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Abstract.
We study the semidiscrete Galerkin approximation of a stochastic parabolic partial

differential equation forced by an additive space-time noise. The discretization in space
is done by a piecewise linear finite element method. The space-time noise is approx-
imated by using the generalized L2 projection operator. Optimal strong convergence
error estimates in the L2 and Ḣ−1 norms with respect to the spatial variable are
obtained. The proof is based on appropriate nonsmooth data error estimates for the
corresponding deterministic parabolic problem. The error estimates are applicable in
the multi-dimensional case.
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1 Introduction.

In this paper we will study the finite element approximation of the linear
stochastic parabolic partial differential equation

du + Au dt = dW, for 0 < t ≤ T , with u(0) = u0,(1.1)

in a Hilbert space H with inner product (·, ·) and norm ‖ · ‖, where u(t) is an
H-valued random process, A is a linear, selfadjoint, positive definite, not neces-
sarily bounded operator with a compact inverse, densely defined in D(A) ⊂ H,
where W (t) is a Wiener process defined on a probability space (Ω,F ,P) and
u0 ∈ H.

For the sake of simplicity, we shall concentrate on the case A = −∆ subject to
homogeneous Dirichlet boundary conditions, where ∆ stands for the Laplacian
operator and H = L2(D), where D is a bounded convex domain in Rd, d = 1, 2, 3,
with a sufficiently smooth boundary ∂D.
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Such equations are common in applications. Many models in physics, chem-
istry, biology, population dynamics, neurophysiology, etc., are described by sto-
chastic partial differential equations, see Da Prato and Zabczyk [7], Walsh [28],
etc. The existence, uniqueness, and properties of the solutions of such equations
have been well studied, see Curtain and Falb [4], Da Prato [5], Da Prato and
Lunardi [6], Da Prato and Zabczyk [7], Dawson [9], Gozzi [11], Peszat and
Zabczyk [22], Walsh [28], etc.

Let E(t) = e−tA, t ≥ 0. Then (1.1) admits a unique mild solution, see Da
Prato and Zabczyk [7, Theorems 5.2, 5.4],

u(t) = E(t)u0 +
∫ t

0

E(t − s) dW (s), for 0 < t ≤ T ,(1.2)

where the integral is understood in Itô sense. We will review the Hilbert space
valued Itô integral in Section 2.

The numerical approximation for (1.1) started with the work by Greksch and
Kloeden [12], Gyöngy and Nualart [15]. Further contributions include Allen,
Novosel and Zhang [1], Benth and Gjerde [2], Davie and Gaines [8], Du and
Zhang [10], Gyöngy [13, 14], Hausenblas [16, 17], Kloeden and Shott [18], Lord
and Rougemont [19], Printems [23], Shardlow [24], Theting [25, 26], Yan [29],
etc.

The difficulty of the numerical approximation of (1.1) is to approximate the
noise in a suitable way. Let us review some ways to approximate the noise used
in literature. Consider the one-dimensional problem

∂u

∂t
(t, x) − ∂2u

∂x2
(t, x) =

∂2W

∂t∂x
(t, x), 0 < t ≤ T,

u(0, x) = u0(x), 0 < x < 1,(1.3)
u(t, 0) = u(t, 1) = 0, t ≥ 0,

where ∂2W/∂t∂x denotes the mixed second-order derivative of the Brownian
sheet. The integral formulation of (1.3) has the form

u(t, x) =
∫ 1

0

Gt(x, y)u0(y) dy +
∫ t

0

∫ 1

0

Gt−s(x, y) dW (s, y),

where Gt(x, y) = 2
∑∞

n=1 sin nπx sin nπye−(nπ)2t is the fundamental solution of

vt(t, x) − vxx(t, x) = 0, v(0, x) = φ(x), v(t, 0) = v(t, 1) = 0,

so that

v(t, x) =
∫ 1

0

Gt(x, y)φ(y) dy.

Let 0 = t0 < t1 · · · < tN = T be a partition of [0, T ], tn = nk, n = 0, 1, 2, . . . , N ,
where k is the time step. Let 0 = x0 < x1 < · · · < xJ = 1 be a partition
of [0, 1], xj = jh, j = 0, 1, 2, . . . , J , where h is the space step. Allen, Novosel
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and Zhang [1] approximate the space-time white noise W by using the following
piecewise constant functions on a partition [tn−1, tn] × [xj−1, xj ], 1 ≤ n ≤ N ,
1 ≤ j ≤ J of [0, T ] × [0, 1],

dW (t, x) ≈ dŴ (t, x) =
∂2Ŵ (t, x)

∂t∂x
dt dx =

1
kh

N∑
n=1

J∑
j=1

ηnj

√
khχn(t)χj(x) dt dx,

where

χn(t) =
{

1, tn−1 ≤ t ≤ tn,
0, otherwise, χj(x) =

{
1, xj−1 ≤ x ≤ xj ,
0, otherwise,

and

ηnj =
1
kh

∫ tn

tn−1

∫ xj

xj−1

dW (t, x) = N (0, 1),

where N (0, 1) is the standard real-valued Gaussian random variable and ηnj are
independent and identically distributed (iid). It is obvious that ∂2Ŵ/∂t∂x ∈
L2(0, 1) for fixed t ∈ [0, T ], ω ∈ Ω. Applying the standard finite element and
finite difference methods to (1.3) with ∂2W/∂t∂x replaced by ∂2Ŵ/∂t∂x, they
obtain the corresponding error estimates. See also Davie and Gaines [8], Gyöngy
[13, 14] for a quasi-linear parabolic stochastic partial differential equations with
finite difference method, Du and Zhang [10] for some special noises.

Shardlow [24] approximates the noise by spectral method. Let PJ denote the
operator taking f to its first J Fourier modes, i.e.,

PJf =
J∑

j=1

(f, ej)ej ,

where ej =
√

2 sin jπx, j = 1, 2, . . . , are the eigenvectors of A = −∂2/∂x2 subject
to Dirichlet boundary condition. Then he approximates the Wiener process over
the time step (tn−1, tn) by

dWk(n) :=
∫ tn

tn−1

PJ dW (s),

which is a L2(0, 1) function. The numerical method evaluates this function at the
grid points xj = jh, j = 1, 2, . . . , J . See also Hausenblas [16, 17] for a quasi-linear
parabolic stochastic partial differential equations in a very general approach.

Moreover, Benth and Gjerde [2], Theting [25, 26] use the chaos expansion
theory and finite element methods to consider the approximation of (1.1).

In the present paper, we approximate the space-time noise by using the gen-
eralized L2-projection operator (1.4) and then introduce the finite element for-
mulation for (1.1) in the semidiscrete case. By using the error estimates for
deterministic parabolic problem, we can prove optimal strong error estimates
in both L2 and Ḣ−1 norms. Our proof is quite simple and applicable in the
multi-dimensional case.
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Let Sh be a family of linear finite element spaces, i.e., Sh consists of continuous
piecewise polynomials of degree ≤ 1 with respect to triangulation T of D.
For simplicity, we always assume that {Sh} ⊂ H1

0 = H1
0 (D) = {v ∈ L2(D),

∇v ∈ L2(D), v|∂D = 0}. Let Ḣs = Ḣs(D) = D(As/2) for any s ∈ R and denote
its norm by | · |s = ‖As/2 · ‖.

We find that W (t) ∈ Ḣ−1, see Lemma 3.5 in Section 3. To introduce the finite
element formulation for (1.1), we will use the generalized L2-projection operator
Ph : Ḣ−1 → Sh defined by, see Chrysafinos and Hou [3],

(Phv, χ) = 〈v, χ〉, ∀χ ∈ Sh ⊂ Ḣ1, ∀v ∈ Ḣ−1,(1.4)

where 〈·, ·〉 denotes the pairing between Ḣ−1 and Ḣ1. One can easily show that
Ph is well defined by introducing a basis {ϕi}Nh

i=1 and solve for Phv =
∑Nh

j=1 αjϕj

from the equations (
∑Nh

j=1 αjϕj , ϕi) = 〈v, ϕi〉. Also it is evident that when v ∈
L2(D), Phv is the standard L2 projection operator, see Thomée [27].

The semidiscrete problem corresponding to (1.1) is to find the process uh(t) =
uh(·, t) ∈ Sh, such that

duh + Ahuh dt = Ph dW, for 0 < t ≤ T , with uh(0) = Phu0,(1.5)

where Ah is the discrete analogue of A = −∆ with the Dirichlet boundary
condition defined by

(Ahψ, χ) = (∇ψ,∇χ), ∀ψ, χ ∈ Sh.

With Eh(t) = e−tAh , t ≥ 0, (1.5) admits a unique mild solution

uh(t) = Eh(t)Phu0 +
∫ t

0

Eh(t − s)Ph dW (s).

Let E be the expectation. For any Hilbert space H1, we define L2(Ω; H1) by

L2(Ω; H1) =
{

v : E‖v‖2
H1

=
∫

Ω

‖v(ω)‖2
H1

dP(ω) < ∞
}

,

with the norm ‖v‖L2(Ω;H1) = (E‖v‖2
H1

)1/2.
Let L0

2 = HS (Q1/2(H), H) denote the space of Hilbert–Schmidt operators
from Q1/2(H) to H, where Q is the covariance operator of W (t), see Section 2.
Our main results in this paper are the following:

Theorem 1.1. Let uh and u be the solutions of (1.5) and (1.1), respectively.
Assume that ‖A(β−1)/2‖L0

2
< ∞ for some β ∈ [0, 1]. Then we have, for t ≥ 0

and u0 ∈ L2(Ω; Ḣβ),

‖uh(t) − u(t)‖L2(Ω;H) ≤ Chβ
(
‖u0‖L2(Ω;Ḣβ) + ‖A(β−1)/2‖L0

2

)
.(1.6)

In particular, if W (t) is an H-valued Wiener process with Tr(Q) < ∞, then we
have, for t ≥ 0 and u0 ∈ L2(Ω; Ḣ1),

‖uh(t) − u(t)‖L2(Ω;H) ≤ Ch
(
‖u0‖L2(Ω;Ḣ1) + Tr(Q)1/2

)
.(1.7)
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Theorem 1.2. Let uh and u be the solutions of (1.5) and (1.1), respectively.
Assume that ‖A(β−1)/2‖L0

2
< ∞ for some β ∈ [0, 1]. Then we have, for 0 ≤ t ≤ T

and u0 ∈ L2(Ω; Ḣβ), with �h = log(T/h2),

‖uh(t) − u(t)‖L2(Ω;Ḣ−1) ≤ Chβ+1
(
‖u0‖L2(Ω;Ḣβ) + �h‖A(β−1)/2‖L0

2

)
.(1.8)

In particular, if W (t) is an H-valued Wiener process with Tr(Q) < ∞, then we
have, for 0 ≤ t ≤ T and u0 ∈ L2(Ω; Ḣ1),

‖uh(t) − u(t)‖L2(Ω;Ḣ−1) ≤ Ch2
(
‖u0‖L2(Ω;Ḣ1) + �h Tr(Q)1/2

)
.(1.9)

We remark that similar error estimates can be obtained in the fully discrete
case. The proofs are similar to the semidiscrete case. We will not discuss them
here. For example, the backward Euler scheme is to find Un ∈ Sh, Un ≈ u(tn),
such that,

Un − Un−1

k
+ AhUn =

1
k

∫ tn

tn−1

Ph dW (t), n ≥ 1, U0 = Phu0,(1.10)

where we approximate the noise over (tn−1, tn) by
∫ tn

tn−1

Ph dW (t) = Ph

(
W (tn) − W (tn−1)

)
.

With r(λ) = (1 + λ)−1, we can rewrite (1.10) in the form

Un = r(kAh)Un−1 +
∫ tn

tn−1

r(kAh)Ph dW (s), n ≥ 1,

U0 = Phu0.

(1.11)

Following the proof of error estimates for uh − u, we can prove similar error
estimates for Un − u(tn). This was first done in the temporally semidiscrte case
by Printems [23] and later in the completely discrete case by Yan [29]. In this
paper, we will only focus on the proofs of the error estimates in the spatially
semidiscrete case.

This paper is organized as follows. In Section 2, we discuss the Itô integral
with respect to the Wiener process in Hilbert space. In Section 3, we consider
the regularity of the solution of (1.1). In Section 4, we prove error estimates for a
deterministic problem. We then give, in Section 5, the proofs of our main results.

2 Preliminaries.

In this section, we will give a short discussion of the Itô integral with respect
to the Wiener process W (t) in Hilbert space.

2.1 The stochastic integral with respect to an H-valued Wiener process.

A family W (t), t ≥ 0, of H-valued random variables is called a Wiener process
on H, if and only if, see [7] and [30],
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(i) W (0) = 0,
(ii) for almost all ω ∈ Ω, t �→ W (t, ω) is a continuous function,
(iii) W (t) has independent increments,
(iv) L(W (t) − W (s)) = L(W (t − s)), 0 ≤ s ≤ t.

Here L(X) denotes the law, or the distribution, of the H-valued random variable
X, i.e., the probability measure on H defined by

L(X)(A) = P{ω : X(ω) ∈ A}, for any A ∈ B(H),

where B(H) is the Borel σ-algebra of H, i.e., the smallest σ-algebra containing
all closed (or open) sets of H.

It turns out that if W (t) is a Wiener process on H, then, for arbitrary t,
L(W (t)) is a Gaussian probability measure on H with the mean 0 and the
covariance operator tQ, i.e.,

L(W (t)) = N (0, tQ),

where Q is a linear, self-adjoint, positive definite, bounded operator with finite
trace, i.e., Tr(Q) < ∞. We then call the above W (t) an H-valued Wiener process
with covariance operator Q, Tr(Q) < ∞.

There is a natural class of operator-valued processes, which can be stochas-
tically integrated with respect to an H-valued Wiener process W (t). Denote
by Q1/2(H) the image of the operator Q1/2 on H. Denote by L(H) the space
of bounded linear operators on H, and by L0

2(Q
1/2(H), H) the space of all

Hilbert–Schmidt operators from Q1/2(H) into H, i.e.,

L0
2(Q

1/2(H), H) =

{
ψ ∈ L

(
Q1/2(H), H

)
:

∞∑
j=1

‖ψgj‖2 < ∞
}

,

where {gj}∞j=1 is an arbitrary orthonormal basis of Q1/2(H). Its norm is denoted
by

‖ψ‖L0
2

=

( ∞∑
j=1

‖ψgj‖2

)1/2

,

where L0
2 = L0

2(Q
1/2(H), H).

Denote by L2
F ([0, T ];L0

2) the separable Hilbert space of all measurable pro-
cesses x, with values in L0

2, such that

‖x‖L2
F ([0,T ];L0

2)
=

(∫ T

0

E‖x(t)‖2
L0

2
dt

)1/2

< ∞.

For any ψ(·) ∈ L2
F ([0, T ];L0

2), we can define the stochastic integral

∫ T

0

ψ(t) dW (t)(2.1)
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in the standard way as in the stochastic integral with respect to the scalar Wiener
process W (t).

2.2 The stochastic integral with respect to a cylindrical Wiener process.

The construction of the stochastic integral for an H-valued Wiener process
W (t) above requires that W (t) is H-valued, which implies that Q is a trace class
operator. Here we shall extend the definition of the stochastic integral to the case
of a cylindrical Wiener process. Let Q be a linear, self-adjoint, positive definite,
bounded operator on H, not necessarily in the trace class, but with a bounded
sequence of positive eigenvalues {γl}∞l=1 and a corresponding orthonormal basis
of eigenvectors {el}∞l=1 in H. Thus Q is not necessarily compact, for example,
Q = I. By a cylindrical Wiener process with covariance operator Q,Tr(Q) ≤
∞, we mean the series, see Da Prato and Zabczyk [7], Peszat [21], Peszat and
Zabczyk [22],

W (t) =
∞∑

l=1

γ
1/2
l elβl(t), t ≥ 0,(2.2)

where {βl(t)} is a family of real-valued, independent, Brownian motions. In the
special case Q = I, W (t) is defined by

W (t) =
∞∑

l=1

elβl(t), t ≥ 0.(2.3)

We observe that (2.2) is divergent in L2(Ω; H) if Q is not in the trace class,
in which case W (t) is not an H-valued process. In fact, for arbitrary t > 0,

E

∥∥∥∥∥
∞∑

l=1

γ
1/2
l elβl(t)

∥∥∥∥∥
2

=
∞∑

l=1

γlEβl(t)2 = t

∞∑
l=1

γl = t Tr(Q) = ∞.

However, let HL be an arbitrary Hilbert space such that the embedding of
Q1/2(H) into HL is Hilbert–Schmidt. Then we have the following lemma, see [7,
Proposition 4.11].

Lemma 2.1. The cylindrical Wiener process (2.2) defines a HL-valued Wiener
process with some covariance operator QL.

For arbitrary h ∈ H, the process

〈h, W (t)〉 :=
∞∑

l=1

γ
1/2
l (h, el)βl(t)(2.4)

is a real-valued Brownian motion and

E
(
〈h1, W (t)〉〈h2, W (s)〉

)
= min(t, s)(Qh1, h2), for h1, h2 ∈ H.(2.5)
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For any ψ(·) ∈ L2
F ([0, T ];L0

2), we can define the stochastic integral with respect
to the cylindrical Wiener process as follows:

∫ T

0

ψ(t) dW (t) =
∞∑

l=1

∫ T

0

ψ(t)gl d〈gl, W (t)〉,(2.6)

where {gl}∞l=1 is an arbitrarily orthonormal basis in Q1/2(H), and the integral
on the right is the standard Itô integral.

Let us consider three special cases.

(i) If Q = I, then we can choose gl = el, and hence 〈gl, W (t)〉 = βl(t) by (2.4),
therefore the stochastic integral is

∫ T

0

ψ(t) dW (t) =
∞∑

l=1

∫ T

0

ψ(t)el dβl(t).

(ii) If W (t) is a Wiener process with Tr(Q) < ∞, then Q1/2 is Hilbert–Schmidt
and HL = H. In this case, the stochastic integral defined by (2.6) is
consistent with the stochastic integral defined in (2.1).

(iii) More generally, in the present paper we assume that ‖A(β−1)/2‖L0
2

< ∞ for
some β ∈ [0, 1], i.e.,

‖A(β−1)/2‖2
L0

2
=

∞∑
l=0

γl‖A(β−1)/2el‖2 < ∞,

which implies that HL = Ḣβ−1, see Lemma 3.5 in Section 3. Thus W (t)
is Ḣ−1-valued, which suggests that we should use the generalized L2-
projection operator in the formulation of finite element method for (1.1).
We remark that the following isometry property holds for the cylindrical
Wiener process W (t)

E
∥∥∥∥
∫ T

0

ψ(t) (t)
∥∥∥∥

2

=
∫ T

0

E‖ψ(t)‖2
L0

2
dt.(2.7)

3 Regularity of the mild solution.

In this section we will consider the regularity of the mild solution of (1.1). We
have

Theorem 3.1. Let u(t) be the mild solution (1.2) of (1.1). If ‖A(β−1)/2‖L0
2

<

∞ for some β ∈ [0, 1], then we have, for fixed t ∈ [0, T ],

‖u(t)‖L2(Ω;Ḣβ) ≤ C
(
‖u0‖L2(Ω;Ḣβ)+‖A(β−1)/2‖L0

2

)
, for u0 ∈ L2(Ω; Ḣβ).(3.1)

In particular, if W (t) is an H-valued Wiener process with covariance operator
Q,Tr(Q) < ∞, then we have

‖u(t)‖L2(Ω;Ḣ1) ≤ C
(
‖u0‖L2(Ω;Ḣ1) + Tr(Q)1/2

)
, for u0 ∈ L2(Ω; Ḣ1).(3.2)
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To prove this theorem, we need some regularity results which are related to
the fact that E(t) = e−tA is an analytic semigroup on H. For later use, we collect
some results in the next two lemmas, see Thomée [27] or Pazy [20].

Lemma 3.2. Let α, β ∈ R and let l ≥ 0 be any integer. We have

|Dl
tE(t)v|β ≤ Ct−(β−α)/2−l|v|α, for t > 0, 2l + β ≥ α,(3.3)

and
∫ t

0

sα|Dl
tE(s)v|2β ds ≤ C|v|22l+β−α−1, for t ≥ 0, α ≥ 0.(3.4)

Lemma 3.3. For arbitrary α ≥ 0, 0 ≤ β ≤ 1, we have

‖AαE(t)‖ ≤ Ct−α, for t > 0,(3.5)

and

‖A−β(I − E(t))‖ ≤ Ctβ , for t ≥ 0.(3.6)

Proof of Theorem 3.1. By (1.2), we have, for arbitrary β ≥ 0, using
stability property of E(t) and isometry property,

E(|u(t)|2β) ≤ 2E(|E(t)u0|2β) + 2E
∥∥∥∥
∫ t

0

Aβ/2E(t − s) dW (s)
∥∥∥∥

2

(3.7)

≤ 2E(|u0|2β) + 2E
∫ t

0

‖Aβ/2E(t − s)‖2
L0

2
ds.

With {el}∞l=1 an arbitrary orthonormal basis on H, we have, using Lemma 3.2,

∫ t

0

‖Aβ/2E(t − s)‖2
L0

2
ds =

∞∑
j=1

∫ t

0

‖Aβ/2E(t − s)Q1/2ej‖2 ds

=
∞∑

j=1

∫ t

0

|E(s)Q1/2ej |2β ds

≤ C

∞∑
j=1

|Q1/2ej |2β−1 = C‖A(β−1)/2‖2
L0

2
.

Together with (3.7) this shows (3.1).
In particular, if W (t) is an H-valued Wiener process with Tr(Q) < ∞, then

we can choose β = 1 because

‖I‖2
L0

2
=

∞∑
j=1

‖Q1/2ej‖2 =
∞∑

j=1

γj = Tr(Q). �
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If d = 1, then we may specialize to Q = I:

Corollary 3.4. Let u(t) be the solution of (1.1) and A = −∂2/∂x2 with
D(A) = H1

0 (0, 1) ∩ H2(0, 1). Assume that W (t) is a cylindrical Wiener process
with Q = I. Then we have, for every β ∈ [0, 1/2),

‖u(t)‖L2(Ω;Ḣβ) ≤ C(1 + ‖u0‖L2(Ω;Ḣβ)), for u0 ∈ L2(Ω; Ḣβ).

Proof. It is well known that A has eigenvalues λj = j2π2, j = 1, 2, . . . ,
and corresponding eigenfunctions ϕj =

√
2 sin jπx, j = 1, 2, . . . , which form an

orthonormal basis in H = L2(0, 1). Thus, we have

‖A(β−1)/2‖2
L0

2
=

∞∑
j=1

‖A(β−1)/2ϕj‖2 =
∞∑

j=1

λβ−1
j ,

which is convergent if β ∈ [0, 1/2).
The proof is complete. �
We note that in Theorem 3.1, we require the condition ‖A(β−1)/2‖L0

2
< ∞ for

β ∈ [0, 1]. The following lemma shows that this condition is equivalent to saying
that W (t) is Ḣβ−1-valued. In particular, W (t) ∈ Ḣ−1, which is important for
the finite element formulation of (1.1).

Lemma 3.5. Assume that W (t) is a Wiener process with covariance opera-
tor Q. Assume that A and Q have the same eigenvectors. Then there exists an
operator Q̃, Tr(Q̃) < ∞, such that the following statements hold.

(i) If ‖A(β−1)/2‖L0
2

< ∞ for some β ∈ [0, 1], then

W (t) =
∞∑

l=1

Q1/2elβl(t), t ≥ 0,

defines an Ḣβ−1-valued Wiener process with covariance operator Q̃. In
particular, Q̃ = Q if Tr(Q) < ∞.

(ii) If W (t) =
∑∞

l=1 Q1/2elβl(t), t ≥ 0, is an Ḣβ−1-valued Wiener process with
the covariance operator Q̃, then

‖A(β−1)/2‖L0
2

< ∞, for some β ∈ [0, 1].

Proof. We first prove (i). With {γl, el}∞l=1 the eigensystem of Q in H, it is
easy to show that gl = Q1/2el = γ

1/2
l el is an orthonormal basis of Q1/2(H).

In fact,
(gl, gk)Q1/2(H) = (Q−1/2gl, Q

1/2gk) = (el, ek) = δl,k.

Note that
∞∑

l=1

|gl|2β−1 =
∞∑

l=1

‖A(β−1)/2Q1/2el‖2 = ‖A(β−1)/2‖L0
2

< ∞,
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which means that the embedding of Q1/2(H) into Ḣβ−1 is Hilbert–Schmidt. By
Lemma 4.11 in Da Prato and Zabczyk [7], W (t) defines an Ḣβ−1-valued Wiener
process with covariance operator Q̃, Tr(Q̃) < ∞. It is obvious that Q̃ = Q if
Tr(Q) < ∞.

We now turn to (ii). Since W (t) =
∑∞

l=1 Q1/2elβl(t), t ≥ 0, is an Ḣβ−1-valued
Wiener process with the covariance operator Q̃, Tr(Q̃) < ∞, we have

E|W (t)|2β−1 < ∞.

With {λl, el}∞l=1 the eigensystem of A in H, we have

E|W (t)|2β−1 = E

∣∣∣∣∣
∞∑

l=1

Q1/2elβl(t)

∣∣∣∣∣
2

β−1

= E
∞∑

l=1

λβ−1
l γlβl(t)2 = t‖A(β−1)/2‖L0

2
,

which implies that ‖A(β−1)/2‖L0
2

< ∞ for β ∈ [0, 1]. The proof is complete. �

4 Error estimates for a deterministic problem.

In order to prove our error estimates for the stochastic partial differential
equations, we need some nonsmooth data error estimates for the corresponding
homogeneous deterministic parabolic equation.

Let us first consider the stationary problem

−∆u = f in D, with u = 0 on ∂D,(4.1)

where f ∈ Ḣ−1.
The variational form of (4.1) is to find u ∈ H1

0 such that

(∇u,∇φ) = 〈f, φ〉, ∀φ ∈ H1
0 ,(4.2)

where 〈·, ·〉 denotes the duality pairing between Ḣ−1 and H1
0 .

Let Sh ⊂ H1
0 be the finite element space. The semidiscrete problem of (4.2)

is to find uh ∈ Sh such that

(∇uh,∇χ) = 〈f, χ〉, ∀χ ∈ Sh.(4.3)

By the Lax–Milgram lemma, there exist unique solutions u ∈ H1
0 and uh ∈ Sh

such that (4.2) and (4.3) hold. Moreover the following stability result holds:

|u|1 ≤ C|f |−1, ∀f ∈ Ḣ−1.(4.4)

The standard error estimates read:

‖uh − u‖ ≤ Chs|u|s, s = 1, 2.(4.5)
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Let G : Ḣ−1 → H1
0 denote the exact solution operator of (4.1), i.e., u = Gf .

We define the linear operator Gh : Ḣ−1 → Sh by Ghf = uh, so that uh = Ghf ∈
Sh is the approximate solution of (4.2). It is easy to see that Gh is selfadjoint,
positive semidefinite on H, and positive definite on Sh. Introducing the elliptic
projection Rh : H1

0 → Sh by

(∇Rhv,∇χ) = (∇v,∇χ), ∀v ∈ H1
0 .

We see that Gh = RhG, and Rhv is the finite element approximation of the
solution of the corresponding elliptic problem with exact solution v. By (4.5),
we get

‖Rhv − v‖ ≤ Chs|v|s, s = 1, 2.

Hence, using (4.4) and the elliptic regularity estimate, we have

‖(Gh − G)f‖ = ‖(Rh − I)Gf‖ ≤ Chs|Gf |s = Chs|f |s−2, for s = 1, 2,(4.6)

which we need below.
Let Eh(t) = e−tAh with Ah = G−1

h , and let E(t) = e−tA with A = G−1. We
then have the following error estimates for the deterministic parabolic problem.

Lemma 4.1. Let Fh(t) = Eh(t)Ph − E(t). Then

‖Fhv‖L∞([0,T ];H) ≤ Chβ|v|β , for v ∈ Ḣβ , 0 ≤ β ≤ 1,(4.7)

and

‖Fhv‖L2([0,T ];H) ≤ Chβ |v|β−1, for v ∈ Ḣβ−1, 0 ≤ β ≤ 1.(4.8)

Further, in the weak norm,

‖Fhv‖L∞([0,T ];Ḣ−1) ≤ Chβ |v|β−1, for v ∈ Ḣβ−1, 1 ≤ β ≤ 2,(4.9)

and, with �h = log(T/h2),

‖Fhv‖L2([0,T ];Ḣ−1) ≤ Chβ�h|v|β−2, for v ∈ Ḣβ−2, 1 ≤ β ≤ 2.(4.10)

Proof. We denote u(t) = E(t)v, uh(t) = Eh(t)Phv, and e(t) = uh(t)−u(t) =
Fh(t)v. We first show (4.7). By the stability properties of the L2 projection
operator Ph and the solution operators Eh(t) and E(t), we have

‖e(t)‖ = ‖Eh(t)Phv − E(t)v‖ ≤ 2‖v‖, for t ≥ 0, v ∈ H.(4.11)

We will show that

‖e(t)‖ ≤ Ch|v|1, for t ≥ 0, v ∈ Ḣ1.(4.12)

Combining this with interpolation theory, we get (4.7).
To show (4.12), let us consider the error equation

Ghet + e = ρ,(4.13)
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where ρ = −(Gh − G)ut. We note that Ghe(0) = 0 for

(Ghe(0), w) = (Phv − v, Ghw) = 0, for w ∈ H,(4.14)

since Ghw ∈ Sh.
By the energy method, we can show, see Thomée [27, Lemma 3.3],

‖e(t)‖ ≤ C sup
s≤t

(
s‖ρt(s)‖ + ‖ρ(s)‖

)
, t ≥ 0.

Obviously, by (4.6) and Lemma 3.2,

‖ρ(s)‖ = ‖(Gh − G)ut‖ ≤ Ch|ut|−1 ≤ Ch|v|1,

and
s‖ρt(s)‖ ≤ Chs|ut(s)|1 ≤ Ch|v|1.

Hence (4.12) follows and therefore we get (4.7).
We next show (4.8). By interpolation theory, it suffices to show that

‖e‖L2([0,T ];H) ≤ C|v|−1,(4.15)

and

‖e‖L2([0,T ];H) ≤ Ch‖v‖.(4.16)

Taking the inner product of (4.13) with e, we get

(Ghet, e) + (e, e) = (ρ, e).

Integrating with respect to t, we get, noting that Ghe(0) = 0 and using the
inequality (ρ, e) ≤ 1

2 (‖ρ‖2 + ‖e‖2),

(Ghe(T ), e(T )) +
∫ T

0

‖e‖2 dt ≤
∫ T

0

‖ρ‖2 dt.(4.17)

Obviously, by (4.6) and Lemma 3.2,

∫ T

0

‖ρ‖2 dt ≤
∫ T

0

‖(Gh − G)ut‖2 dt ≤ Ch2

∫ T

0

|u|21 dt ≤ Ch2‖v‖2,(4.18)

which implies that (4.16) holds.
To show (4.15), we note that, by Lemma 3.2 and its discrete counterpart,

∫ T

0

‖e‖2 dt ≤ 2
∫ T

0

(
‖uh‖2 + ‖u‖2

)
dt ≤ 2|v|2−1,h + 2|v|2−1,(4.19)

where |v|−1,h is a discrete seminorm defined by

|v|−1,h = (Ghv, v)1/2 = ‖G1/2
h v‖.
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Since |v|−1 = sup{(v, w)/|w|1 : w ∈ Ḣ1}, see Thomée [27, Chapter 6], we thus
have, with w = Ghv, v ∈ Ḣ−1,

|v|−1 = sup
w∈Ḣ1

(v, w)
|w|1

≥ (v, Ghv)
|Ghv|1

=
(v, Ghv)

(v, Ghv)1/2
= |v|−1,h,

since

|Ghv|21 = (AGhv, Ghv) = A(Ghv, Ghv) = (AhGhv, Ghv) = (v, Ghv),

where Ah = G−1
h . Hence by (4.19), we get

∫ T

0
‖e‖2 dt ≤ 4|v|2−1, which implies

that (4.15) holds.
We now turn to (4.9). It suffices to show that

|e(t)|−1 ≤ Ch‖v‖,(4.20)

and

|e(t)|−1 ≤ Ch2|v|1.(4.21)

By (4.17) and (4.18), we have

(Ghe, e) = |e|2−1,h ≤ Ch2‖v‖2.(4.22)

Using

|e|−1 ≤ |e|−1,h + Ch‖e‖,(4.23)

which follows from, by (4.6),

|e|2−1 = (Ghe, e) + ((G − Gh)e, e) ≤ |e|2−1,h + Ch2‖e‖2,

we obtain, by (4.11)

|e|−1 ≤ |e|−1,h + Ch‖e‖ ≤ Ch‖v‖,

which is (4.20).
By (4.17) and (4.6), we obtain

|e(t)|2−1,h = (Ghe(t), e(t)) ≤ 1
2

∫ t

0

‖ρ‖2 ds ≤ Ch4

∫ t

0

|ut|2 ds ≤ Ch4|v|21.

Combining this with (4.12) and (4.23), we get (4.21).
It remains to show (4.10). Integrating (4.13) with respect to t, we have, with

ẽ(t) =
∫ t

0
e(s) ds, ρ̃(t) =

∫ t

0
ρ(s) ds,

Ghe + ẽ = ρ̃, ẽ(0) = 0.(4.24)

Taking the inner product of (4.24) with e, we get, since e = ẽt,

(Ghe, e) +
1
2

d
dt

‖ẽ‖2 = (ρ̃, e) =
d
dt

(ρ̃, ẽ) − (ρ, ẽ).
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After integration, we have, noting that ẽ(0) = 0,
∫ T

0

|e|2−1,h ds +
1
2
‖ẽ(T )‖2 =

∫ T

0

(ρ̃, e) ds =
[
(ρ̃, ẽ)

]T

0
−

∫ T

0

(ρ, ẽ) ds

≤ ‖ρ̃(T )‖‖ẽ(T )‖ +
(∫ T

0

‖ρ‖ds

)
sup

0≤s≤T
‖ẽ(s)‖

≤ 2
(∫ T

0

‖ρ‖ds

)
sup

0≤s≤T
‖ẽ(s)‖.

By a kick-back argument, we obtain
∫ T

0

|e|2−1,h ds ≤ C

(∫ T

0

‖ρ‖ds

)2

.

Noting that
∫ T

0

‖ρ‖ds =
∫ h2

0

‖ρ‖ds +
∫ T

h2
‖ρ‖ds

≤ C

∫ h2

0

s−1/2|v|−1 ds + C

∫ T

h2
h|u|1 ds ≤ Ch�h|v|−1,

and, similarly,
∫ T

0

‖ρ‖ds =
∫ h2

0

‖ρ‖ds +
∫ T

h2
‖ρ‖ds

≤ Ch2‖v‖ + Ch2

∫ T

h2
|u|2 ds

≤ Ch2‖v‖ + Ch2 log(T/h2)‖v‖ ≤ Ch2�h‖v‖,

we therefore get ∫ T

0

|e|2−1,h ds ≤ Ch2�2h|v|2−1,(4.25)

and ∫ T

0

|e|2−1,h ds ≤ Ch4�2h‖v‖2.(4.26)

By (4.19), (4.23), and (4.25), we obtain
∫ T

0

|e|2−1 ds ≤ C

∫ T

0

|e|2−1,h ds + Ch2

∫ T

0

‖e‖2 ds

≤ Ch2�2h|v|2−1 + Ch2|v|2−1 ≤ Ch2�2h|v|2−1,

and, by (4.26)
∫ T

0

|e|2−1 ds ≤ Ch4�2h‖v‖2 + Ch4‖v‖2 ≤ Ch4�2h‖v‖2.

Now (4.10) follows from the interpolation theory. The proof is complete. �
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5 Proofs of Theorems 1.1 and 1.2.

In this section, we prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We have, with E(t) = e−tA,

u(t) = E(t)u0 +
∫ t

0

E(t − s) dW (s),

and, with Eh(t) = e−tAh ,

uh(t) = Eh(t)Phu0 +
∫ t

0

Eh(t − s)Ph dW (s).

Denoting e(t) = uh(t) − u(t) and Fh(t) = Eh(t)Ph − E(t), we write

e(t) = Eh(t)Phu0 − E(t)u0 +
∫ t

0

(
Eh(t − s)Ph − E(t − s)

)
dW (s)

= Fh(t)u0 +
∫ t

0

Fh(t − s) dW (s) = I + II .

Thus

‖e(t)‖L2(Ω;H) ≤ 2
(
‖I‖L2(Ω;H) + ‖II ‖L2(Ω;H)

)
.

For I, we have, by (4.7) with v = u0,

‖I‖ = ‖Fh(t)u0‖ ≤ Chβ|u0|β , for 0 ≤ β ≤ 1,

which implies that ‖I‖L2(Ω;H) ≤ Chβ‖u0‖L2(Ω;Ḣβ), for 0 ≤ β ≤ 1.
For II , we have, by the isometry property,

‖II ‖2
L2(Ω;H) =

∥∥∥∥E
∫ t

0

Fh(t − s) dW (s)
∥∥∥∥

2

=
∫ t

0

‖Fh(t − s)‖2
L0

2
ds

=
∞∑

l=1

∫ t

0

‖Fh(t − s)Q1/2el‖2 ds,

where {el} is any orthonormal basis in H.
Using (4.8) with v = Q1/2el, we obtain

‖II ‖2
L2(Ω;H) ≤ C

∞∑
l=1

h2β‖Q1/2el‖2
β−1 = C

∞∑
l=1

h2β‖A(β−1)/2Q1/2el‖2

= Ch2β‖A(β−1)/2‖2
L0

2
,

which completes the proof of (1.6).
In particular, if W (t) is a Wiener process with Tr(Q) < ∞, then we can choose

β = 1 in (1.6) and obtain (1.7), since ‖I‖2
L0

2
= Tr(Q). �
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As in Corollary 3.4, we may specialize to Q = I if d = 1:

Corollary 5.1. Let uh and u be the solutions of (1.5) and (1.1), respec-
tively. Assume that A = −∂2/∂x2 with D(A) ⊂ H1

0 (0, 1) ∩ H2(0, 1). If W (t)
is a cylindrical Wiener process with Q = I, then we have, for t ≥ 0 and
u0 ∈ L2(Ω; Ḣβ),

‖uh(t) − u(t)‖L2(Ω;H) ≤ Chβ(1 + ‖u0‖L2(Ω;Ḣβ)), for 0 ≤ β < 1/2.

Now we turn to consider the proof of Theorem 1.2.

Proof of Theorem 1.2. Using the same notation as in Theorem 1.1, we
have, by (4.9),

‖I‖L2(Ω;Ḣ−1) ≤ Chβ+1‖u0‖L2(Ω;Ḣβ), for 0 ≤ β ≤ 1.

For II , we have, by the isometry property, and (4.10) with v = Q1/2el,

‖II ‖2
L2(Ω;Ḣ−1)

= E
∣∣∣∣
∫ t

0

Fh(t − s) dW (s)
∣∣∣∣
2

−1

= E
∥∥∥∥
∫ t

0

A−1/2Fh(t − s) dW (s)
∥∥∥∥

2

=
∫ t

0

‖A−1/2Fh(t − s)‖2
L0

2
ds ≤ Ch2β�2h

∞∑
l=1

‖A(β−1)/2Q1/2el‖2

≤ Ch2(β+1)�2h‖A(β−1)/2‖2
L0

2
,

which completes the proof of (1.8).
In particular, if W (t) is a Wiener process on H with Tr(Q) < ∞, then we can

choose β = 1 in (1.8) and obtain (1.9). �
Corollary 5.2. Let uh and u be the solutions of (1.5) and (1.1), respec-

tively. Assume that A = −∂2/∂x2 and D(A) = H1
0 (0, 1) ∩ H2(0, 1). If W (t) is

a cylindrical Wiener process with Q = I, then we have, for 0 ≤ t ≤ T and
u0 ∈ L2(Ω; Ḣβ), with �h = log(T/h2),

‖uh(t) − u(t)‖L2(Ω;Ḣ−1) ≤ Chβ+1(1 + �h‖u0‖L2(Ω;Ḣβ)), for 0 ≤ β < 1/2.
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