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Abstract
A mark of the cognitive should allow us to specify theoretical principles for demar-
cating cognitive from non-cognitive causes of behaviour in organisms. Specific cri-
teria are required to settle the question of when in the evolution of life cognition first 
emerged. An answer to this question should however avoid two pitfalls. It should 
avoid overintellectualising the minds of other organisms, ascribing to them cognitive 
capacities for which they have no need given the lives they lead within the niches 
they inhabit. But equally it should do justice to the remarkable flexibility and adap-
tiveness that can be observed in the behaviour of microorganisms that do not have a 
nervous system. We should resist seeking non-cognitive explanations of behaviour 
simply because an organism fails to exhibit human-like feats of thinking, reason-
ing and problem-solving. We will show how Karl Friston’s Free-Energy Principle 
(FEP) can serve as the basis for a mark of the cognitive that avoids the twin pitfalls 
of overintellectualising or underestimating the cognitive achievements of evolution-
arily primitive organisms. The FEP purports to describe principles of organisation 
that any organism must instantiate if it is to remain well-adapted to its environment. 
Living systems from plants and microorganisms all the way up to humans act in 
ways that tend in the long run to minimise free energy. If the FEP provides a mark of 
the cognitive, as we will argue it does, it mandates that cognition should indeed be 
ascribed to plants, microorganisms and other organisms that lack a nervous system.
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Introduction

Morgan’s canon states that comparative psychologists should not “interpret an action 
as the outcome of the exercise of a higher psychical faculty, if it can be interpreted 
as the outcome of the exercise of one which stands lower in the psychological scale” 
(Morgan 1894: p.53). Morgan’s advice has been taken to heart by comparative psy-
chologists and rightly so. It is only right that psychologists studying the minds of 
non-human animals avoid the twin threats of anthropomorphism and intellectualism, 
ascribing to animals capacities for thinking and reasoning that they have no need 
for given the environments they inhabit (Barrett 2011). But there is also an opposite 
danger that arises once psychologists give too much weight to Morgan’s canon. This 
is the risk of oversimplifying the causes of animal behaviour, looking for a non-cog-
nitive explanation when a cognitive explanation is in fact warranted. The risk is that 
of neglecting the flexibility, adaptivity and complexity of animal behaviour in the 
search for simple, non-cognitive explanations. Plants and microorganisms exhibit a 
staggering degree of flexible adaptive agency despite their lack of a nervous sys-
tem (Müller and di Primio 2001; Hellingwerf 2005; Van Duin et al. 2006; Shapiro 
2007; Wolfe et al. 2008; Saigusa et al 2008; Dussutour 2010; Baluška and Mancuso 
2013; Wang et al. 2015; Lyon 2015; Gagliano et al. 2016; Novoplansky 2016; Pinto 
and Mascher 2016; Trewavas 2014; Fulda 2017; Calvo & Friston 2017, Fultot et al. 
2019; Salek et al. 2019). These allegedly primitive and “simple” organisms are not 
“mere automata”, they exhibit purposive agency (c.f. Burge 2009; Walsh 2015; Di 
Paolo, Barandiaran and Buhrmann 2017; Fulda 2017).

Any account of organismic behaviour must avoid the twins pitfalls of either 
underestimating or overintellectualising their cognitive achievements. To meet this 
challenge, what we will call a mark of the cognitive is required—theoretical princi-
ples that allow one to distinguish cognitive from non-cognitive causes of behaviour.1 
We should resist assuming that we already know roughly what cognition is and can 
therefore rely on our rough intuitions in making judgements about whether or not 
an organism’s behaviour is caused by cognitive processes. Our rough intuitions 
about what cognition is are formed in large part on the basis of what has typically 
been investigated under this heading in cognitive science—namely, human think-
ing, reasoning and problem-solving. If we hold other organisms to such a standard 
of possessing human-like thoughts they will inevitably fall short. Alternatively we 

1  One might suggest, in agreement with Andy Clark, that cognitive science has no need for a mark of the 
cognitive. Clark suggests we can rely on our rough folk-psychological intuitions that tell us when behav-
ioural patterns are indicative of cognition (Clark 2011: p. 451). More recently he has expressed scepti-
cism about the very concept of the cognitive suggesting that the terms “mind” and “cognition” are “con-
fusing and unstable terms that should play no role in mature cognitive science (Clark 2019: p. 294). For 
the time being, until cognitive science matures, perhaps we can simply make do with calling “cognitive” 
whatever is studied by cognitive science (Allen 2017). But such an approach would not help us with the 
challenge we have just described of when to treat the behaviour of organisms as cognitive. Here we are in 
agreement with Adams (2019) when he suggests it does not help to say “cognition is as cognition does” 
because one still wants to know which behavioural effects are effects of cognition and which are not.
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will make the mistake of overintellectualising the minds of other organisms, flouting 
Morgan’s canon.

In what follows we will use Karl Friston’s Free Energy Principle (FEP) to iden-
tify a mark of the cognitive that avoids both of these pitfalls (Friston and Stephan 
2007; Friston 2010). The FEP purports to describe principles of organisation that 
any organism must instantiate if it is to remain well-adapted to its environment. 
It tells us that if an organism is to remain well-adapted to a dynamically chang-
ing environment, it must act to minimise an information-theoretic quantity known 
as free-energy. Living systems from plants and microorganisms all the way up to 
humans act in ways that tend in the long run to minimise free energy (Friston 2013; 
Auletta 2013; Calvo and Friston 2017; Ramstead et al. 2018). We will argue for two 
claims in what follows: first we will show how the FEP can serve as the basis for a 
mark of the cognitive, demarcating cognitive from non-cognitive processes. Second 
we will show on this basis that it does indeed make sense to characterise plants, 
microorganisms and other organisms that lack a nervous system as instantiating cog-
nitive processes.

Our argument unfolds over four sections. We begin in Sect.  1 by introducing 
the free energy principle (FEP). We interpret the FEP as describing the organising 
principles of all complex adaptive systems that act to ensure their own continued 
viability and flourishing in their niche. The FEP as a mathematical description of 
principles of organisation of complex adaptive systems should be contrasted with 
a process theory such as predictive processing or active inference which purport to 
explain how FEP could be biologically realised.2 In Sect. 2 we show how Hohwy 
treats processes of prediction error minimisation on the model of processes of think-
ing human scientists engage in when formulating true hypotheses on the basis of 
abductive inference. Hohwy takes processes of prediction-error minimisation to 
reach all the way down the tree of life to the very earliest appearances of life in 
single-celled organisms. Understood in this way FEP would suggest a mark of the 
cognitive as abductive inference. In Sect. 3 we discuss how Hohwy resists drawing 
such a consequence, reserving the term cognition for organisms that are capable of 
counterfactual predictive processing (Corcoran et al. 2020). We disagree with Cor-
coran and colleagues arguing for an understanding of cognition in terms of allostatic 
control, a position they reject. We show how allostasis is at the core of sensorimotor 
coordination allowing for the regulation of sensorimotor behaviour we call “allo-
static control”. In Sect. 4 we provide a variety of examples of how allostatic control 
is ubiquitous, occurring in primitive organisms that develop a model of their envi-
ronments. Allostatic control can be described as the process of selecting actions that 
minimise expected future free energy. It is found everywhere in nature. Thus we 

2  Hohwy (2020) contrasts the FEP’s epistemic status as a principle with that of law of nature that require 
empirical evidence. Hohwy suggests that it is process theories informed and guided by FEP that rest on 
empirical evidence, not FEP itself. The reasons for believing FEP follow from the “particular concept of 
existence of self-organising (nonequilibrium steady state) organisms, together with the mathematics of 
variational calculus” (ms, p. 9). See also Colombo and Wright (2018) for a good discussion of the status 
of FEP as what they call a “first-principle”.
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will conclude on this basis that FEP does provide a theoretically principled basis for 
ascribing cognitive processes to organisms that do not have a nervous system.3

The free‑energy principle: a brief overview

The Free Energy Principle (FEP) states that all self-organising systems that are able 
to persist over time and thus resist a tendency to increasing disorder will do so by 
minimising an information-theoretic quantity known as free energy. We will call sys-
tems that are able to avoid dispersal and disintegration in their exchanges with the 
environment “complex adaptive systems.” Biological systems are special instances 
of complex adaptive systems.4 In part by means of a continuous energetic exchange 
with their external environments, such systems are able to produce and maintain the 
processes that make them up under conditions of continuous material change. The 
result of this active self-production is an organism that can persist as an individual 
through its exchanges of matter and energy with the environment. A cloud of smoke 
when perturbed by the wind will deform and disperse according to the distribution, 
magnitude and direction of the mechanical forces acting upon it. Complex adap-
tive systems by contrast are able to keep key variables within homeostatic bounds 
when perturbed by their environments When exposed to high temperatures that are 
incompatible with their metabolic functioning for example, they will self-regulate 
(e.g., perspiring, panting, or relocating somewhere cooler) so as to enable their body 
temperature to remain within a range of values consistent with their functional and 
structural integrity.

The FEP is a principle in the following sense: it describes mathematically the 
organisation a complex adaptive system must have if it is to remain in a far from 
equilibrium steady state and thus continue to exist over time in its interactions with 
the environment. It is a principle then in the sense that from the mathematics of the 
FEP one can deduce organisational properties a self-organising system must exhibit 
if it is to exist. The scope of the FEP is maximally wide, ranging from microscale 
explanations of the adaptive behaviour of bacteria (Auletta 2013; Friston 2013; 

3  Thus we take the argument of our paper to align with proponents of what is called minimal biological 
cognition as a research programme within cognitive science (see e.g. Van Duin, Keijzer and Franken 
(2006), Lyon (2006) and Keijzer (2020) and Adams (2018) for sceptical arguments).
4  It should perhaps be noted that there are non-living systems that are also correctly described as far 
from equilibrium steady-state systems. Candle flames, tornadoes and laser beams are classic examples. 
These systems are dissipative structures whose macroscopic patterns of order spontaneously emerge and 
are stabilised through ongoing exchanges of matter and energy with the environment. One important dif-
ference between organisms and these examples of far from equilibrium open systems is that organisms 
maintain themselves in a dynamically stable steady state through regulating their interactions with the 
environment. The examples of non-living systems are not able to actively anticipate and accommodate 
external perturbations as organisms do. Organisms are able to remain stable through change precisely 
because they act to anticipate and accommodate sensory perturbations from the outside. Blood cells and 
fat cells also have some degree of autonomy and may engage in anticipatory regulatory control. How-
ever, due to the limited scope of this paper, our analysis will specifically target complex adaptive systems 
at the scale of the organism. For an account of how microorganisms can be dynamically coupled as con-
stituents of a larger free-energy minimizing unit see (Sims 2020).
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Tschantz et al 2020) to the macroscale explanations of variational niche construc-
tion (Bruineberg et. al., 2018), natural selection (Campbell 2016) and everything in 
between (Friston 2011, 2012; Ramstead et al. 2018; Kirchhoff et al. 2018; Ramstead 
et al. 2020a; for critical discussion see Colombo and Wright 2018). The FEP states 
that the actions any complex adaptive system should select are those that minimise 
surprising or improbable sensory exchanges with the environment. Complex adap-
tive systems avoid global thermodynamic equilibrium—a state in which there is 
no flow of matter or energy either within the system or between the system and its 
environment. According to the FEP, they do so by keeping the information theoretic 
quantity of surprise to a minimum.

Surprise quantifies how unexpected (i.e., improbable) sensory states are given 
a model of the organism’s eco-niche (Tribus 1961).5 Our talk of sensory states is 
short-hand for the states of perceptual systems that are tuned to structure in the eco-
niche. We will use the term sensory states in a broad sense to include for instance 
the states of photoreceptors in plants. Of the range of states a perceptual system can 
possibly visit, there is a relatively small subset that the system should visit if it is 
to remain well-tuned to the structure of the organism’s eco-niche. We will call the 
sensory states that belong to this sub-set the organism’s “attracting set” (following 
Friston 2012). As long as the organism remains well-adapted to its environment the 
sensory states belonging to its attracting set are those it should tend to be attracted 
towards. The existence of this attracting set allows us to construct a probability dis-
tribution for the organism’s sensory states which represents the probability of find-
ing an organism in a given sensory state. This distribution can then allow observers 
to measure what we will call the sensory state’s “surprise value”—the probability 
of finding the perceptual system in a sensory state when sampling the system at any 
random time. Very roughly, we can say a sensory state s has a low surprise value 
when the probability of an organism regularly revisiting s over time is high. While s 
will have a high surprise value when the probability of an organism finding itself in 
s over the course of its lifetime is low. If the organism maintains a distribution over 
its attracting set with low surprisal, it will remain well-adapted to its eco-niche, and 
will avoid sensory states that are a threat to its integrity, or that lead it to be mala-
dapted in some other way.

Surprise, however, is a computationally intractable quantity for the organism. 
It may perhaps be knowable to an observer of an organism but it is not a quantity 
the organism itself can evaluate. Doing so would require the organism to have 
access to and make inferences over all of the possible states that it could sample. 
According to FEP, the organism’s way around this problem is to use free energy 
(FE) as a stand in for surprise value. FE is a function of the organism’s internal 
dynamics and its sensory and active states—the states of its perception and action 
systems. FE is also an upper bound on (i.e. it is always greater than or equal to) 

5  More formally, surprise refers to the negative log probability of observing sensory and active states 
conditioned on a model or equivalently the negative log marginal likelihood. In Bayesian statistics the 
marginal likelihood is known as Bayesian model evidence. Surprisal is formally expressed as:—ln P(s, 
a | m). Here s refers to sensory states, a to action states and m to the model. Conversely, Bayesian model 
evidence is: ln P(s, a | m).
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surprise value and can thus approximate this latter quantity (Friston 2010; Fris-
ton and Stephan 2007). Hence by regulating its internal states and the states of 
its perception and action systems, the organism can perform gradient descent on 
FE, and is thereby able to implicitly minimize surprise. The organism can regu-
late its internal states by changing them in response to external perturbations so 
as to maintain its organisation. It can also regulate its sensory and active states, 
moving to bring about the sensory states it expects given the model it entails. An 
organism that acts in this way to minimise free energy will thereby also avoid 
sensory states with a high surprise-value that are a threat to its remaining well-
adapted to its econiche.

In the literature on FEP, FE is standardly taken to be a “function of proba-
bilistic beliefs encoded by an organism’s internal (i.e. neural) states” (Ramstead 
et al 2018: p.4). The internal states of an organism are thus taken to parameter-
ise probabilistic densities over states of affairs in the external environment. We 
should interpret the notion of belief in play in FEP in inferential and probabilistic 
terms. When we talked above about the organism changing its internal dynam-
ics in response to external perturbations this can be interpreted as a process that 
approximates Bayesian inference. Bayes’ rule tells us how to rationally change 
our beliefs when they come into conflict with evidence. It tells us to update the 
probability of a given belief by considering the product of the likelihood (the 
probability of the evidence given this belief) and prior probability of the belief 
(which should sum to 1). Bayes’ rule tells us to infer the belief that has the highest 
posterior probability. Bayesian inference is computationally complex and often 
intractable in real world examples of belief update (Wiese and Metzinger 2017). 
There are simply too many possible beliefs to be evaluated for a belief update 
system to be able to calculate which of these possible beliefs has the highest pos-
terior probability. FEP describes a computationally tractable method for solving 
this problem. So long as a system changes its internal dynamics in response to 
external perturbations in such a way as to minimise FE it will do a good job of 
approximating belief update in accordance with Bayes’ rule (Cf. Hohwy 2020).

Still this leaves us with the question of the relation between the organism’s 
internal dynamics and the probabilistic beliefs it is ascribed under FEP. We will 
assess the following two options for addressing this question:

1.	 Adopt an instrumentalist reading of the concept of prior probabilistic belief as it 
figures in the FEP.

2.	 Offer a realist account of probabilistic belief states as this concept applies to 
organisms in general from prokaryotes to mammals.

The sensory states that form an attracting set for an organism, and relative to 
which free energy is computed, define a generative model. We have seen above 
how when an agent gathers new sensory evidence it must combine a likelihood 
function (a probabilistic mapping from hidden states of the world and their 
dynamics x to sensory inputs y) with its prior beliefs (a probability distribution 
that predicts possible states of the world over time x). These two probability 
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distributions (the prior beliefs and the likelihood function) are referred to as the 
“generative model”. The likelihood and priors are described as a generative model 
because they can be interpreted as mapping how sensory inputs y are believed to 
be generated by states x of the environment. Given some sensory observations 
the generative model is used to compute the posterior probability of a possible 
state of the world that is the cause of those observations. Should the generative 
model in relation to which free energy is defined be understood instrumentally or 
realistically?

Instrumentalism about the generative model in FEP (and about Bayesian theories 
of cognition more generally) is emerging as a popular option in the recent literature 
(see e.g. Colombo & Series 2012; Colombo et  al. 2018; Van Es 2020; Ramstead 
et  al 2020a, b; Baltieri et  al 2020). Van Es (2020) argues for instance that organ-
isms may well behave as if they approximate the norms of Bayesian probabilistic 
inference but they need not really engage in any inference, and nor need they really 
encode probability densities in their internal states. He makes his argument by dis-
tinguishing between a model used by a scientist to explain and predict the behav-
iour of a system of interest, and a model as physically implemented by the internal 
dynamics of the system under investigation. He suggests FEP is best understood as 
a modelling framework used by scientists to explain the self-organising dynamics 
of complex adaptive systems that persist over time (Cf. Andrews 2020; Bruineberg 
et al. 2020).

We follow Friston in conceiving of organisms as becoming models of the struc-
ture of their eco-niches over the course of their learning histories (Friston 2012: p. 
2101). The generative model is not something the organism encodes in its nervous 
system (if it has one). As Bruineberg et al. (2018) have argued the generative model 
is “entailed” by the organism’s internal dynamics that form in its selective coupling 
to its niche (cf. Friston 2011, 2012). The conditional dependencies the generative 
model maps—the joint probability distribution over sensory states, actions and 
interacting environmental causes—are a consequence of the actions the organism 
regularly undertakes in its niche (c.f. Ramstead et al. 2019: p. 18; Bruineberg et al. 
2016). These dependencies are instantiated in the organism’s internal dynamics as 
they self-organise in its active coupling with its niche. By “internal dynamics” we 
mean the relatively stable biological organisation an organism generates and main-
tains through a history of practical engagement with the environment. The organism 
is a “model” of the structure of its niche in the sense that it instantiates a biological 
organisation that complements the structure of its niche. Thus we are committed at 
minimum to the claim that the internal dynamics an organism develops stand in a 
relation of entailment to a generative model of its environment. There is however an 
open question remaining about how to understand this relation of entailment, and 
what more specifically is entailed by the organism’s internal dynamics.

This leads us to a second question of how to interpret the notion of probabilistic 
prior beliefs that FEP would seem to imply organisms should somehow realise in 
their internal dynamics. We will give an account of the generative model below that 
is consistent with instrumentalism about belief-talk. Does it follow that a defender 
of the FEP should also be instrumentalist about the generative model? We do not see 
how a more general instrumentalism about the generative model could be consistent 
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with the characterisation we have given of FEP in this section. We have claimed 
that FEP purports to deduce the organising principles common to complex adaptive 
systems. The FEP, on this reading, does not claim that it is useful for explanatory 
purposes to model complex adaptive systems as if they satisfied these organising 
principles. It purports to tell us how complex adaptive systems would need to be 
organised to remain well-adapted to their environments and persist over time. We 
conclude then that a commitment to the existence of generative models is non-nego-
tiable for proponents of FEP. Should we then also be realists in taking the internal 
states of organisms to parameterise probabilistic beliefs about external states of the 
environment? Recall that the generative model has this name because it is posited to 
capture the organism’s beliefs about the causes of its sensory states. We take up this 
question of the status of these beliefs in the next section.

Realism about Bayesian organisms

Hohwy defends a realist position about belief talk in the context of FEP (Hohwy 
2013, 2015, 2019; Kiefer and Hohwy 2017). He has argued that any system that 
can minimise long-term prediction error will also approximate Bayesian inference. 
It will operate with prior beliefs based in part on its past learning. When it accom-
modates its sensory input in such a way as to minimise prediction errors this can 
be thought of in terms of inference to the best explanation. What the subpersonal 
processes that make up the organism unconsciously infer is a set of hypotheses 
that best explain its sensory inputs and their distal hidden causes. What makes a 
set of hypotheses the best explanation of the available evidence is that the hypoth-
esis exemplifies precision, simplicity and accuracy. As we saw above Hohwy takes 
it to be plausible that the same process of prediction error minimisation through 
inference to the best explanation that is to be found in the human brain may also be 
found in evolutionary primitive organisms such as E. Coli (Hohwy 2019: p. 201). 
It follows that every complex adaptive system must build a model of its environ-
ment, perhaps in part through learning, and put this model to work to do abductive 
inference. What the model targets are the hidden environmental and bodily causes 
of the sensory states the organism can expect to repeatedly revisit over time given 
its phenotype. On the basis of this model, they selectively sample sensory states in 
order to fulfill these expectations. According to Hohwy, the difference in complexity 
between plants and bacteria and other organisms that embody a nervous system is 
that the model they construct over time lacks a deep temporal and causal structure. 
(We return to this point in Sect. 3.) But all lifeforms, as free energy minimising sys-
tems, must do inference to the best explanation.

In Hohwy’s view, free energy minimisation is biologically realised by processes 
of unconscious abductive inference. Any living system owes its continued existence 
to processes that approximate inference to the best explanation. This claim seems to 
us to flout Morgan’s canon. Hohwy seems to invoke sophisticated human-like capac-
ities to explain the behaviour of non-human organisms. Scientists use inference to 
the best explanation to select among competing hypotheses the one that is the most 
fruitful, simple and precise in terms of the data it can explain. If Hohwy is right 
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bacteria, albeit on a much smaller scale, are also capable of performing sub-personal 
and unconscious inferences that are approximations of the personal-level inferences 
made by scientists. But this is to overintellectualise processes of free energy minimi-
sations. Other organisms (and indeed humans when they are not doing science) have 
no need for constructing theories about the world they live in. They need to figure 
out how to act in ways that are good enough most of the time for them to get by 
given their ways of life within a given ecological niche. But there are familiar argu-
ments for distinguishing action guiding processes that do a good enough job most of 
the time from belief-forming processes that aim at the truth (Varela et al. 1991, ch.9; 
Stich 1990; Burge 2010; Hutto and Myin 2017). Second, an organism can accom-
plish the adaptive control of their actions without constructing theories about the 
causal structure of their worlds. We say more on this second point in Sect. 3 below.

Andy Clark has argued for a more restrictive usage of the concept of generative 
model. He reserves what he calls “predictive processing” for organisms that instan-
tiate a cognitive architecture that is characterised by hierarchical message-passing 
and top-down prediction. He argues that humans undoubtedly rely upon rich inter-
nal models, albeit models that work in the service of efficient, low-cost, high-gain, 
action selection and guidance. Other animals can make do without such rich models 
relying only on quick and dirty processing or “genetically preconfigured responses 
to sensory perturbations” (Clark 2017: p. 6). Thus, Clark proposes to make a distinc-
tion between advanced cognisers that encode in their brains explicit expectations 
that are used to generate top-down predictions and those organisms that rely in some 
sense on implicit creature-specific expectations in perception and action.

For Clark, it is only those creatures that are capable of learning neurally encoded 
explicit expectations that really instantiate a generative model in their internal 
dynamics. Friston’s (and our) talk of organisms being a model of their environment 
is best construed instrumentally as Van Es (2020) and others have suggested. It may 
well be useful for modelling purposes to treat the fish as if it embodied in its mor-
phology expectations about the hydrodynamics of its aquatic environment. How-
ever, if Clark is right such talk is only warranted insofar as it helps us to predict and 
explain the fish’s behaviour. Strictly speaking, to have a generative model calls for 
neurally encoded expectations that can be used to generate top-down prediction in a 
hierarchically organised cognitive architecture.

Clark would thus reject the claim that Hohwy makes that because bacteria and 
other organisms that lack a nervous system are free energy minimisers, these life-
forms must be capable of abductive inference. He can thereby avoid Hohwy’s over-
intellectualisation of the cognitive capacities of such organisms. That being said, 
Clark has very little to say about the cognitive powers of organisms that fall on the 
non-predictive processing side of his divide. Presumably he thinks these organ-
isms fallback on some form of “genetically preconfigured response” (Clark 2017). 
Do such responses also count as cognitive? Clark doesn’t say, and would if pressed 
no doubt express scepticism about whether the question really matters (Clark 2011, 
2019, see footnote 1). We disagree. There is a genuinely important question to be 
settled here about where cognition gets off the ground in the evolution of life. Recall 
in our introduction how we pointed to the real risk of oversimplifying the impres-
sive cognitive achievements of evolutionarily primitive organisms in the search for 
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non-cognitive explanations of their behaviour.6 We will argue next that the Free 
Energy Principle (FEP) underwrites a mark of cognition that can strike the right 
balance, neither overintellectualising nor underestimating the cognitive capacities of 
other non-human lifeforms.

Where does cognition begin in life?

In their co-authored paper published in this special issue, Corcoran and colleagues 
address exactly the question we are now grappling with of how to draw the line 
between the cognitive and non-cognitive (Corcoran, Pezzulo and Hohwy 2020). 
They suggest that a capacity for decoupled representation is required for cognition: 
“only those biological systems capable of engaging in fully detached modes of rep-
resentation, and of exploiting such representations for the purposes of uncertainty 
reduction, count as cognitive agents” (Op Cit.). They thereby propose to restrict cog-
nition to creatures that are capable of what they call counterfactual active inference.

Corcoran and colleagues consider distinguishing “relatively primitive creatures 
(like E. coli and other unicellular organisms) creatures with some degree of hierar-
chical depth (like reptiles and fish), and animals that demonstrate evidence of coun-
terfactual sensitivity” such as rodents, corvids and primates (p. 39). The notion of 
hierarchical depth they appeal to relates to the generative model with the distinct 
layers of processing regulating action under different conditions of uncertainty and 
over increasingly larger spatial and temporal scales of sophistication. As the hierar-
chical depth of the model increases, so the decision-making capacity of the creature 
is increasingly decoupled from the creature’s immediate sensory input. We could 
thus extrapolate from Corcoran and colleagues an account of the evolution of a 
capacity for decoupled representation in terms of the hierarchical depth of the gen-
erative model an organism embodies.

Primitive organisms instantiate a model that is used to infer the presence of nutri-
ents or noxious stimuli. These creatures operate with models that are shallow in their 
spatial and temporal depth. The generative model of a primitive creature cannot be 
used to build up a map of conditions encountered in the environment previously in 
foraging so as to find their way to possible sources of nutrition again in the future. 
Nor can the model be used to anticipate the sensory consequences of an action pol-
icy because these creatures are unable to learn about what structures their sensory 
states in their niche. All the creature can do is engage in what is called “closed-loop 
control” moving more or less randomly when a prediction error (i.e. a divergence 
from its expected sensory state) occurs (Op cit. p.25).7 Fish and reptiles can do more 

6  This is not to claim that such lifeforms rely upon rich, reconstructive, truth-seeking models of their 
ecological niches. Our point is simply that we should take care not to underestimate the cognitive 
achievements of organisms that are able to make do without such reconstructive models of their environ-
ments.
7  We will see later how this is something of a caricature of what E. coli can do. To be fair to Corco-
ran and colleagues they are explicit in saying that they mean to describe a highly simplified model of 
primitive organisms here and they allow that the behaviour of bacteria could very well turn out to be 
much more complex. Later in their paper they suggest that “all extant lifeforms instantiate some form of 
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with the models they develop. They can take into account the likely consequences of 
actions in the future based on their past experience and select actions that have the 
lowest risk (i.e. expected uncertainty). They can make use of knowledge about how 
their sensory states change over longer intervals of time and take proactive measures 
to keep their sensory states within a range of preferred values. For example, they 
may be able to budget the body’s energy needs so more energy is available during 
the day for foraging than at night before sleep. Corcoran and colleagues suggest that 
rodents, corvids and primates make use of models with the deepest temporal reach. 
They are capable of some form of counterfactual active inference. They can simulate 
the sensory states the organism would sample were it to embark on a sequence of 
actions under a variety of possible but non-actual environmental conditions. They 
can, in this way, manage volatility or unexpected uncertainty allowing them to dif-
ferentiate risk that is due to an action policy from risk that is due to change in envi-
ronmental dynamics.

We agree with Corcoran and colleagues that it is important not to conflate life 
with cognition. We should resist drawing any simple relation of equivalence 
between life and cognition. Positing such a relation of equivalence would not help 
us to understand the relationship between life and cognition (Van Duijn et al 2006: 
p. 160). We should instead look for gradations in complexity of cognition in dif-
ferent lifeforms, a “shading-off” of cognition into more basic biological processes 
(Godfrey-Smith 2002, 2016). However we disagree with the sharp discontinuity 
Corcoran and colleagues insist upon between “proto-cognition”, which they concede 
may well be present in all living systems, and “genuine cognition”, which they take 
to be characterised by counterfactual inference. Such a sharp discontinuity implies 
that organisms that can learn, make decisions and form memories are not, just by 
dint of having these capacities, cognisers. They need in addition to implement a gen-
erative model of sufficient sophistication to allow them to engage in counterfactual 
inference to count as cognising. This strikes us as again an over-intellectualisation 
of cognition. While not unprincipled, we take it to be nevertheless unwarranted, and 
certainly not implied by the FEP.

On the contrary we take the FEP to provide strong support for, even if it does 
not imply, what Lyon (2006) has called a “biogenic view” of cognition.8 The bio-
genic view starts from principles of biological organisation to provide a principle 
basis for defining the border between the cognitive and the non-cogntive. Lyon 
used the word “genic” to describe this view because she is concerned with the ori-
gins or beginnings of cognition in the evolution of life. Searching for the origins of 
cognition means starting one’s search with the simplest of organisms in terms of 

8  Corcoran and colleagues deny that there is any implication from FEP to strong life-mind continuity—
the view that wherever there is life there is also mind (Kirchhoff and Froese 2017). They defend a weak 
continuity view according to which anything that has a mind will also be alive. We will argue by contrast 
that the organisational principles of life as characterised by the FEP provide a mark of cognition—cri-
teria for demarcating the cognitive from the non-cognitive without simply conflating life and cognition.

allostatic architecture” (p. 39). We agree with them on this point and offer some worked out examples to 
illustrate and support this point in the final section of our paper below.

Footnote 7 (continued)
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their organisation (but not their behaviour as we will see later)—prokaryotes. On 
the biogenic view cognition is a natural biological function that allows organisms to 
flourish and make a life in their particular econiches. We should not assume without 
argument that cognition requires a nervous system. Once we look for the origins of 
cognition we should not rule out the possibility that organisms that lack a nervous 
system such as plants, fungi, archea and bacteria can nevertheless cognise.

We take as our starting point Van Duijn et  al. (2006) proposal that cognition 
got started with the capacity for sensorimotor coordination (Cf. Kiverstein 2020).9 
Organisms such as plants and bacteria that lack a nervous system are nevertheless 
capable of sensorimotor coordination with their econiche. Cognition didn’t start 
with metabolic processes but with the coordination of sensorimotor behaviour with 
the environment. Sensorimotor coordination processes, as Keijzer nicely notes, 
“constitute major cognitive achievements, something that has become self-evident 
when one tries to mimic similar capacities in robotic devices (Pfeifer and Bongaard 
2007)” (Keijzer 2020: p.6). Plants, fungi, archea and bacteria do not possess brains 
but they all exhibit behaviours that are well-adapted to their circumstances. Slime 
molds for instance have been shown to be capable of navigating mazes (Ried and 
Latty 2016), a cognitive achievement that requires learning and memory. Plant 
growth involves decision-making that requires balancing different constraints and 
that distinguish edible from non-edible, or preferred from less-preferred sources of 
nutrition (Trewavas 2014; Calvo and Keijzer 2011; Linson and Calvo 2020). These 
organisms engage in a rich range of behaviours that coordinate with the constraints 
of their circumstances and that transcend metabolic-related functions.

But if cognition got off the ground with sensorimotor coordination this gives us 
alternative conceptual tools for thinking about the question we posed earlier (at the 
end of Sect. 1) of how to think about the probabilistic expectations relative to which 
FE is defined. The realist view as defended by Hohwy takes internal dynamics to 
parameterise probabilistic beliefs that represent hidden external causes of sensory 
input. On this realist view, the brain operates according to the norms of Bayesian 
probabilistic inference, aiming to represent truthfully the causal structure of a mind-
independent external reality. We are suggesting by contrast that internal dynamics 
parameterise expectations about the sensory consequences of action. Instead of con-
ceiving of these expectations in terms of belief, as the realist proposes, we propose 
to think of expectations in terms of what Susan Hurley called sensorimotor dynam-
ics (Hurley 2010; Cf. Noë 2004). The parameters of the organism’s internal dynam-
ics are the parameters of the organism’s perception and action systems that are 
tuned to the structure of its econiche [i.e. the action possibilities or affordances the 
econiche provides in part because of the organism’s own actions (Bruineberg et al. 
2016)]. In acting according to the imperative to minimise free energy the organism 
does not aim at true posterior beliefs but at tuning its action systems to the structure 
of its econiche in ways that support adaptive behaviour.

9  In this paper we will however widen van Duijin, Keijzer and Franken’s conception sensorimotor coor-
dination to include not only behaviour that is movement based (e.g., forms of taxis, locomotion, etc.) but 
also to include integrated biochemical behaviour that can be ascribed to the entire organism.



1 3

Is free‑energy minimisation the mark of the cognitive?﻿	 Page 13 of 27  25

According to the good regulator theorem of Conant and Ashby (1970) the inter-
nal dynamics an organism embodies must be a good regulator of the environment of 
which it is a part. The generative model should therefore be interpreted as a control 
system. Crucially control takes place without any inner executive that is coordinat-
ing, and micro-managing the control processes. Control is self-organising. The more 
complex the ecosystem of an organism and the affordances it makes available, the 
more complex the control system the organism will need to remain well-adapted 
to this niche (cf. Cisek 1999; Anderson 2017; Seth 2015, 2019). A good regulator 
is one that finds the right balance between maximising accuracy and minimising 
complexity. Accuracy here should be understood not in terms of the norm of aiming 
at the truth but in terms of anticipating the sensory consequences of acting in such 
a way as to remain well-adapted to a dynamic environment. Complexity we take 
to be ecological balance: the complementarity or alignment between the perceptual 
and motor skills of the organism and the affordances of its econiche. Minimising 
complexity here is achieved when the organism finds the right relation of mutual fit 
between its internal dynamics and the external dynamics of the environment.

The kind of control the generative model underwrites is what we will call “allo-
static control”. We have seen how complex adaptive systems expect to occupy sen-
sory states belonging to their attracting set and act to fulfill this expectation. The 
attracting set will include global physiological, visceral and vascular conditions of 
the organism’s body such as cardiac signals, states of the gut and viscera, glucose 
and oxygen levels. Allostatic control is anticipatory, as we will see in some detail in 
the next section. The organism anticipates deviations from sensory states belonging 
to the attracting set before they arise and takes appropriate precautionary actions to 
maintain itself in a non-equilibrium steady-state. We suggest that allostatic control 
drives sensorimotor behaviour ensuring the organism remains well-adapted to its 
environment. Allostatic control is a form of affect-based regulation of behaviour.10 
We can think of the maintenance of the organism in a far from equilibrium steady-
state as a fundamental concern—a goal or purpose for which the organism strives. 
Insofar as the organism has this goal, anticipated deviations from expected physi-
ological conditions are registered by the organism as affective states. The organism 
can regulate its sensorimotor engagement with the environment by using its affec-
tive states to initiate goal-directed, purposeful movement. Minimally, this will take 
the form of approach-avoidance behaviours, either moving away from what is poten-
tially harmful or towards what would improve the organism’s material conditions in 
its environment. Thus, sensorimotor coordination can be seen as a consequence, at 
least in part, of affective processes of allostatic control.

We suggest that this biological strategy may be found in a wide range of liv-
ing systems; it is not only neuronal organisms that make use of allostatic control 

10  When we describe these anticipated deviations as registering with the organism affectively we do not 
mean to imply that such deviations are consciously felt, implying some form of sentience in all organ-
isms capable of allostatic control. We take allostatic control to be affective in the sense that anticipated 
deviations from homeostatic setpoints are a matter of concern to the organism, which in our view justi-
fies describing allostatic control as a form of affect-based regulation (Cf. Lyon 2015). We use affect here 
in a sense that is neutral on whether the affective states are conscious. The question of when conscious-
ness first made an appearance in life is beyond the scope of this paper.
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to achieve sensorimotor coordination with the environment, but also basal organ-
isms (Cf. Alfieri 2008). It is an implication of the kind of self-organizing dynamics 
falling out of FEP that all organisms will possess capacities for allostatic control.11 
Consider in this light Calvo and Friston’s example of a plant that grows along a 
seashore (Calvo and Friston 2017: p. 4). The presence of salt in the soil is a part 
of the econiche of this plant. But too much salt is associated with free energy for 
the plant—it is not what the plant expects to encounter. One way the plant might 
respond is by learning to expect salty encounters and adjusting its morphology 
accordingly (e.g., osmotic adjustment, efflux, hardening, etc.). Part of this learning 
however will probably be for the roots of the plant to explore, selectively sampling 
areas of soil where the concentration of salt is low. Exploration itself is a metaboli-
cally costly behaviour given that root nutation (i.e., directed and non-directed root 
growth) requires both time and the use of energetic resources. It stands to reason 
that plants cannot afford to invest in high risk behaviour that lands them in stress 
inducing conditions—surprising conditions which they do not expect to occupy. In 
order to avoid both salty stress and unnecessary use of metabolic resources, “plants 
must adjust with respect to future conditions if their behaviour is to remain adap-
tive” (Calvo and Friston 2017, p. 4). That is to say plants should engage in a strategy 
of looking ahead, prospectively directing their behaviour to avoid anticipated salt 
concentration increases and investing in metabolic energy expenditure according to 
the anticipated sensory outcomes of such an expenditure. It is by engaging in this 
kind of prospective strategy that a plant continues to occupy the attracting set of 
states that define its existence, harvesting evidence for its generative model.

Calvo and Friston’s useful example helps to expose an important aspect of plant 
adaptive behaviour: Although there is short-term metabolic cost associated with 
nutation, such behaviours are nonetheless invested in because their anticipated con-
sequences allow the plant to occupy states that it expects to occupy over the long 
run. Plants are motivated to incur the immediate metabolic cost and possible short-
term divergence from other specific homeostatic expectations defined under the 
plant’s generative model. They incur these costs because they are motivated by the 
outcomes of their behaviour such as avoiding high salt concentrations and obtaining 
nutrients. These outcomes are what the plant expects given the model of its ecologi-
cal niche the plant develops and the plant engages in nutation in order to fulfill these 
expectations.

In the next section we will look more closely at the notion of allostatic control 
and its relation to homeostasis from the perspective of FEP. We then turn to some 

11  An anonymous reviewer asked us if it is an implication of our view that organisms engage in what we 
are calling allostatic control all of the time. One might think for instance that environmental volatility is 
dynamic. Organisms need to have recourse to allostatic control only in those periods in which the envi-
ronment conditions are predicted to be threatening to an organism’s homeostasis. When environmental 
conditions are predicted to present no challenge to long-term homeostasis, an organism’s adaptation to 
its environment may occur merely via the engagement of reflex-like (non-anticipatory) responses. We’ve 
argued above that allostatic control occurs as part and parcel of sensorimotor coordination. We would see 
the engagement of reflex-like responses that maintain homeostasis and what we are calling allostatic con-
trol as part of the process of sensorimotor coordination, though they may unfold at distinct layers of the 
generative model (as is the case in Stephan and colleagues model of allostasis—see Stephan et al. 2016).
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empirical studies which buttress the claim that at least some of the behaviour of non-
neural organisms is driven by allostatic control. We will look at various instances of 
allostatic behavioural control in microorganisms and plants. Our aim in doing so is 
to support the idea that varying degrees of allostatic control may be a ubiquitous fea-
ture of living systems and thus may serve as the basis for ascribing cognition to all 
complex adaptive systems.

Allostatic control: the mark of the cognitive?

Allostatic control is best understood in relation to the concept of homeostasis as 
introduced by the physiologist Walter Cannon (1929). Cannon used the notion of 
homeostasis to describe the maintenance of the conditions of an organism’s inter-
nal milieu within a constant range of values. Homeostasis has the consequence 
that the organism maintains balance with its environment, despite the influence of 
external environmental stressors. Examples of such internal conditions include, 
for example, blood pressure, heart rate, osmotic pressure, blood glucose and blood 
oxygenation levels. Remaining alive requires that a system regulates itself so as to 
ensure that these homeostatic variables remain around a constant preferred value 
(i.e., near a homeostatic setpoint). Think of the fact that the body temperature of 
humans may vary 0.5 degrees above and below the mean of 37.0 °C without repre-
senting a challenge to viability. Homeostatic variables vary in the range of values 
that are compatible with life. Blood glucose levels may vary to a larger degree over 
time without having harmful effects.12 Blood oxygenation levels tolerate very little 
variation. Given that living systems may encounter wide ranges of environmental 
conditions and physiological stressors, maintaining homeostasis will often prove 
to be extremely challenging. Typically, it is assumed this challenge is met through 
purely reactive forms of self-governed regulation.13 When a divergence from set-
points is registered, regulatory mechanisms ‘kick-in’, engaging homeostatic reflex 
arcs to counteract the disturbance. This restoration of homeostasis is accomplished 
by subsystems such as the autonomic, immune, endocrine or motor systems. The 
autonomic system, for example, contributes to the stabilization of respiratory rate 
and hence blood oxygenation variables, rather than the living system to which that 
autonomic system belongs.

Allostasis can be defined as “the proactive deployment of behavior, guided by 
predictions from a model, in order to avoid dyshomeostatic future states” (Stephan 
et al 2016, p. 28; c.f. Sterling 2012). Allostatic control consists in prospective behav-
iour directed at avoiding the anticipated divergence from homeostatic setpoints. 
Homeostasis may successfully minimize encountered free-energy only after a home-
ostatic setpoint has been breached. Allostasis involves the selection of sequences of 

12  To see this, think of how some people may fast for days on end, but they may only do without oxygen 
intake for minutes at a time.
13  To be fair, there are other more recent conceptions of homeostasis which see it as involving learning 
and anticipation. See Davis (2016). However, in what follows we will continue to use the term homeosta-
sis as it was originally introduced by Cannon.
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actions that minimise expected free energy (i.e. dyshomeostasis expected as a con-
sequence of action (cf. Friston et al. 2015; Schwartenbeck et al. 2019). Prospective 
behaviour is crucial for organisms, the continued viability of which remains risky 
and hostage to good fortune so long as they rely just on passively reacting to envi-
ronmental changes (Rosen 2012; Lyon, 2006; Goodson 2003). Consider the follow-
ing analogy: Prior to hiking through a hot desert, it is a good expenditure of ener-
getic resources to locate water and fill water flasks in the desert-bordering village 
even if one is not currently thirsty. Better to take prospective action now than wait 
until one’s only option is to forage for water in the desert and risk dehydration. Thus, 
despite its energy costs, the action-policy of loading up on water before entering the 
desert outweighs the dyshomoestatic effects of severe dehydration that would likely 
result from failing to act proactively.14

To the extent that allostatic control requires the selection of action policies that 
minimise expected free energy, one might think this kind of action control could 
only possibly occur in organisms with nervous systems that can forecast the conse-
quences of their actions. Corcoran and colleagues seem to rely on this type of rea-
soning. They suggest that to select action policies that minimise risk (i.e. expected 
uncertainty associated with an action-outcome), the organism must be capable of 
imagining different courses of action and their outcomes, testing out these actions in 
the safety of their imagination (ms, p. 36; c.f. Craik 1943; Dennett 1995). The capac-
ity to disengage from the present and imagine different possible futures is however 
clearly beyond the cognitive capabilities of organisms that do not have a brain.

We have two answers to this challenge. First we will argue that learning an action-
oriented model of an environment already requires minimising expected free energy. 
Second we will offer a number of examples that demonstrate how development of 
a model of the environment through gene regulation and phenotypic plasticity can 
also be viewed as minimising expected free energy. Thus, we dispute the claim that 
dealing with expected uncertainty requires sophisticated capacities for counterfac-
tual reasoning.

With regards to our first claim, consider a recent computational model of chemo-
taxis (Tschantz et al. 2020). Tschantz and colleagues take up the question of how 
an organism can learn from experience an action-oriented model of its environ-
ment. Organisms actively sample information from their environments based on 
their pragmatic goals and purposes. They thereby avoid the need for building a fully 
reconstructive and accurate model of their environments, as argued in the previous 
section. However a problem remains? How is it then that organisms avoid what the 
authors call “bad-bootstraps” in which they sample sub-optimal observations which 
are then used to update the model thereby leading the agent to continue to sample 
sub-optimal observations? The organism needs to perform not just pragmatic goal-
directed actions but also epistemic actions in which it actively forages and seeks 
out new information. But now the organism will be faced again with the problem of 
working out how the information it is sampling is relevant to its actions. To learn a 

14  Strictly speaking, thirst does not signify the state of dehydration but occurs prior to dehydration. This 
allows for one to act before dehydration prevents one from being able to forage for water. A similar rela-
tion holds between experiencing hunger pangs and blood glucose deficiency.
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model that can function as a good-regulator it seems the organism will need some 
techniques for balancing what are called “pragmatic” and “epistemic actions”, work-
ing out when it is appropriate to exploit the information it has to hand and when to 
explore for new information. They must in other words have some means of evalu-
ating when a pragmatic or an epistemic action is worth performing. We have sug-
gested in our discussion of allostatic control that the currency that is used to evaluate 
actions is expected free energy. The authors show that in their model of chemot-
axis, the agents that selected between pragmatic goal-directed actions and epistemic 
actions with the aim of minimising expected free energy were the agents that did the 
best in learning an action-oriented model of their niche. The agents in their model 
that selected actions with the aim of minimising expected FE avoided bad bootstraps 
on the one hand but they also avoided learning accurate and exhaustive models that 
were no longer useful for purposes of regulating and guiding action.

Epistemic actions are actions in which the agent risks exploring parts of the envi-
ronment that are currently unknown because the benefits of doing so are gains in 
information where these gains in information are to be understood in terms of mini-
mising future risk. The agent performs actions that may well lead to free energy in 
the short term but they do so because they do better at minimising free energy in the 
long-run. We will argue next there are good reasons to think that non-neural organ-
isms do indeed engage in such behaviours that temporarily take them away from 
homeostasis with the aim of minimising expected free energy. We take this to show 
that these organisms are engaging in allostatic control. Given the arguments of this 
paper, they are exhibiting cognition-based behaviours.

Example 1 Allostatic control in Escherichia coli  The bacterium E. coli offers our first 
striking example of an instance in which adaptive behaviour takes into account 
future expected risk. During its life, E. coli occupy a multitude of econiches, the 
mammalian gastrointestinal tract being the most frequent (Mitchell et al. 2009). It 
goes without saying that these niches have extremely different physiochemical prop-
erties. When E. coli are ingested, moving from outside environments to inside the 
oral cavity, they encounter both a transition from aerobic to anaerobic environmental 
conditions and an increase in ambient temperature. Failing to adapt to the oxygen 
downshift means death for such organisms. Tagkopoulos et al. (2008) emulated the 
changing temperature and oxygen conditions that E. coli encounter when moving 
from outside to inside the gastrointestinal tract in an artificial environment (i.e., a 
bioreactor). They hypothesized that if bacterial regulatory behaviour is merely a 
homeostatic reaction, then bacteria would wait until detecting oxygen downshift to 
repress aerobic respiration. However, if E. coli are capable of anticipatory behav-
iour, the repression of aerobic respiration might occur proactively, prior to detecting 
decreased oxygen levels. Remarkably, Tagkopoulos et  al. found that E. coli use a 
temperature upshift from 25 to 37  °C––the kind that would typically accompany 
being ingested––as a cue to repress aerobic respiration.

Tagkopoulos and colleagues posit that this cellular regulatory response is under-
written by a form of learning over evolutionary timescales that is akin to associative 
learning occurring over ontogenetic timescales. To test this hypothesis, they evolved 
E. coli in conditions that run counter to those found in nature, exposing bacteria to 
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a temperature upshift followed by an oxygen upshift. They found that E. coli when 
exposed to such counter conditions over time learnt to not repress aerobic respira-
tion, supporting the notion that the anticipatory behavior exhibited by these bac-
teria is a consequence of their learning the environmental contingencies to which 
they are exposed. This is to say that because respiration pathway reprogramming is 
decoupleable from the typical order of environmental cues “the originally observed 
correlated responses to temperature up-shift and oxygen down-shift cannot be due 
to hard biochemical constraints, but rather is a reflection of a common response to 
correlated changes in temperature and oxygen that has evolved over geological time-
scales” (Tagkopoulos et al. 2008, p. 5).

We suggest that this behaviour is an example of allostatic control underwritten 
by their becoming a model of their environment.15 This is evident from the fact 
that E. coli initiates adaptive regulatory behaviour geared toward future anaerobic 
conditions whilst still in the presence of oxygen, when these bacteria are tuned to 
the dynamics of an environment in which oxygen downshifts follow temperature 
upshifts. A bacterium’s finding itself in an anaerobic environment while continuing 
to expect the presence of oxygen is tantamount to its incurring free energy through 
its actions. Thus, preadaptive respiration repression here can be thought of as the 
bacterium minimising expected FE and hence minimizing the risk of finding itself 
in metabolically poor conditions. The gain from avoiding anaerobic stress exceeds 
the cost of its anticipatory respiration repression. Taking the diagnostic tool into 
account, this ability of E. coli to invest its current homeostatic resources so as to 
bring about behaviour that compensates for anticipated future environmental condi-
tions is, we suggest, a form of allostatic control.

Example 2 Allostatic Control in Wild‑type Yeast  Mitchell et al. (2009) tested the abil-
ity of wild yeast (Saccharomyces cerevisiae) to anticipate environmental change 
and compensate for it with prospective behaviour. They investigated the transition 
in physiochemical conditions during the process of the brewing of alcohol in which 
these eukaryotes must adapt from yeast-preferred fermentation conditions to subse-
quent oxidative respiration conditions. During fermentation, due to rise in tempera-
ture, S. cerevisiae are exposed to heat stress in addition to ethanol stress. Subsequent 
oxidative respiration generates oxygen radicals which may have deleterious effects 
upon the cells (Maris et  al. 2001). There is thus a causal trajectory from stresses 
resulting from fermentation to those resulting from respiration. Mitchell et al. were 
able to demonstrate that S. cerevisiae use early heat shock as a cue for encountering 
subsequent oxidative stress. Modification of regulatory networks due to the detec-
tion of heat stress allows yeasts to physiologically adapt to oxidative stress prior to 
encountering oxidative conditions. Strikingly, heat-induced-genes are at best neu-
tral or at worst maladaptive under heat shock. But heat-induced genes are essential 

15  Tagkopoulos et al. interpret their results similarly. They write: “More generally, the correlation-struc-
ture of the environment can be internalized as a probabilistic model in the high-dimensional space of an 
organism’s complete sensory perception. As such, the very organization of microbial regulatory networks 
may, in large part, represent the physical instantiation of this probabilistic model. (2008, p. 6).
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under conditions of oxidative stress. Mitchell and colleagues were therefore able to 
confirm “the claim that an early preparation to oxidative stress during heat shock is 
adaptive in the system” (Mitchell et al. 2009, p. 223). This anticipatory behaviour 
depends upon both a regular temporal order of unfolding events in the yeasts’ envi-
ronment and that such order has been captured by the organization of the yeasts’ 
regulatory networks. In other words, S. cerevisiae becomes a model of its environ-
ment over the course of its development, which allows the yeast to minimise risk. 
Such anticipatory physiological regulation, like in the case of E. coli, may be seen as 
a behavioural investment in the long-term maintenance of homeostasis given antici-
pated environmental changes. It is a form of anticipatory control allowing organisms 
to avoid deviations from homeostatic balance by engaging behaviours that enslave 
more flexible homeostatic mechanisms. As such, this example of anticipatory behav-
iour falls under the category of expected free energy-minimizing allostatic control.

Example 3 Allostatic Control in Slime Mould?  Slime mould (Physarum polycephalum) 
is an amoeboid that can live as an individual cell or as a multicellular aggregate (a 
plasmodium). As plasmodia, the individual cells benefit from enhanced motility and 
more effective resource foraging (Dussutour et al. 2010). Plasmodia have continued 
to attract the interest and attention of biologists, cognitive scientists, and computer 
scientists over recent years because of their ability to display behaviour that is typi-
cally associated with organisms that have a brain (Vallverdú et al. 2018). For exam-
ple, they have been shown to exhibit a form of habituation (Dussutour et al. 2010; 
Boisseau et al. 2016) and solve ‘the shortest path problem’ when placed in mazes 
(Nakagaki et al. 2000; Bonifaci et al. 2012). Importantly, P. polycephalum presents 
another fascinating example of anticipatory control in microorganisms. For exam-
ple, Saigusa et al. (2008) have shown that plasmodia can anticipate and respond to 
periodic environmental changes. To do so, these researchers measured the locomo-
tion speed of Physarum plasmodia when subjected to controlled periodic changes 
in two different experimental conditions: a “standard condition” at 26 °C and 90% 
humidity and a “dry stimulation” at 23 °C and 60% humidity. In the standard condi-
tions, Physarum plasmodia migrated at a steady rate. When, however, subjected to 
periodic dry stimulation there is a drop in the plasmodium’s locomotion speed. Cru-
cially, after three hourly instances of periodic exposure to the dry stimulation it was 
shown that plasmodia locomotion decreases spontaneously in standard conditions, 
coinciding with the time points (i.e., subsequent hours) where the next dry stimu-
lations would have taken place. The existence of this kind of behaviour, Saigusa 
et al. suggest “means that the organism anticipates the next periodic environmental 
change” (2008, p. 4).

Why would such anticipatory behaviour be adaptively advantageous to Physarum 
plasmodia? Dry stimulation is physiologically challenging to P. polycephalum. In 
lasting dry conditions, plasmodia divert energy into formation of sclerotium (i.e., an 
encysted resting body that is resistant to desiccation) (Furuahashi 2002). One rea-
sonable way of construing the adaptive nature of plasmodial locomotion-slowing is 
in terms of an effective trade-off of metabolic investment to secure the minimization 
of excepted free energy. Less metabolic resources are expended in locomotion and 
more are diverted towards biochemical priming in preparation for the metabolically 
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expensive process of sclerotium formation. The trade-off roughly maps on to select-
ing between one of two policies: continued resource foraging and avoiding unex-
pected risky outcomes (i.e., drying out). Moreover, Saigusa et al. showed that after 
spontaneous locomotion-slowing ceases, the slowing down response may be elicited 
again after only one exposure to dry stimulation. This seems to strongly suggest 
to us that a plasmodium’s anticipatory behaviour is the result of its having become 
a model of the periodic events in its environment over the course of its develop-
ment.16 By investing its resources in prospective behaviour that corresponds to its 
learnt model of its ‘act-on-able’ environment, a plasmodium can avoid possible 
dyshomeostasis-inducing desiccation, thus maintaining its long-term homeostasis. 
The behaviour of P. polycephalum in other words exemplifies expected free energy 
minimizing allostatic control.

Example 4 Phenotypic Plasticity and Allostatic Control in Plants  Unlike most animals 
and some microorganisms, plants are non-motile (i.e., sessile) organisms. Where 
motile organisms adapt to their changing environments by moving to bring about 
expected sensory states, adaptive behaviour in plants typically exploits phenotypic 
plasticity. Plasticity may be roughly defined as “the degree to which an organism 
can be changed in response to environmental signals” (Trewavas 2003, p. 12).17 
It may take the form of either irreversible movement via growth (e.g., root nuta-
tion, circumnutation of helical organs, etc.) or reversible movement via increasing 
or decreasing cellular turgor (i.e., change in hydrostatic pressure) (Segundo-Ortin 
and Calvo 2019).18 Importantly, because such plastic behaviour requires time, “use-
ful information, must be relevant to the future environment and conditions that the 
organism will eventually function in” (Novoplansky 2016, p. 59). As such, plastic-
ity is an indicator of anticipation (Trewavas 2003). We will close this section by 

16  Recall from Sect. 3 how Clark has expressed scepticism about Friston’s talk of the organism becom-
ing a model of its environment. We take the plasmodia example (and the other examples we discuss 
in this section) to show how it does indeed make sense to talk of the organism literally (and not only 
metaphorically) becoming a model of its environment in ontogenesis through epigenetic processes like 
phenotypic plasticity.
17  Phenotypic plasticity is a ubiquitous phenomenon in all living systems. For example, in neuronal 
organisms such plasticity is associated with the kind of remodelling of synaptic interactions that underlie 
memory formation and learning (Phillips 2006; Baluška and Levin 2016). The point we are making here 
is that phenotypic plasticity in plants, which plays a particularly crucial role in their ability, as sessile 
organisms, to actively adapt to the uncertainty of their external milieus. It should also be noted that the 
kind of development described by phenotypic plasticity is distinct from unitary development (i.e., the 
kind of development that occurs with maturation). While the latter may have adaptive advantages, it is 
not directed. Phenotypic plasticity can be directed and hence qualifies as an adaptive behavioural strat-
egy (Trewavas 2003; Calvo and Keijzer 2011; Calvo and Friston 2017; Sims 2019).
18  The number of ways that a plant can plastically adapt to its changing environment may be easily con-
ceptualized as corresponding to the number of ways animals and some microorganisms can alter their 
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looking at an example of anticipatory plant behaviour in purslane (Portulaca olera-
cea) seedlings.

In addition to water and minerals, light is an extremely important resource for 
plants. Photosynthetic processing by leaves allows plants to convert light energy into 
sugars which may be used to satisfy their metabolic requirements (Nevins 1995). 
Different species of plants however have different light requirements. Of those 
plants that thrive in more light, competition amongst them for this resource pre-
sents a significant kind of selection pressure. These kinds of “sun-loving plants” that 
are found in open habitats, when shaded by other vegetation, respond by elongat-
ing their stems, increasing their chances of escaping the shade of their neighbour-
ing sun-loving competitors and simultaneously casting shade upon them (Aarssen 
1995; Novoplansky 2016). More generally, plants’ sensitivity to the ratio of red light 
(wavelength 650–700  nm) and to far-red light (wavelength 700–750  nm) allows 
them to respond to competing plants, elongating both their stems and leaves in addi-
tion to reorienting their leaves to a more optimal position for photosynthetic light 
exposure (Smith 2000). When the proportion of red light is lower than that of far-red 
light this ratio may be used as a cue for the presence of competing plants. This is 
because inanimate objects (e.g., dead plants) reduce a full range of spectral light fre-
quencies, whereas plants absorb red and reflect far-red light, leaving a low red/far-
red light ratio as a proxy for the presence of shading competitors (Casal and Smith 
1989; Novoplansky 1990, 1991, 2016).

The fact that low red/far-red light can be used by plants to predict the presence 
of competing neighbours was the basis of a revealing experiment by Novoplansky 
et al. (1990). These researchers were able to demonstrate that the seedlings of the 
common purslane (Portulaca oleracea) not only detect spectral changes as cues for 
the presence and the direction of neighbouring plants but they also engage in antici-
patory behaviour. They reorient their growth prior to being shaded by their neigh-
bours. Novoplansky and colleagues showed that young purslane seedlings engage 
in such anticipatory behaviour by using a process they call “horizon filtering”. They 
used shallow (2 cm) plastic rim filters to simulate the kinds of spectral effects that 
small neighbouring plants would have on seedlings. These rims featured two sperate 
coloured filters, a grey and green filter respectively. Whereas the grey filter simu-
lated neutral shade (i.e., akin to the shade of an inanimate object), the green filter 
reduced red/far-red light frequencies (akin to the shade of neighbouring seedling 
plants). In each experimental treatment, the plastic rim was placed around the seed-
ling so that the green filter was located in a different cardinal direction, leaving the 
grey filter surrounding the rest of the seedling.

spatial relationship to their environments through quick and motility-driven behaviours. This point is 
expressed elegantly by Trewavas when he writes: “Just as animal behaviour is constrained by genetic 
capabilities, so ultimate genetic constraints on phenotypic change will be present. But with plants refin-
ing their discrimination to local conditions, perhaps the enormous numbers of distinguishable pheno-
types correspond well with the number of behavioural variations available to any animal” (2003, p.13). 
For a more recent comparison of plant and animal behaviour see Calvo and Trewavas (2020).

Footnote 18 (continued)
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Novoplansky and colleagues found that the seedlings grew towards grey but away 
from the green despite the fact that the filter’s shallow height only filtered light with 
respect to the position of the seeding at sunrise and sunset. In other words, despite 
being exposed to photosynthetic light for most of the day the seedlings invested 
their metabolic resources in prospectively growing away from the direction in which 
future shading by neighbouring plants was expected. These results may be taken 
to suggest that “rather than opportunistically maximise present absorption of pho-
tosynthetic light, [purslane seedlings] are able to perceive and integrate directional 
spectral cues and respond in ways that maximize their expected total long-term light 
absorption and growth” (Novoplansky et al. 2016, p. 62–63). Given that future pho-
tosynthetic light depletion for a sun-loving plant means eventual dyshomeostasis, we 
take the anticipatory behaviour exhibited by P. oleracea seedlings as an example of 
behaviour that aims at outcomes expected to minimise future free energy.19

We take these four examples to provide compelling evidence for two claims. First 
these organisms become a model of the opportunities and challenges of their envi-
ronmental conditions. The developmental processes by which organisms develop an 
organisation that models their environment can take various forms and can occur 
across different timescales. Importantly, instantiating an internal dynamics that 
models correlations and associations between cues is only possible when the envi-
ronment contains regular structure that may be capitalized upon. Second, the model 
these organisms develop is used for the purpose of allostatic control. Organisms 
expend energy and expose themselves to stressful conditions that temporarily incur 
an increase in free energy but they do so with the aim of minimising expected free 
energy. Should we conclude then that organisms like the ones we have discussed that 
lack a nervous system can nevertheless cognise? We have argued that the FEP sup-
ports allostatic control as the mark of cognition. By this criteria, we should indeed 
conclude that evolutionarily primitive organisms are capable of cognition.

Conclusion

We have shown how the FEP provides a mark of the cognitive that if it is accepted 
would warrant the ascription of cognitive processes to organisms that lack a nervous 
system. A distinction is commonly made within cognitive science between differ-
ent forms of sensorimotor control—Pavlovian, habit-based and goal-directed. Such 
a distinction would seem to support a picture of evolution in which the earliest forms 
of life relied upon a sensorimotor architecture of homeostatic control, and gradually 
forms of instrumental began to evolve. Goal-directed control as it occurs in humans 
evolved out of these earlier forms of instrumental control. Organisms started out 
with a narrow and fixed repertoire of behaviours but as they developed instrumental 

19  For a more recent example where young pea plants have been shown to detect and integrate informa-
tion about their environmental resources to guide anticipatory behaviour with respect to future growth 
conditions see Shemesh et al. (2010).
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forms of control, so their behavioural repertoire expanded. The FEP is sometimes 
taken to support this picture of the evolution of cognition (see e.g. the contribution 
of Corcoran and colleagues in this volume and Clark 2016). We’ve argued however 
that FEP actually complicates this picture in productive ways suggesting that even 
in Pavlovian learning and through processes of phenotypic plasticity the organism 
is proactively anticipating the implications of its actions for future free energy and 
selecting those actions that minimise expected free energy. We take the FEP to sup-
port a picture of complex adaptive systems as goal-directed and purposeful in their 
behaviours. Even organisms that lack a nervous system exhibit primitive agency act-
ing with the long-term purpose of keeping future free energy to a minimum. Their 
behaviour is not reactive but is anticipatory. These organisms seem to be capable of 
selecting actions based on their anticipated implications for free energy. Thus they 
challenge a picture of sensorimotor control in which instrumental forms of control 
that take into account the outcomes of action evolved out of a purely Pavlovian and 
reflexive control. Instrumental forms of allostatic control may have already been 
present at the beginning of the evolution of life. We have argued that allostatic con-
trol—an affect-based form of regulation—may prove to be the mark of the cogni-
tive. Thus it is an implication of our paper that cognition may have already been 
present at the very beginning of the evolution of life.
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