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Abstract.

Completely discrete numerical methods for a nonlinear elliptic-parabolic system, the
time-dependent Joule heating problem, are introduced and analyzed. The equations are
discretized in space by a standard finite element method, and in time by combinations of
rational implicit and explicit multistep schemes. The schemes are linearly implicit in the
sense that they require, at each time level, the solution of linear systems of equations.
Optimal order error estimates are proved under the assumption of sufficiently regular
solutions.
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1 Introduction.

In this paper we construct and analyze high-order numerical methods for the
time-dependent Joule heating problem. In space we discretize by the finite ele-
ment method; for the time stepping we use a combination of rational implicit
and explicit multistep schemes.

We consider the following nonlinear elliptic-parabolic system: Given T > 0,
Ω a bounded interval, convex polygonal or polyhedral domain in R

d for d = 1, 2
or 3, respectively, σ : R → [κ,K], with two positive constants κ and K, a globally
Lipschitz continuous function, g : Ω × [0, T ] → R, and u0 : Ω → R, we seek two
functions u, ϕ : Ω × [0, T ] → R, satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut − ∆u = σ(u)|∇ϕ|2, in Ω × [0, T ],
−∇ · (σ(u)∇ϕ)

= 0, in Ω × [0, T ],
u = 0, ϕ = g, on ∂Ω × [0, T ],
u(·, 0) = u0, in Ω.

(1.1)
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This system models the electric heating of a conductive body, with u being the
temperature, ϕ the electric potential, and σ the temperature-dependent electric
conductivity.

The existence and uniqueness of global weak solutions in two space dimensions,
d = 2, was shown in [4]. The regularity of these solutions was further studied
in [7], where regularity estimates involving, essentially, space and time derivatives
of first and second order were proved. We are not aware of any existence and
regularity result in the three-dimensional case. In the present work we need
regularity of high order and we simply assume that problem (1.1) possesses
a unique, sufficiently regular solution.

To motivate the definition of the finite element method for problem (1.1),
we give a weak formulation of it: Find u(·, t) ∈ H1

0 and ϕ(·, t) ∈ H1, with
ϕ(·, t) − g(·, t) ∈ H1

0 , such that
{

(ut, v) + (∇u,∇v) = (σ(u)|∇ϕ|2, v) ∀v ∈ H1
0 , t ∈ [0, T ],

u(·, 0) = u0,

and
(σ(u)∇ϕ,∇v) = 0 ∀v ∈ H1

0 , t ∈ [0, T ].

Here we use standard notation: H1 = H1(Ω) and H1
0 = H1

0 (Ω) are Sobolev
spaces, and (·, ·) denotes both the L2 inner product and the duality pairing
between H−1 and H1

0 .

Space discretization.

Let
{
Sh

}

0<h≤1
be a family of finite dimensional subspaces of H1, consisting

of continuous piecewise polynomials of degree r− 1 ≥ 1 with respect to a quasi-
uniform family of triangulations of Ω, and set S̊h := Sh∩H1

0 . Let πh : C(Ω̄) → Sh

be a linear interpolation operator such that πhv|∂Ω = 0 when v|∂Ω = 0, and such
that

(1.2) ‖v − πhv‖W j,s ≤ Chr−j−d( 1
2− 1

s )‖v‖Hr , s ∈ [2,∞], j = 0, 1.

We consider the following semidiscrete problem: Find uh(·, t) ∈ S̊h and ϕh(·, t) ∈
Sh with ϕh(·, t) − πhg(·, t) ∈ S̊h, satisfying

(1.3)

{
(uh,t, χ) + (∇uh,∇χ) =

(
σ(uh)|∇ϕh|2, χ

) ∀χ ∈ S̊h, t ∈ [0, T ],
uh(·, 0) = u0

h,

and

(1.4) (σ(uh)∇ϕh,∇χ) = 0 ∀χ ∈ S̊h, t ∈ [0, T ],

where u0
h ∈ S̊h is an approximation to u0 such that

(1.5) ‖u0 − u0
h‖ ≤ Chr,

with ‖ · ‖ denoting the norm of L2(Ω).
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Fully discrete schemes.

We discretize (1.3) in time by a class of linearly implicit schemes expressed
in terms of bounded rational functions αi, βi : [0,∞] → R, i = 0, . . . , q, with
αq = 1, βq = 0, and the functions βi vanishing at infinity, βi(∞) = 0, i =
0, . . . , q − 1; these schemes were recently introduced and analyzed for nonlinear
parabolic equations in [1], [2], [3].

To write the schemes in compact form, we introduce the discrete Laplacian
∆h : S̊h → S̊h and the L2-projection Ph : H−1 → S̊h by

−(∆hψ, χ) = (∇ψ,∇χ), (Phv − v, χ) = 0 ∀ψ, χ ∈ S̊h, v ∈ H−1 .

Letting N ∈ N, k = T/N be the time step, and tn = nk, n = 0, . . . , N , we
define a sequence of approximations Un and Φn to un := u(·, tn) and ϕn :=
ϕ(·, tn), respectively, as follows: Find Un ∈ S̊h, Φn ∈ Sh with Φn − πhg

n ∈ S̊h,
such that, for 0 ≤ n ≤ N − q,

q∑

i=0

αi(−k∆h)Un+i = k

q−1∑

i=0

βi(−k∆h)Ph

(
σ(Un+i)|∇Φn+i|2),(1.6)

(σ(Un+q)∇Φn+q,∇χ) = 0 ∀χ ∈ S̊h .(1.7)

Given Un, . . . , Un+q−1 ∈ S̊h and Φn, . . . ,Φn+q−1 ∈ Sh, it is easily seen that
Un+q ∈ S̊h is well defined by (1.6); then, given Un+q ∈ S̊h, Φn+q is well defined
by (1.7).

The scheme (1.6)–(1.7) is linearly implicit; the implementation of (1.6) re-
quires, at every time level, the solution of several linear systems of dimension
dim(S̊h) with the same matrices for all time levels, while for the implementation
of (1.7) a linear system with matrix varying with time has to be solved. The
scheme (1.6)–(1.7) can be easily modified to allow partially parallel implemen-
tation, in the sense that Un+q is not required for the computation of Φn+q, see
Remark 3.3.

Stability assumptions.

For x ∈ [0,∞] we introduce the polynomial α(x, ·) by

α(x, ζ) :=
q∑

i=0

αi(x)ζi.

We order the roots ζj(x), j = 0, . . . , q, of α(x, ·) in such a way that the func-
tions ζj are continuous in [0,∞] and the roots ξj := ζj(0), j = 1, . . . , s, satisfy
|ξj | = 1; these unimodular roots are the principal roots of α(0, ·) and the com-
plex numbers λj := ∂1α(0,ξj)

ξj∂2α(0,ξj)
(with ∂1 denoting differentiation with respect

to the first variable) are the growth factors of ξj . We assume throughout that
the implicit method described by the rational functions α0, . . . , αq is strongly
A(0)-stable in the sense that for all 0 < x ≤ ∞ and for all j = 0, . . . , q, there
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holds |ζj(x)| < 1, and the principal roots of α(0, ·) are simple and their growth
factors have positive real parts, Reλj > 0, j = 0, . . . , s, see [1]. An additional
hypothesis, namely that α0, . . . , αq−1 vanish at infinity,

(H) α0(∞) = · · · = αq−1(∞) = 0,

will be used in Theorem 3.4 and will allow us to derive error estimates under
weaker approximation assumptions on the starting approximations.

Consistency assumptions.

Let p ≥ 1, and the functions ϕ� : [0,∞) → R, � = 0, . . . , p, be defined by

ϕ�(x) :=
q∑

i=0

[
i�αi(x) − (�i�−1 + xi�)βi(x)

]
, � = 0, . . . , p− 1,

ϕp(x) :=
q∑

i=0

[
ipαi(x) − pip−1βi(x)

]
.

We assume that the order of the time-stepping scheme is p, i.e.,

ϕ�(x) = O(xp+1−�) as x→ 0+, � = 0, . . . , p,

and its polynomial order is p− 1, i.e.,

ϕ� = 0, � = 0, . . . , p− 2;

if, in addition, ϕp−1 = 0, then the polynomial order is p, see [1].
For examples of linearly implicit schemes, including implicit-explicit multistep

schemes as well as the combination of Runge-Kutta schemes and extrapolation,
satisfying our conditions, we refer to [1].

We introduce the elliptic projection Rh : H1
0 → S̊h by

(∇Rhv,∇χ) = (∇v,∇χ) ∀χ ∈ S̊h ,

and letW (t) = Rhu(·, t) for t ∈ [0, T ],Wn = W (tn) andW (�) = D�
tW . Assuming

that the starting approximations U0, . . . , Up−1 are such that

max
0≤j≤q−1

(‖W j − U j‖ + k1/2‖∇(W j − U j)‖) ≤M1(kp + hr),

which, in case assumption (H) is satisfied, can be relaxed to

max
0≤j≤q−1

‖W j − U j‖ ≤M1(kp + hr),

and that k = O(hd/2p), we will establish the error estimate

‖u(tn) − Un‖ + ‖ϕ(tn) − Φn‖ ≤ C(kp + hr), tn ∈ [0, T ].
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Finite element methods for (1.1) have been analyzed in [7]. Both spatially
semidiscrete schemes, as well as a first order time-stepping scheme, based on
a combination of the backward and the forward Euler methods, have been con-
sidered. Optimal order error estimates have been derived under the weak mesh
condition k = O(hd/6). For a finite element analysis of the heating problem with
more general boundary conditions see [8]. A similar system of equations arising
in fluid mechanics is studied in [5], [6].

The outline of the paper is as follows: Section 2 is devoted to the consistency
of the scheme (1.6)–(1.7) for the elliptic projection of the solution u of (1.1). In
Section 3 optimal order error estimates are derived.

2 Consistency.

Our main concern in this paper is to analyze the approximation properties of
the sequences {Un}, {Φn}. As a preliminary step, we show consistency of the
time-stepping scheme for the elliptic projection W of the solution u.

Let Eh(t) ∈ S̊h, t ∈ [0, T ], denote the consistency error of the spatially discrete
scheme for the elliptic projection W = Rhu, i.e.,

(2.1) Eh(t) := Wt(t) − ∆hW (t) − Ph

(
σ(W (t))|∇ϕ(t)|2) , t ∈ [0, T ].

Let ‖ · ‖−1 denote the norm of H−1, ‖v‖−1 := supw∈H1
0

(v,w)
‖∇w‖ . Using the rela-

tion ∆hRh = Ph∆ and (1.1), the well-known L2 error estimate for W, a global
Lipschitz condition for σ, and a W 1,∞-bound for ϕn, we obtain

(2.2) max
0≤t≤T

‖Eh(t)‖−1 ≤ C max
0≤t≤T

‖Eh(t)‖ ≤ Chr.

We let W̃ j = W j , j = 0, . . . , q − 1, and apply the linearly implicit scheme (1.6)
to (2.1) to define W̃m, m = q, . . . , N , by the equations

q∑

i=0

αi(−k∆h)W̃n+i

= k

q−1∑

i=0

βi(−k∆h)
[
Ph

(
σ(W̃n+i)|∇ϕn+i|2) + Eh(tn+i)

]
,

(2.3)

for n = 0, . . . , N − q. We define the consistency error En, n = 0, . . . , N − q, of
(2.3) by

k(I − k∆h)−1En =
q∑

i=0

αi(−k∆h)Wn+i

− k

q−1∑

i=0

βi(−k∆h)
[
Ph

(
σ(Wn+i)|∇ϕn+i|2) + Eh(tn+i)

]
,

(2.4)
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for n = 0, . . . , N − q. In this section we will derive an optimal order estimate for
the consistency error En, see (2.10) below, assuming that the polynomial order
of the scheme is p. We will also derive some preliminary consistency estimates
for polynomial order p− 1, which will be used in Section 3 to establish optimal
order error estimates.

First, we use (2.1) to rewrite (2.4) in the form

k(I − k∆h)−1En =
q∑

i=0

αi(−k∆h)Wn+i

− k

q−1∑

i=0

βi(−k∆h)
(
Wt(tn+i) − ∆hW

n+i
)
.

(2.5)

Letting

En
1 :=

p∑

�=0

k�

�!
ϕ�(−k∆h)W (�)(tn),

En
2 :=

1
p!

q∑

i=0

αi(−k∆h)
∫ tn+i

tn

(tn+i − s)pW (p+1)(s) ds,

En
3 := − k

(p− 1)!

q−1∑

i=0

βi(−k∆h)
∫ tn+i

tn

(tn+i − s)p−1
(
W (p+1) − k∆hW

(p)
)
(s) ds,

and Taylor expanding the right-hand side of (2.5), we easily see that

(2.6) k(I − k∆h)−1En = En
1 + En

2 + En
3 .

Using the boundedness of αi, βi and β̂i, β̂i(x) := xβi(x), we easily obtain

‖(I − k∆h)En
2 ‖−1 ≤ Ckp

∫ tn+q

tn

(‖W (p+1)(s)‖−1 + k‖∇W (p+1)(s)‖) ds,(2.7)

‖(I − k∆h)En
3 ‖−1 ≤ Ckp

∫ tn+q−1

tn

(‖W (p+1)(s)‖−1 + ‖∇W (p)(s)‖) ds.(2.8)

In the sequel we will distinguish two cases. First, assuming that the polynomial
order is p, we have En

1 = kpϕp(−k∆h)u(p)(tn)/p!, i.e.,

(I − k∆h)En
1 = −k

p+1

p!
[
(−k∆h)−1ϕp(−k∆h) + ϕp(−k∆h)

]
∆hW

(p)(tn).

Using then the fact that ϕp and ϕ̃p, ϕ̃p(x) := ϕp(x)/x, are bounded, we easily
conclude

(2.9) ‖(I − k∆h)En
1 ‖−1 ≤ Ckp+1‖∇W (p)(tn)‖.
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Under obvious regularity hypotheses, from (2.6) and (2.7)–(2.9) we immediately
obtain the desired consistency estimate

(2.10) max
0≤n≤N−q

‖En‖−1 ≤ Ckp.

Next we will consider the case of polynomial order p− 1. Let α(x) := α0(x) +
· · · + αq(x). Using the fact that the function η, η(x) = ϕp−1(x)/[xρ(x)], is
bounded in [0,∞], see [1], we will prove in Lemma 3.2 optimal order error esti-
mates. As a preparation for Lemma 3.2, let us note that in this case there is an
additional term in En

1 , which can be written as

kp−1

(p− 1)!
ϕp−1(−k∆h)W (p−1)(tn)

= − kp

(p− 1)!
η(−k∆h) ρ(−k∆h)∆hW

(p−1)(tn)

= k(I − k∆h)−1Ẽn

− kp

(p− 1)!
η(−k∆h)

q∑

i=0

ρi(−k∆h)∆h

[
W (p−1)(tn) −W (p−1)(tn+i)

]
,

with Ẽn such that

k(I − k∆h)−1Ẽn = − kp

(p− 1)!
η(−k∆h)

q∑

i=0

αi(−k∆h)∆hW
(p−1)(tn+i).

Thus, in this case, since η̃, η̃(x) := (1 + x)η(x), is bounded, (2.10) is replaced by

(2.11) max
0≤n≤N−q

‖En − Ẽn‖−1 ≤ C kp.

3 Error estimates.

In this section we shall derive optimal order error estimates. Let ζn := Wn −
W̃n and θn := W̃n − Un, n = 0, . . . , N. Then

(3.1) un − Un = (un −Wn) + ζn + θn.

Here un −Wn = (I −Rh)un can be easily estimated,

(3.2) max
0≤n≤N

‖un −Wn‖ ≤ Chr.

Hence, it remains to estimate ζn and θn. We will estimate ζn in Lemmas 3.1 and
3.2 for polynomial order p and p−1, respectively. Estimates for θn will be derived
in Theorem 3.3 for all methods under consideration, and in Theorem 3.4 for
methods satisfying (H) under weaker approximation hypotheses on the starting
approximations.
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Lemma 3.1. Assume that the polynomial order is p. Then

(3.3) max
0≤n≤N

(
‖Wn − W̃n‖2 + k

n∑

�=q

‖∇(W � − W̃ �)‖2
)
≤ Ck2p.

Proof. Let b̃n := Ph[(σ(Wn) − σ(W̃n))|∇ϕn|2], n = 0, . . . , N . Subtracting
(2.3) from (2.4), we obtain

q∑

i=0

αi(−k∆h)ζn+i = k

q−1∑

j=0

βj(−k∆h)b̃n+j + k(I − k∆h)−1En,

n = 0, . . . , N − q. Then, we have, see [1],

‖ζn‖2 + k

n∑

�=q

‖∇ζ�‖2

≤ C
{ q−1∑

j=0

(‖ζj‖2 + k‖∇ζj‖2
)

+ k

n−q∑

�=0

(‖b̃�‖2
−1 + ‖E�‖2

−1

)}
,

(3.4)

n = q, . . . , N . Using here (2.10) and the fact that ζ0 = · · · = ζq−1 = 0 and
‖b̃�‖−1 ≤ C‖ζ�‖, a discrete Gronwall argument leads to (3.3) and the proof is
complete.

Next we relax the polynomial order hypothesis.

Lemma 3.2. Assume that the polynomial order is p− 1. Then (3.3) is valid.

Proof. Let ζ̂2 and ζ̃j
2 , j = 0, . . . , N, be such that ζ̂j

2 = ζ̃j
2 = 0, j = 0, . . . , q−1,

and

q∑

i=0

αi(−k∆h)ζ̂n+i
2 = k(I − k∆h)−1(En − Ẽn),

q∑

i=0

αi(−k∆h)ζ̃n+i
2 = k(I − k∆h)−1Ẽn,

n = 0, . . . , N − q. Let further ζm
1 := ζm − ζ̂m

2 − ζ̃m
2 , m = 0, . . . , N. Then

q∑

i=0

αi(−k∆h)ζn+i
1 = k

q−1∑

j=0

βj(−k∆h)b̃n+j ,

n = 0, . . . , N − q. Now ζn
1 and, in view of (2.11), also ζ̂n

2 , can be easily estimated
in the desired form, see (3.4). Further, ζ̃n

2 can be estimated as in the proof of
Theorem 4.2 in [1].
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Next we estimate θn = W̃n − Un and obtain a bound for the total error.

Theorem 3.3. Assume that r ≥ 3, d ≤ 3. Let Un,Φn and W̃n be solutions
of (1.6)–(1.7) and (2.3), respectively, with starting approximations U0, . . . , U q−1

∈ S̊h such that

(3.5) max
0≤j≤q−1

(‖W j − U j‖ + k1/2‖∇(W j − U j)‖) ≤M1(kp + hr).

Let k = O(hd/2p). Then, for k and h small enough,

(3.6) ‖u(tn) − Un‖ + ‖ϕ(tn) − Φn‖ ≤ C(kp + hr), tn ∈ [0, T ],

with a constant C independent of k and h.

Proof. We first recall an argument which is based on an inverse inequality
and the interpolation error bounds in (1.2). Let s ∈ [2,∞]. Then, for vh ∈ Sh,

‖v − vh‖W 1,s ≤ ‖v − πhv‖W 1,s + ‖πh(v − vh)‖W 1,s

≤ ‖v − πhv‖W 1,s + Ch−( d
2−d

s )‖πh(v − vh)‖W 1,2

≤ ‖v − πhv‖W 1,s

+ Ch−( d
2− d

s )
(‖v − πhv‖W 1,2 + ‖v − vh‖W 1,2

)

≤ Chr−1−( d
2−d

s )‖v‖Hr + Ch−( d
2− d

s )‖v − vh‖W 1,2 .

(3.7)

We have ‖∇ϕ‖L∞([0,T ],L∞) ≤ M2 for some constant M2. In order to prove
a preliminary error estimate, we replace the nonlinearity (u, ϕ) 
→ σ(u)|∇ϕ|2
by (u, ϕ) 
→ σ(u)f(∇ϕ), where f : R

d → R is a globally Lipschitz continuous
function such that

f(x) = |x|2 for x ∈ R
d with |x| ≤M2 + 2.

This does not affect the solution of (1.1), since |∇ϕ| ≤ M2 implies f(∇ϕ) =
|∇ϕ|2. We begin by proving a preliminary error bound, see (3.13) and (3.11)
below, for the solution of the modified equation (1.6)–(1.7), still denoted Un,Φn.
By the inverse inequality argument (3.7), applied with v = ϕn, vh = Φn, s = ∞,
using k = O(hd/2p), r ≥ 3, d ≤ 3, we may then show a posteriori that

(3.8) sup
tn∈[0,T ]

‖∇Φn‖L∞ ≤M2 + 1,

if k and h are small enough, so that σ(Un)f(∇Φn) = σ(Un)|∇Φn|2 and hence
Un,Φn is identical to the solution of the original equation (1.6)–(1.7).

We now turn to θn = W̃n−Un, which by (1.6) and (2.3), satisfies the equation:

q∑

i=0

αi(−k∆h)θn+i = k

q−1∑

i=0

βi(−k∆h)
(
Phb

n+i + Eh(tn+i)
)
, n = 0, . . . , N − q,
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where, since f(∇ϕ�) = |∇ϕ�|2,

b� := σ(W̃ �)f(∇ϕ�) − σ(U �)f(∇Φ�).

Using the fact that ‖Phv‖−1 ≤ C‖v‖−1 for v ∈ H−1, it easily follows from
Lemma 2.1 of [1] that

(3.9)

‖θn‖2 + k

n∑

�=q

‖∇θ�‖2 ≤ C
( q−1∑

j=0

(‖θj‖2 + k‖∇θj‖2
)

+ k

n−q∑

�=0

‖b�‖2
−1 + k

n−q∑

�=0

‖Eh(t�)‖2
−1

)
,

for n = q, . . . , N , and thus, in view of (2.2) and (3.5),

(3.10) ‖θn‖2 + k

n∑

�=q

‖∇θ�‖2 ≤ C
(
(kp + hr)2 + k

n−q∑

�=0

‖b�‖2
−1

)
.

Now ϕ� − Φ� can, in view also of (3.3) and the fact that k = O(hd/6p), be
estimated in terms of θ� as follows:

‖∇(ϕ� − Φ�)‖ ≤ C
(
hr−1 + kp + ‖θ�‖),(3.11)

‖ϕ� − Φ�‖ ≤ C
(
hr + kp + ‖θ�‖ + h−

d
6 ‖θ�‖2

)
,(3.12)

see Lemma 3.2 in [7].
We use this to show a preliminary low order estimate,

(3.13) ‖θn‖ ≤ C
(
kp + hr−1

)
.

We have, since f(∇ϕ�) = |∇ϕ�|2,

b� =
(
σ(W̃ �) − σ(U �)

)|∇ϕ�|2 + σ(U �)
(
f(∇ϕ�) − f(∇Φ�)

)
.

Hence, by (3.11) and the boundedness of σ and ∇ϕ�,

‖b�‖−1 ≤ C‖b�‖
≤ C‖θ�‖‖∇ϕ�‖2

L∞ + C‖σ(U �)‖L∞‖∇(ϕ� − Φ�)‖
≤ C

(
hr−1 + kp + ‖θ�‖).

Together with (3.10) and Gronwall’s lemma this proves (3.13).
From this point on we will not use f, since we now know that Φn satisfies

(3.8).
In order to prove the optimal order estimate (3.6), using the relation

|∇ϕ�|2 − |∇Φ�|2 = 2∇ϕ� · ∇(ϕ� − Φ�) − |∇(ϕ� − Φ�)|2,
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we can split b� as b� = R�
1 +R�

2 +R�
3 with

R�
1 :=

[
σ(W̃ �) − σ(U �)

]|∇ϕ�|2 + 2
[
σ(U �) − σ(u�)

]∇ϕ� · ∇(ϕ� − Φ�),

R�
2 := 2σ(u�)∇ϕ� · ∇(ϕ� − Φ�),

R�
3 := −σ(U �)|∇(ϕ� − Φ�)|2.

First, obviously, in view of (3.2), (3.3), and the Lipschitz continuity of σ,

‖R�
1‖−1 ≤ C

(‖θ�‖ + kp + hr
)
.

Further, for v ∈ H1
0 ,
(
R�

2, v
)

= 2(∇(ϕ� − Φ�), σ(u�)∇ϕ�v)

= −2(ϕ� − Φ�,∇ · (σ(u�)∇ϕ�v))

= −2(ϕ� − Φ�, σ(u�)∇ϕ� · ∇v),

since ∇ · (σ(u�)∇ϕ�) = 0 by (1.1). Hence

‖R�
2‖−1 ≤ C‖ϕ� − Φ�‖,

and thus, in view of (3.12), (3.13), and the assumption that k = O(hd/6p),

‖R�
2‖−1 ≤ C

(
hr + kp + ‖θ�‖ + h−

d
6 ‖θ�‖2

)

≤ C
(
hr + kp + (1 + hr−1− d

6 + kph−
d
6 )‖θ�‖) ≤ C

(
hr + kp + ‖θ�‖).

Finally, concerning R�
3, we first note that

‖R�
3‖−1 ≤ C‖R�

3‖L6/5,

which follows from Hölder’s and Sobolev’s inequalities (for d ≤ 3):
(
R�

3, v
) ≤ ‖R�

3‖L6/5‖v‖L6 ≤ C‖R�
3‖L6/5‖∇v‖, ∀v ∈ H1

0 .

Thus, using (1.2), (3.7) with s = 12/5, and (3.11),

‖R�
3‖−1 ≤ C‖R�

3‖L6/5

≤ C‖σ(U �)‖L∞‖∇(ϕ� − Φ�)‖2
L12/5 ≤ C‖∇(ϕ� − Φ�)‖2

L12/5

≤ Ch2r−2− d
6 ‖ϕ�‖Hr + Ch−

d
6 ‖∇(ϕ� − Φ�)‖2

≤ Ch2r−2− d
6 + Ch−

d
6 k2p + Ch−

d
6 ‖θ�‖2,

i.e., in view of (3.13) and the assumptions that k = O(hd/6p) and r ≥ 3, d ≤ 3,

‖R�
3‖−1 ≤ C(hr + kp).

Hence

(3.14) ‖b�‖−1 ≤ C
(
hr + kp + ‖θ�‖).
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Together with (3.10) and Gronwall’s lemma this proves an O(hr + kp) bound
for ‖θn‖, and by (3.12) also for ‖ϕn − Φn‖. Combined with (3.1), (3.2), and
Lemmas 3.1–3.2 this proves (3.6).

For schemes satisfying (H), (3.9) can be replaced by

‖θn‖2 + k

n∑

�=q

‖∇θ�‖2 ≤ C
( q−1∑

j=0

‖θj‖2 + k

n−q∑

�=0

‖b�‖2
−1 + k

n−q∑

�=0

‖Eh(t�)‖2
−1

)
,

see Remark 7.2 and Lemma 2.1 in [1]. Therefore, we have the following result:

Theorem 3.4. Assume that (H) is satisfied, and that the starting approxima-
tions U0, . . . , U q−1 ∈ S̊h are such that

max
0≤j≤q−1

‖W j − U j‖ ≤M1(kp + hr),

and all hypotheses of Theorem 3.3 except (3.5) are satisfied. Then (3.6) is valid.

Remark 3.1. The mesh condition k = O(hd/2p) in Theorems 3.3 and 3.4
becomes stringent for d = 3 and p = 1. For a first-order scheme, a combination
of the backward and the forward Euler methods, the estimate (3.6) is established
in [7] under the weaker condition k = O(hd/6); the major difference between the
approach of [7] and our present approach is what smoothing property is used; in
[7] a stronger smoothing property for the backward Euler method is used while
here we use (3.9), which is valid for any strongly A(0)-stable scheme.

Remark 3.2. The optimal order error estimate (3.6) in Theorems 3.3 and 3.4
is derived for r ≥ 3. Here we briefly discuss the case r = 2. The assumption
r ≥ 3 is used in the proof only in the proof of (3.8) and in the estimation of
‖R�

3‖−1. For r = 2 and d = 3 this estimate yields

‖R�
3‖−1 ≤ C

(
kp + h3/2

)
.

However, our proof of (3.8) does not work in this case.
For d = 1 or 2, ‖R�

3‖−1 is dominated (modulo a constant factor) by ‖R�
3‖Ls

with s = 1 for d = 1, and any s > 1 for d = 2. Estimating ‖R�
3‖−1 by ‖R�

3‖Ls

instead of ‖R�
3‖L6/5 and proceeding along the lines of our proof we obtain (for

r = 2)

max
0≤n≤N

‖θn‖ ≤ C(kp + h2) for d = 1,

max
0≤n≤N

‖θn‖ ≤ C(kp + h2−ε) for d = 2,

for any positive ε. Thus, for d = 1 the estimate (3.6) holds for r = 2 as well, while
for r = 2 and d = 2 we obtain an estimate of the form (3.6) with h2 replaced by
h2−ε, for any positive ε. The proof of (3.8) works for r = 2 and d ≤ 2.
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Remark 3.3. To advance in time the scheme (1.6)–(1.7) a number of linear
systems have to be solved for Un+q and one linear system for Φn+q. These
systems cannot be solved in parallel since Φn+q depends on Un+q. (The scheme
(1.6)–(1.7) can be implemented in parallel for Φn+q and Un+q+1 if βq−1 = 0.)
However, the scheme (1.6)–(1.7) can be easily modified to allow partially parallel
implementation. To this end we replace (1.7) by

(3.15) (σ(Ûn+q)∇Φn+q,∇χ) = 0 ∀χ ∈ S̊h.

with

(3.16) Ûn+q :=
q−1∑

j=0

Ln,q
j (tn+q) Un−j ,

where Ln,q
j ∈ Pq−1 are the Lagrange polynomials associated with the points

tn, . . . , tn+q−1, i.e., Ln,q
j (tn+i) = δij , i, j = 0, . . . , q − 1. It is easily seen that all

error estimates for the scheme (1.6)–(1.7) established in this paper are also valid
for the scheme (1.6)–(3.15)–(3.16).

Remark 3.4. The error estimate (3.6) is established under the condition that
σ is globally Lipschitz continuous. This may be relaxed to a local Lipschitz
condition if we assume that max0≤j≤q−1 ‖W j − U j‖L∞ ≤ 1/2 and

(3.17)

h = o(k
1
2r ) for d = 1,

h| logh| 1
2r = o(k

1
2r ) for d = 2,

h = o(k
1

2r−1 ) for d = 3.

To see this, we replace σ everywhere by a globally Lipschitz continuous function
σ̃ coinciding with σ in the interval

(3.18) I := [min
x,t

u(x, t) − 1,max
x,t

u(x, t) + 1].

This does not affect the solution of (1.1). Further, using the same notation for
the numerical approximations given by (1.6)–(1.7) (with σ̃ instead of σ), all our
estimates are valid and we have, in view of (3.10) and (3.14),

max
q≤n≤N

√
k ‖∇θn‖ ≤ C(kp + hr).

By an inverse inequality, from (3.2) and (3.3) we obtain, for sufficiently small h,

(3.19) max
0≤n≤N

‖un − W̃n‖L∞ ≤ 1
2
.

Similarly,

max
q≤n≤N

‖θn‖L∞ ≤ C
(
kp− 1

2 + hrk−
1
2
)

for d = 1,

max
q≤n≤N

‖θn‖L∞ ≤ C
(
kp− 1

2 + hrk−
1
2
)| log h| 12 for d = 2,

max
q≤n≤N

‖θn‖L∞ ≤ C
(
kp− 1

2h−
1
2 + hr− 1

2 k−
1
2
)

for d = 3.
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Thus, under the mesh conditions (3.17), for k and h sufficiently small,

(3.20) max
q≤n≤N

‖θn‖L∞ ≤ 1
2
.

From (3.19) and (3.20) we easily see that Un(x) ∈ I, n = 0, . . . , N, x ∈ Ω, and
thus σ(Un) = σ̃(Un), and conclude easily that (3.6) is valid for the approxima-
tions given by the scheme (1.6)–(1.7).
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