‖ε‖l2(J,H1) 4.71e-05 9.14e-06 2.06e-06 5.01e-07 1.18e-07
qnum 2.37 2.15 2.04 2.09

RODASP ‖ε‖l2(J,H1) 2.02e-05 2.24e-06 2.19e-07 1.98e-08 8.59e-09
qnum 3.17 3.36 3.47 1.20
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Table A.6: v-component of Example 5.3. Error and numerical order of convergence.

τ 1
10

1
20

1
40

1
80

1
160

ROS3P ‖ε‖l2(J,H1) 5.22e-04 7.79e-05 1.15e-05 1.67e-06 2.36e-07
qnum 2.75 2.76 2.78 2.82

ROWDAIND2 ‖ε‖l2(J,H1) 2.72e-04 2.96e-05 7.03e-06 2.69e-06 8.76e-07
qnum 3.20 2.08 1.38 1.62

ROS3w ‖ε‖l2(J,H1) 7.80e-04 1.89e-04 4.85e-05 1.27e-05 3.32e-06
qnum 2.04 1.97 1.94 1.93

ROS3Dw ‖ε‖l2(J,H1) 4.58e-04 8.59e-05 3.16e-05 1.06e-05 3.17e-06
qnum 2.41 1.44 1.57 1.75

ROS3Pw ‖ε‖l2(J,H1) 6.16e-04 9.01e-05 1.28e-05 1.81e-06 2.49e-07
qnum 2.77 2.81 2.83 2.86

ROS34PW2 ‖ε‖l2(J,H1) 3.89e-04 5.71e-05 8.18e-06 1.15e-06 1.58e-07
qnum 2.77 2.80 2.84 2.86

ROS34PW3 ‖ε‖l2(J,H1) 4.76e-04 6.09e-05 7.76e-06 9.97e-07 1.28e-07
qnum 2.97 2.97 2.96 2.96

RODAS3 ‖ε‖l2(J,H1) 3.27e-04 9.68e-05 2.96e-05 8.85e-06 2.51e-06
qnum 1.76 1.71 1.74 1.82

RODAS ‖ε‖l2(J,H1) 2.64e-05 4.74e-06 1.04e-06 2.52e-07 5.97e-08
qnum 2.48 2.18 2.05 2.08

RODASP ‖ε‖l2(J,H1) 1.07e-05 1.03e-06 1.01e-07 9.30e-09 1.21e-08
qnum 3.37 3.36 3.43 −0.38
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