
Factive scientific understanding without accurate
representation

Collin C. Rice1

Received: 14 May 2015 / Accepted: 11 November 2015 / Published online: 23 November 2015

� Springer Science+Business Media Dordrecht 2015

Abstract This paper analyzes two ways idealized biological models produce

factive scientific understanding. I then argue that models can provide factive sci-

entific understanding of a phenomenon without providing an accurate representation

of the (difference-making) features of their real-world target system(s). My analysis

of these cases also suggests that the debate over scientific realism needs to inves-

tigate the factive scientific understanding produced by scientists’ use of idealized

models rather than the accuracy of scientific models themselves.
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Introduction

In this paper, I investigate two ways highly idealized models can produce the

cognitive achievement of factive scientific understanding. I then argue that models

can produce factive scientific understanding of a phenomenon without providing an

accurate representation of the (difference-making) features of any real-world target

system. My analysis also suggests that the debate over scientific realism needs to

investigate the factive scientific understanding produced by scientists’ use of

idealized models (or theories) rather than the (approximate) accuracy of scientific

models (or theories) themselves.

According to most accounts of explanation, a necessary condition for something

to explain is that it be, at least in some sense, true. Hempel (1965) originally

distinguished between true explanations and potential explanations, which would be
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adequate if they were true. In modeling terms, this truth requirement claims that in

order for a model to explain it must accurately represent (at least some of) the

relevant features of the physical target system(s). Many contemporary accounts of

how models explain make this accuracy requirement explicit. For example, Michael

Strevens asserts, ‘‘no causal account of explanation—certainly not the kairetic

account—allows non-factive models to explain’’ (Strevens 2009, p. 320).1 More

generally, for causal and mechanistic accounts, in order for a model to explain it

must provide an accurate representation of the difference-making causal relation-

ships or causal mechanisms that led to the target explanandum (Craver 2006;

Kaplan and Craver 2011; Kaplan 2011; Strevens 2009; Woodward 2003).2

In addition, several philosophers have emphasized the connection between

providing an explanation and the cognitive achievement of understanding (Achin-

stein 1983; Friedman 1974; Grimm 2006; Kitcher 1981; Lewis 1986; Salmon 1984,

1998; Strevens 2009). For example, Wesley Salmon writes, ‘‘understanding results

from our ability to fashion scientific explanations’’ (Salmon 1984, p. 259). In

addition, Michael Freidman argues that our theory of explanation, ‘‘should tell us

what kind of understanding scientific explanations provide and how they provide it’’

(Friedman 1974, p. 14).

What is more, several philosophers have recently claimed that the only way to

achieve scientific understanding is by grasping a correct explanation (de Regt

2009b; Khalifa 2012; Strevens 2009, 2013; Trout 2007). For example, J.D. Trout

states that, ‘‘scientific understanding is the state produced, and only produced, by

grasping a true explanation’’ (Trout 2007, pp. 585–586). In addition, Michael

Strevens argues: ‘‘An individual has scientific understanding of a phenomenon just

in case they grasp a correct scientific explanation of that phenomenon’’ (Strevens

2013, p. 1). Given that most accounts—including Strevens’s kairetic account—

require some form of accurate representation for a model to explain, these views

seem to imply that accurate representation of difference-making features is

necessary for producing scientific understanding.

Understanding is a cognitive achievement that involves grasping a fairly

comprehensive body of information (Elgin 2007; Grimm 2006, 2012, Kvanvig

2003). Moreover, it is widely agreed that scientific understanding is factive in the

sense that what one understands must have some connection to the way things really

are (Grimm 2006, 2012; Mizrahi 2012; Kvanvig 2003). In general, when it comes to

scientific understanding, ‘‘what we are trying to understand is how things actually

stand in the world’’ (Grimm 2006, p. 518).

However, as many philosophers have noted, these accuracy (or truth) require-

ments for explanation and understanding are in tension with a widely recognized

1 While Strevens’s account does allow some idealized models to explain, accurate representation

continues to play a key role since, ‘‘the overlap between an idealized model and reality…is a standalone

set of difference-makers for the target’’ (Strevens 2009, p. 318).
2 Indeed, mechanistic accounts of explanation typically include strong accurate representation

requirements in order for a model to explain (Craver 2006; Kaplan and Craver 2011). For example,

David Kaplan and Carl Craver argue for a model-to-mechanism-mapping (3 M) requirement that involves

various kinds of ‘‘correspondence’’ between the model and the actual causal mechanisms in the model’s

target system (Kaplan 2011, p. 347).
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fact: that idealization is an essential and pervasive aspect of scientific theorizing

(Cartwright 1983; Elgin 2007; Godfrey-Smith 2009; Mäki 2011a, b; Odenbaugh

2011; Psillos 2011; Rohwer and Rice 2013; Weisberg 2007a, b, 2013; Wimsatt

2007). Generally, idealizations are known to be false assumptions—they deliber-

ately misrepresent or distort the features of real-world systems. Consequently,

several philosophers have suggested that the pervasiveness of idealized models (and

theories) raises a serious challenge to scientific realism (Cartwright 1983; Levy

2012; McMullin 1985; Odenbaugh 2011; Psillos 2011; Saatsi 2014; Suárez 1999).

The general idea is that, given that our best models and theories contain known to be

false assumptions, even if they make accurate predictions we have little reason to

believe they are true. For example, Jay Odenbaugh argues that, ‘‘if idealizations are

generally ineliminable, we are rarely justified in believing our models’’ (Odenbaugh

2011, p. 1187). This has led many authors to suggest that, characterizing models as

highly idealized fictions, ‘‘is incompatible with the most basic tent of realism—

namely, that attaining truth is the central aim of scientific investigation’’ (Levy

2012, p. 741).3

This paper investigates two case studies from biology to illustrate how highly

idealized models can produce factive scientific understanding despite the accuracy

requirements outlined above. After showing how both cases produce factive

scientific understanding, I will argue that models can produce factive scientific

understanding of a phenomenon without providing an accurate representation of the

(difference-making) features of a real-world target system(s). Finally, where

Cartwright (1983), Odenbaugh (2011), Mäki (2011a, b), Suárez (1999), Ladyman

et al. (2007), Peters (2014), Worrall (1989) and others all focus on whether scientific

realism can be defended based on the partial or approximate truth of our models or

theories, I will suggest that a promising (but unexplored) approach to defending

realism is to investigate the factive scientific understanding produced by scientists’

use of highly idealized models.

The paper will proceed as follows. In the next section, I outline an account of

factive scientific understanding. Then, I analyze two cases in which a highly

idealized model is used to produce factive scientific understanding in biology. Next,

I argue that models can produce factive scientific understanding of a phenomenon

without providing an accurate representation of the (difference-making) features of

any real-world target system(s). Finally, I will suggest that the debate over scientific

realism needs to include an investigation of the factive scientific understanding

produced by scientists’ use of idealized models.

What is factive scientific understanding?

To begin, in order for something to count as an instance of scientific understanding,

it needs to be the case that the understanding is a product of scientific inquiry; rather

than say resulting from history, art, or literature. In addition, I am specifically

3 However, Levy (2012) goes on to argue that if we understand fictions in a particular way we can

maintain realism.
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interested in the understanding scientific models provide of natural phenomena

rather than an individual’s understanding of a model, theory, or subject matter; e.g.

my understanding of relativity theory (de Regt 2009a). Jonathan Kvanvig (2009)

discusses this distinction:

The issue here concerns the object of understanding. One might understand the

model or theory itself, as when one understands phlogiston theory. One does

not thereby understand combustion, however. Understanding the world

scientifically is not simply a matter of understanding the given model but

involves, rather, some relationship between the model and reality. (p. 342)

In light of this distinction, I will be assuming that scientific understanding is

concerned with understanding ‘‘real phenomena’’ in the world (Schurz and Lambert

1994, p. 68).

It is widely accepted that the understanding science provides of natural

phenomena involves ‘‘grasping something further’’ than what is involved in merely

accepting a set of beliefs about the phenomenon (Elgin 2007; Grimm 2006, 2012;

Kvanvig 2003). In general, understanding is thought to involve the ability to grasp

some important information about, ‘‘how the various parts of the world [are]

systematically related’’ (Grimm 2012, p. 103). This is typically thought to require

that one who understands must grasp certain relations among the components (e.g.

propositions or beliefs) of a larger body of information. Catherine Elgin puts the

point this way:

Understanding is primarily a cognitive relation to a fairly comprehensive

coherent body of information. The understanding encapsulated in individual

propositions derives from an understanding of larger bodies of information

that include those propositions. (Elgin 2007, p. 35)

So, according to Elgin, understanding involves incorporating information into a

comprehensive and coherent network of information. Philosophers of science echo

this idea, but in slightly different terms: ‘‘to understand a phenomenon P is to know

how P fits into one’s background knowledge’’ (Schurz and Lambert 1994, p. 67).

Following these views, on the account I present here, scientific understanding of a

phenomenon requires that what one understands about the phenomenon must be

systematically integrated into a wider body of information about the phenomenon

(or systems) of interest. This systematic integration can take multiple forms; e.g.

grasping the kinds of functional, logical, modal, causal, prototypical, or exemplar

relationships emphasized in the cognitive science literature on conceptual

information (Machery 2009; Gopnik and Meltzoff 1997; Rice 2014; Weiskopf

2009). Many of these same relations—e.g. causal, modal, and theoretical

relationships—have also been emphasized in the literature on explanation (Bokulich

2011, 2012; Rice 2015; Salmon 1984; Woodward 2003). While this list is probably

not exhaustive, I will leave it to future cognitive science research to provide more

details about the kinds of relationships human beings use to integrate new

information into their existing background knowledge. Moreover, my focus here

will be exclusively on modal (i.e. counterfactual) information, which is central to
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several accounts of conceptual information, explanation and understanding

(Bokulich 2011, 2012; Grimm 2006, 2008; Rice 2014; Woodward 2003).

Additionally, in order to genuinely understand, an agent must grasp how the new

information fits into this larger body of information about the phenomenon of

interest. In other words, how the new information can be systematically integrated

into this kind of larger cognitive corpus is the ‘‘something further’’ that must be

grasped in order for the agent to genuinely understand.

Finally, what does it mean to claim that this kind of scientific understanding must

be factive? Among philosophers of science, it is widely accepted that understanding

is factive in the sense that (at least some of) the beliefs (or propositions) within

one’s understanding must be true (Grimm 2006, 2012; Mizrahi 2012; Strevens 2009,

2013). For example, young earth creationists believe a great flood formed the Grand

Canyon in about a year, but they do not understand because their story is incorrect

(Strevens 2013). Indeed, there is a strong intuitive pull to say that understanding

natural phenomena cannot involve believing falsehoods since, ‘‘what we are trying

to understand is how things actually stand in the world’’ (Grimm 2006, p. 518).4

One might think this requires that all the beliefs (or propositions) involved in

one’s understanding must be true. However, this requirement is far too strong (Elgin

2007; Kvanvig 2003; Zagzebski 2001). Indeed, such a standard cannot do justice to

the cognitive contributions of science since scientific understanding typically

depends on the use of highly idealized models and theories. Moreover, since

idealizations are so essential and pervasive in science, it is often difficult to see how

the inferences used to produce scientific understanding can be isolated from the

contributions idealizations make to those inferences (and understanding). As a

result, the widespread use of idealizations within our best scientific models and

theories suggests that requiring all of the beliefs (or propositions) that contribute to

one’s understanding to be true is too high of a standard.

In response, Elgin (2007) contends that we should abandon a factive conception

of scientific understanding. However, contrary to Elgin, I think that allowing that

not all the beliefs within one’s understanding must be true does not require that we

claim that scientific understanding is non-factive. For example, Kvanvig (2003) and

Mizrahi (2012) both argue for what they call a ‘‘quasi-factive’’ account of

understanding by distinguishing between central propositions and peripheral ones.

On Kvanvig’s view, all of the central propositions of one’s understanding must be

true, but a few false beliefs about peripheral propositions does not undermine one’s

understanding. This allows some falsehoods to play a role, while still requiring a

factive component to understanding.

While this is a step in the right direction, one problem with Kvanvig’s view is

that idealizations are often central (or essential) to the understanding provided by

many, many scientific models and theories (Elgin 2007; Mizrahi 2012). Moreover,

as Elgin notes, there is often ‘‘no expectation that in the fullness of time

idealizations will be eliminated from scientific theories…elimination of idealiza-

tions is not a desideratum. Nor is consigning them to the periphery of a theory’’

4 In addition, Pritchard (2009), Grimm (2006), and Kvanvig (2003) all argue for a factive notion of

understanding that requires at least some of the propositions in one’s understanding be true.
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(Elgin 2007, p. 38). As a result, requiring that the idealizations within our best

scientific models be removed or resigned to the periphery of our understanding is

the wrong way to argue that scientific understanding can still be factive.

Instead, my view is that scientific understanding is factive because in order to

genuinely understand a natural phenomenon most of what one believes about that

phenomenon—especially about certain contextually salient propositions—must be

true. To be clear, I am not claiming that simply having a majority of what one

believes about the phenomenon be true is sufficient for understanding. Nor do I

suggest that determining if an agent understands requires counting up all the beliefs

within their understanding and determining whether the number of true beliefs

meets some universally applicable threshold (e.g. 62 %). Rather than simple

methods of proposition counting, I recommend a case-by-case approach that allows

for a plurality of context-sensitive ways that one’s understanding might meet this

factive requirement. For one thing, in different contexts of scientific inquiry, some

propositions will be more important (or salient) to one’s understanding and so their

truth-value will carry more weight in determining whether one’s understanding

meets this factive requirement. Another issue concerns cases where one’s beliefs are

only ‘‘approximately true’’ or are directly inferred from other false beliefs. I won’t

work through the details of each of these complications here, but I will suggest that

the factive component of scientific understanding is somewhat flexible and is highly

context-sensitive. However, it is important to note that the context of scientific

inquiry will typically establish a particular why question of interest, a contrast class,

a set of features that are thought to be relevant and irrelevant, etc. As a result,

merely having many true beliefs about the phenomenon of interests will typically be

insufficient for understanding since the agent who understands will often be

required to grasp certain truths that are made particularly salient by the context of

inquiry. Precisely how these contextual factors interact with the factive require-

ments on scientific understanding will have to be uncovered by analysis of particular

cases.

Therefore, while I maintain a factive requirement for understanding, I have no

universal account to offer about how to determine precisely (across all cases) when

most of what one believes about the phenomenon is true in a way that is sufficient

for understanding. Still, although the factive requirement suggested above is

admittedly vague, I think we can make clear judgments in many cases. For example,

the Grand Canyon case above seems to clearly fail the requirement since these

agents fail to grasp the particularly salient facts that the cause of the Grand Canyon

was the Colorado River (not a great flood) and that the process took approximately

6 million years to complete. As a result, most of what these agents believe about the

phenomenon and why it occurred is incorrect. Moreover, the facts the agents get

incorrect are precisely those facts that are made most salient by the particular

question being asked. We can contrast this case with physicists’ understanding of

the movement of planets which seems to clearly meet the factive requirement

since—although it may contain some false beliefs—is mostly constituted by true

beliefs and those true beliefs are those that are particularly salient in the context of

inquiry; e.g. where the earth is, how planets rotate, which bodies orbit which others,

and the approximately elliptical shape of planetary orbits.
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What is more, I think this vagueness regarding the factive requirement for

understanding is due to the inherent vagueness in our judgments about when the

falsity of one’s beliefs will undermine one’s understanding—i.e. vagueness in how

we apply the concept of understanding. Therefore, while ‘‘most of what one believes

about the phenomenon is true’’ is admittedly vague and context sensitive, I suggest

that this tracks the way we attribute understanding to individuals. Moreover, I see no

reason not to call this a factive notion of understanding since truth continues to play

a key role in our judgments about whether or not one genuinely understands.

In short, I claim that a scientific model produces factive scientific understanding

of a natural phenomenon if it enables an agent to grasp some true belief(s) about the

phenomenon of interest and the agent grasps how that information can be

systematically incorporated into a larger body of information in which most of what

the agent believes about the phenomenon is true. It is important to note, however,

that the above account of factive scientific understanding leaves open the possibility

that many (and perhaps central) propositions in one’s understanding might be false.

Indeed, in the next section I analyze two ways that highly idealized models in

biology can produce this kind of factive scientific understanding.

Two ways highly idealized models produce factive scientific
understanding

My case studies will both involve the use of optimization models in biology. The

unifying feature of optimization models is the use of a mathematical technique

called optimization theory. Optimization theory is widely applicable across the

sciences since, ‘‘In engineering, as in evolution, the [best] attainable solution is

often a compromise, owing to constraints on the feasible design options and

tradeoffs among different benefits to be achieved by the design…Optimization is

about constraints and tradeoffs’’ (Seger and Stubblefield 1996, p. 94). Indeed, these

examples of optimality modeling serve as useful case studies because optimality

models are widely used in biology (Orzack and Sober 2001; Potochnik 2007, 2009;

Rice 2012, 2015; Stephens and Krebs 1986), physics (Hartmann and Rieger 2002),

economics (Pindyck and Rubinfeld 2009; Rohwer and Rice 2013), cognitive science

(Churchland 2013; Carruthers 2006), chemical engineering (Corsano et al. 2009),

and various social sciences. Moreover, the cases I describe are similar to the uses of

other kinds of models in other disciplines. Consequently, the arguments that follow

could easily be applied to other kinds of modeling and models outside of biology.

System-specific modeling

In the first kind of case, an optimality model produces factive scientific

understanding by investigating a biological phenomenon that occurs within a

particular target system. By showing how certain features contribute (i.e. are

counterfactually relevant) to the occurrence of the phenomenon and showing why
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certain contextually salient features are irrelevant, an optimality model can enable

us to understand why the phenomenon occurred in its target system.5 Precisely

which features need to be shown to be relevant and irrelevant will depend on how

we specify the target phenomenon, the context of inquiry, and the nature of the

model’s target system. However, once these features are taken into account, by

providing the right set of modal information about the counterfactual relevance and

irrelevance of various features of the target system, biologists can use a highly

idealized optimization model to understand why the target phenomenon occurred

(Orzack and Sober 2001; Potochnik 2007, 2009; Rice 2012, 2015; Sober 2000).6

Because the goal of these modelers is to understand a system-specific phenomenon,

I will refer to this as system-specific modeling.

The goal of system-specific modeling is to provide accurate information about

the counterfactual relevance and irrelevance of various contextually salient features

within the model’s target system. This information about counterfactual relevance

and irrelevance then leads the modeler to acquire factive scientific understanding of

why the phenomenon occurred in the target system. This understanding is

constituted by a set of true beliefs about the counterfactual relevance and

irrelevance of various contextually salient factors, which is incorporated into a

larger body of mostly true scientific knowledge about the phenomenon of interest.

An example of system-specific modeling is Schmid-Hempel et al.’s (1985) use of

optimality models to investigate honeybee foraging behavior.7 Honeybees forage

for nectar in patches and carry their load back to the hive. The phenomenon of

interest is that bees often leave food sources when their crops are only partially

filled. Schmid-Hempel et al. attempted to understand this system-specific

phenomenon by investigating two optimality models constructed from a detailed

description of the steps in the honeybee foraging cycle (see Fig. 1).

The first optimality model assumed that selection would maximize the net rate of

energy delivery, given by net energy divided by time. The second optimality model

assumed that selection would maximize energy efficiency, given by net energy gain

per unit of energy expended. Empirical data from other studies was then used to fill

in the parameters of these models with precise values; e.g. values for the metabolic

rate during flight for an unloaded bee and the linear increase in metabolic rate with

load (Schmid-Hempel et al. 1985, p. 63). These modelers were then able to make

5 In what follows I adopt something similar to counterfactual accounts of explanation that focus on a

model’s ability to answer what-if-things-had-been-different questions (Bokulich 2011, 2012; Rice 2015;

Woodward 2003). However, my goal here is not to argue for a particular account of scientific explanation,

but to investigate how the information provided by idealized models is able to produce factive scientific

understanding.
6 Here I explicitly put things in terms of counterfactual (or modal) relevance and irrelevance in order to

remain neutral on the need to reveal causal relations in order to provide understanding of a phenomenon.

Indeed, it has been argued that optimization models provide noncausal explanations (Rice 2012, 2015),

that natural selection is not a cause (Walsh et al. 2002; Matthen and Ariew 2009), and that only

counterfactual information (but not causal information) is required for explanation (Bokulich 2011, 2012;

Rice 2015). In order to remain as neutral as possible in this paper, I maintain the focus on counterfactual

relevance, which can encompass both causal and noncausal kinds of relevance.
7 For considerations of space I do not work through all the detailed equations of the model (those

interested should see Schmid-Hempel et al.’s original article).
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detailed quantitative predictions that could be experimentally tested within real-

world honeybee populations. The results showed that honeybees’ foraging

behaviors appear to be maximizing their energy efficiency, not the rate of energy

intake.

Consequently, since energy efficiency is reduced with each additional flower, the

optimality model that assumes that natural selection would favor strategies that

maximize energy efficiency can be used to understand why members of the target

population often leave food sources when their crops are only partially filled.

Understanding this behavior involves understanding that the reduction of energy

efficiency with each additional flower is the counterfactually relevant feature in the

evolution of the target phenomenon. This new information about counterfactual

dependence is then incorporated into a larger corpus of background knowledge that

includes the scientists’ training, their understanding of the theory of natural

selection, their understanding of honeybee foraging behavior, the information

provided by previous studies, etc.

In addition, this optimization model uses several additional assumptions—many

of which are idealizations. For example, the model assumes that natural selection

will ultimately be able to overcome other evolutionary influences; e.g. drift or

genetic recombination. In order to capture these adaptationist assumptions, these

models typically make the idealizing assumptions that the population is infinite,

phenotypes are passed on to offspring perfectly (i.e. like begets like), and there is no

intergenerational overlap. These assumptions result in the optimal strategy—i.e. the

strategy that maximizes energy efficiency—being the expected equilibrium of the

model population. In other words, without these idealizations, the optimality model

would not entail the prediction that current honeybee populations ought to leave

food sources when their crops are only partially filled. However, as a result of these

Fig. 1 Schmid-Hempel et al. (1985)’s depiction of the honeybee foraging cycle. From A to B the bee is
traveling from the hive to the flower, from B to C the bee is collecting food from flowers within a patch,
from C to D the bee returns to the hive, and from D to E the bee is flying within the hive
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(and other) essential idealizations, these optimality models fail to accurately

represent the selection process of any real-world biological population.

The challenge, then, is to see how these idealized models can still provide true

modal information that allows scientists to understand the phenomenon of interest.

For example, in this case, it is important that we can show (mathematically) that the

actual size of the population is counterfactually irrelevant to the equilibrium point of

its long-term evolution (as long as the population is sufficiently large). In addition,

we can demonstrate that the results of evolution by natural selection, even with

recombination and multilocus structures, will converge on the equilibrium point of

an optimality model (Eshel and Feldman 2001, p. 183). Because we are able to

demonstrate that these features are counterfactually irrelevant to the equilibrium

point of the evolving population, we can see how this highly idealized model can

still provide true counterfactual information that enables us to understand the

phenomenon of interest.8

More specifically, this optimality model shows us how the tradeoff between

increased crop and increased energy expenditure is the counterfactually relevant

feature in the evolution of honeybee’s foraging behavior and the modelers can see

how other features of the target system—e.g. the particular population size, the

particular inheritance process, the initial conditions of the population, or the actual

dynamical trajectory of the population—are counterfactually irrelevant to the

ultimate equilibrium point of the evolving population. Therefore, despite the fact

that it fails to accurately represent the selection process of its real-world target

system, this optimality model allows the modeler to acquire factive understanding

of why bees often leave food sources when their crops are only partially filled. The

model accomplishes this task by allowing these modelers to grasp several true

propositions about which features are counterfactually relevant and irrelevant to the

phenomenon and the agent grasps how this new information can be systematically

incorporated into a larger nexus of mostly true background information about

evolving honeybee populations.9 Consequently, despite their being highly idealized

8 Of course, just how one understands what it means to ‘‘accurately represent’’ matters here. For

example, one could argue that these models accurately represent the counterfactual structure of the

phenomenon, but misrepresent (e.g. with a fictional ontology) the entities, relations, and processes of that

phenomenon. If this could be maintained, then one might claim that these models produce this factive

understanding only by accurately representing these counterfactual relations. However, I suggest that the

distortion of the kinds of entities, relationships, and difference-making processes of their target

phenomena entails that these models also distort the counterfactual structure of the target phenomena in

some way. That is, this counterfactual structure cannot be easily isolated from the entities, relations, and

processes of the phenomenon. Instead, that true counterfactual information typically has to be inferred by

the scientific modelers who incorporate the results of the model into their larger set of background beliefs

and assumptions. That is, the true counterfactual structure cannot be simply ‘‘read off’’ the idealized

model that mirrors that structure.
9 In other cases, a model might be used to draw inferences about real-world systems even when the

modeler is unsure whether the assumptions of the model are true or false. Alternatively, a model might

lead to some false implications along with some true ones. All of these are important cases that require

additional analysis. What I wish to focus on here, however, is that even when scientists know which

assumptions of their models are false, when those idealizations play essential roles in the model and

cannot be replaced with alternative assumptions, precisely how they are able to acquire factive

understanding requires detailed analysis of particular cases. The various additional ways that this might

occur will have to be analyzed in future work.
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and distorting the difference-making process(es) of natural selection, optimality

models that investigate system-specific phenomenon can produce factive scientific

understanding of the kind described above.

Modeling hypothetical scenarios

In the second kind of case, an optimality model is constructed to better understand

the general behavior of a small set of related features that are believed to be present

in many real systems, but the model’s representation of those features is not

intended to accurately represent the features of any particular real-world target

system. That is, in these cases, the goal of the modeler is to investigate the possible

contributions of a few key features within a wide range of (actual or possible)

systems. This goal is typically accomplished by constructing a model of a

hypothetical scenario that isolates the features of interest. A hypothetical scenario is

one that is not intended to accurately represent any particular features of a real-

world system—i.e. the model has no real-world ‘‘target system’’ whose (difference-

making) features it aims to accurately represent. Because this kind of modeling

involves the construction of a hypothetical scenario, I will refer to it as hypothetical

modeling.10

Hypothetical modeling is suggested by many authors who view optimality

modeling as a tool for discovering general interactions among some key variables.

For instance, Seger and Stubblefield claim that: ‘‘[Optimality] models are

intentionally caricatures whose purpose is to gain some insight about how a small

number of key variables might interact’’ (Seger and Stubblefield 1996, p. 108). In

addition, Potochnik (2009) identifies a ‘‘weak use’’ of optimality models in which,

‘‘the [optimality] model represents the role of natural selection in bringing about the

evolutionary outcome’’, but selection is only one important factor involved in the

trait’s evolution (Potochnik 2009, p. 187). However, in contrast to Potochnik’s

view, my hypothetical modeling does not require accurate representation of the

process of natural selection since, as Potochnik notes, in some cases ‘‘the aim of

optimality modeling is merely to represent possible selection dynamics’’ (Potochnik

2009, p. 188).11 I will argue that modeling these possible systems via a hypothetical

scenario is often sufficient to produce factive scientific understanding of a

phenomenon without providing an accurate representation of the (difference-

making) features of any real-world target system(s).

By building hypothetical models, scientists can investigate a particular set of

features that is believed to function in a wide range of systems. Moreover, by

building a related set of such models, scientists can begin to understand how those

10 These hypothetical models are similar to what other authors have called ‘‘toy’’ models in that they are

highly simplified and aim to provide insights concerning only a few key aspects of the target

phenomenon. However, while many toy models (e.g. the Ising model) are claimed to capture the crucial

features that produce the phenomenon, not all hypothetical models will achieve this goal. Therefore,

while they are certainly related, hypothetical models are not the same as toy models. Toy models may,

however, be a species of hypothetical model that accomplishes particular goals for the modeler.
11 Odenbaugh (2005) also discusses the use of idealized models to explore possibilities and answer how-

possibly questions.
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features might contribute to the overall behavior of a system in different contexts;

e.g. in conjunction with different sets of assumptions. Understanding these features’

possible contributions to overall system behavior often enables the modeler to

answer how-possibly questions (Forber 2010; Odenbaugh 2005; Resnik 1991), or

justify background beliefs about what is necessary or possible (Rohwer and Rice

2013). What is more, these background beliefs—e.g. about what is possible or

necessary—are often true and can be incorporated into larger networks of

knowledge concerning the phenomenon of interest. In other words, hypothetical

models can produce factive scientific understanding of a real-world phenomenon by

providing true modal information about that phenomenon—the same kind of

information that enables system-specific models to produce factive scientific

understanding of a phenomenon. While there is a sense in which system-specific

models aim to provide ‘‘how actually’’ information while hypothetical models

typically aim to provide ‘‘how possibly’’ information, in both cases it is the model’s

ability to provide true modal information about the space of possibilities that

enables the model to produce factive scientific understanding.12

An example of hypothetical modeling is John Maynard Smith’s original use of

the Hawk–Dove game (Maynard Smith 1978; Maynard Smith and Price 1973). In

the natural world, organisms often exercise restraint in combat instead of fighting to

the death. The Hawk–Dove game is intended to show how individual selection

could possibly produce this behavior in a wide range of populations.

In the Hawk–Dove game, two organisms compete for a resource that will

increase their fitness by V. The basic game allows only two strategies: Hawks (H)

escalate until injured or until the opponent retreats; Doves (D) display, then retreat if

their opponent escalates. This results in three kinds of interactions: (1) Hawk versus

Hawk, where each player has a 50 % chance of obtaining the resource, V, and a

50 % chance of receiving some cost, C, of being injured; (2) Hawk versus Dove,

where the Hawk obtains the resource and the Dove retreats; and (3) Dove versus

Dove, where the resource is shared equally. These interactions lead to the following

payoff matrix:

H D

H 1=2ðV� CÞ; 1=2ðV� CÞ V; 0
D 0;V V=2; V=2

where V[V/2[ 0[�(V - C).

In this game, neither Hawk nor Dove is an evolutionarily stable strategy (or ESS).

However, a stable equilibrium does occur when the average payoffs for Hawks are

equal to the average payoffs for Doves. This can occur in one of two ways. First, the

population could consist of a mixture of some Hawks and some Doves. Alternatively,

12 In addition, one way to think about the difference is that system-specific models will typically yield

more counterfactual information and that information will be focused on more specific changes to the

actual features of the system. Hypothetical modeling, in contrast, will often explore the possibility space

in which features differ more dramatically from those of the actual system. These differences may be

important for certain kinds of understanding, but my goal here is to highlight the similarities in the ways

that these two kinds of models produce a similar cognitive achievement by providing similar kinds of

information.
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the population could consist of individuals who all adopt a mixed strategy of playing

Hawk with probability x and Dove with probability (1 - x). Either way, the model

predicts that individual selection will lead to restraint in combat in some instances. In

this way, the Hawk–Dove game provides some factive scientific understanding by

showing how it is possible for individual selection and a particular kind of payoff

structure to produce the phenomenon of interest (Rohwer and Rice 2013).

However, the Hawk–Dove game’s ability to provide this insight involves the use

of several idealizations, including: (1) infinite population size; (2) random pairing of

players; (3) asexual reproduction; (4) symmetric contests; (5) pair-wise contests; (6)

constant payoff structure across individuals and across iterations of the game; (7)

perfect correlation between winning the resource and reproductive success

(Maynard Smith 1982). In addition, the model represents the available strategies,

interactions, and the payoffs in a highly distorted way—i.e. most of the features of

real-world populations are left out or misrepresented. Indeed, as Maynard Smith and

Price repeatedly emphasize, ‘‘real animal conflicts are vastly more complex than our

simulated conflicts’’ (Maynard Smith and Price 1973, p. 17). As a result, the Hawk–

Dove model fails to—and does not aim to—accurately represent the (difference-

making) features of the selection process of any real-world system.

Still, despite its failure to accurately represent the (difference-making) features of

any real-world target system, the model does enable us to understand that our

observations could possibly be explained by individual-level selection. Indeed, as

Maynard Smith and Price claim: ‘‘A main reason for using [the model] was to test

whether it is possible even in theory for individual selection to account for ‘limited

war’ behaviour’’ (Maynard Smith and Price 1973, p. 15, my emphasis). Therefore,

despite its failure to accurately represent the features of a particular target system,

the Hawk–Dove game allows us to answer a key how-possibly question concerning

the compatibility of individual selection with the observed behavior by investigating

a hypothetical scenario. Moreover, the model helps us understand how certain key

features might interact in a range of possible systems. This modal information about

the phenomenon of interest is true and one can grasp how it fits into our larger body

of knowledge about evolving biological populations in which restraint in combat

occurs. Therefore, by providing true modal information about the phenomenon of

interest, this hypothetical model produces factive scientific understanding of that

phenomenon, despite the fact that it does not provide an accurate representation of

the (difference-making) features of any particular real-world target system.

Factive scientific understanding without accurate representation

As I noted above, one widely accepted feature of scientific explanations is that they

produce scientific understanding (Achinstein 1983; Friedman 1974; Kitcher 1981;

Kitcher and Salmon 1989; Salmon 1984; Strevens 2009). Hempel originally

suggested that an explanation shows that ‘‘the phenomenon was to be expected; and

it is in this sense that the explanation enables us to understand why the phenomenon

occurred’’ (Hempel 1965, p. 337). In addition, Kitcher requires that our account of

explanation ‘‘should show us how scientific explanation advances our
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understanding’’ (Kitcher and Salmon 1989, p. 168), and Salmon writes: ‘‘under-

standing results from our ability to fashion scientific explanations’’ (Salmon 1984,

p. 259). More recently, both Strevens and Woodward have suggested that

explanations produce understanding in agents who grasp them (Strevens 2009,

p. 3; 2013, p. 1; Woodward 2003, p. 32). Indeed, by grasping the explanans (or

model), an agent can gain understanding about why the explanandum occurred.

While I agree that providing scientific explanations is a key way of producing

factive scientific understanding, most accounts of explanation require that the model

provide an accurate representation of at least some of the difference-making features

of a real-world target system (Craver 2006; Kaplan and Craver 2011; Kaplan 2011;

Strevens 2009; Woodward 2003). However, I have argued that highly idealized

models—such as hypothetical models—can produce factive scientific understanding

of real-world phenomena even if they fail to provide an accurate representation of

the difference-making features of any real-world target system. More specifically,

for a model to produce factive scientific understanding requires the model to allow

for a certain kind of cognitive achievement, but producing that kind of cognitive

achievement does not require that the model, itself, be an accurate representation of

the difference-making features of any real-world target system. Instead, a model can

produce the cognitive achievement of factive scientific understanding of a

phenomenon even if the model itself does not—and perhaps does not even attempt

to—accurately represent the features of any real-world target system(s); e.g. by

describing an impossible hypothetical scenario.

Of course, some kind of link is required between such a hypothetical model and

the real world phenomenon, but providing an accurate representation of the

difference-making features of the target system is not a necessary condition for

producing understanding of a phenomenon. Instead, I maintain that there are

numerous possible ‘‘links’’ between idealized models and real-world systems that

can be sufficient for the model to produce factive scientific understanding in

different contexts. For example, besides accurately representing difference-makers,

one possible link is that the idealized model and the target system are in the same

universality class (Batterman and Rice 2014). This entails that the model and the

real-world system(s) will display similar patterns of macroscale behavior even if the

model drastically distorts the entities, relationships, and processes of its target

system(s). Alternatively, the scientific modeler may play an essential role in

establishing a sufficient link between the idealized model and its target system; e.g.

by interpreting the assumptions of the model, interpreting the results obtained from

the model, or connecting those results with those obtained from other models. In

short, I contend that there are several ways that idealized models can be linked to

their target systems—including but not limited to accurate representation—that can

allow for the production of the kind of factive scientific understanding discussed

earlier in the paper.

For example, the Hawk–Dove game allows scientists to grasp the true proposition

that restraint in combat could possibly result from individual-level selection and the

modeler can see how that information fits into their larger cognitive corpus of

mostly true scientific knowledge concerning the phenomenon of interest. Moreover,

the model is able to accomplish this despite the fact that it distorts the entities,
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interactions, relationships, and difference-making processes of the target phe-

nomenon. It is only due to the modeler’s background knowledge about the kind of

processes that count as ‘‘individual-level’’ selection and interpretation of how the

model connects with real-world systems that the model is able to provide the true

modal information about the target phenomenon.

These ideas build on Peter Lipton’s suggestion that merely potential explanations

may produce understanding:

Potential explanations may provide actual understanding without approximat-

ing an actual explanation…The understanding involves a kind of cognitive

gain about the actual phenomenon, even though the proffered explanation is

not true of the actual phenomenon. (Lipton 2009, p. 52)

More specifically, in both of the examples given here, the cognitive gain about the

target phenomenon is provided by grasping true modal information about the

phenomenon. My focus on modal information also ties into a view originally

proposed by Robert Nozick: ‘‘explanation locates something in actuality…while

understanding locates it in a network of possibility’’ (Nozick 1981, p. 12). More

recently, Stephen Grimm has expanded on Nozick’s idea by suggesting that when

we don’t have the understanding provided by an actual explanation we might have

what he calls ‘proto-understanding’:

By an agent’s proto-understanding, I mean an agent’s convictions about the

sorts of possibilities that are live or relevant, relative to the situation in

question. [This is] a further specification of Nozick’s notion of a ‘network of

possibility’; it is something like a person’s ‘modal sense’ of the various

alternatives that might have obtained, relative to the fact in question. (Grimm

2008, p. 491)

I suggest that Grimm’s proto-understanding amounts to genuine scientific under-

standing that, although it may be provided by an accurate representation of the

features of a real-world target system, may be provided in other ways as well. In the

cases above, the modal information provided by these models produces beliefs

about the network of possibilities and can answer how possibly questions (Forber

2010). Moreover, these beliefs about the network of possibility are often true of the

phenomenon of interest and are incorporated into larger bodies of information

containing mostly true beliefs about the phenomenon of interest. As a result, highly

idealized models that fail to provide an accurate representation of the difference-

making features of any real-world target system can still produce factive scientific

understanding.

Consequently, my analysis of these cases raises a potential problem for several

recent accounts that have claimed that the only way to produce scientific

understanding is by providing a correct explanation (de Regt 2009b; Khalifa

2012, 2013; Strevens 2009, 2013; Trout 2007). For example, J. D. Trout claims that,

‘‘scientific understanding is the state produced, and only produced, by grasping a

true explanation’’ (Trout 2007, p. 585–586). In addition, Michael Strevens argues

that, ‘‘An individual has scientific understanding of a phenomenon just in case they

grasp a correct scientific explanation of that phenomenon’’ (Strevens 2013, p. 1) and
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follows Trout in taking ‘‘scientific understanding to be that state produced, and only

produced, by grasping a true explanation’’ (Strevens 2009, p. 3). The problem with

such claims is that according to most accounts of explanation—including Strevens’s

own account—models will need to accurately represent difference-making features

of a real-world target system in order to provide an explanation. If this is so, then

Strevens’s and Trout’s claims require accurate representation of the difference-

making features of a real-world target system in order for a model to produce

scientific understanding.

In contrast to these accounts, I have argued that a highly idealized model can

produce factive scientific understanding of a phenomenon even if it is an inaccurate

representation of most (or perhaps even all) of the features of real-world systems.

For example, in hypothetical modeling, the model provides factive scientific

understanding by producing true beliefs about what is possible and these true beliefs

can be systematically incorporated into a larger network of information in which

most of what the modeler believes about the phenomenon is true. Recognizing that

producing factive scientific understanding in this way is possible is important for

characterizing the different epistemic contributions that idealized models make to

scientific inquiry. Indeed, this distinction shows that providing an accurate

representation of the difference-making features of a real-world system is only

essential for some ways of producing factive scientific understanding. Consequently,

accounts that require a model to provide an accurate representation of the

(difference-making) features of real-world systems in order to produce understand-

ing miss a large amount of scientific modeling that produces factive understanding

of real-world phenomena—e.g. the factive understanding produced by hypothetical

models.

Factive scientific understanding and scientific realism

Finally, my analysis of these cases also has interesting implications for the ongoing

debate over scientific realism. Traditionally, scientific realism claims that science

aims at truth and that we have reason to believe that our most successful scientific

theories and models are true or approximately true. Several philosophers have

suggested that the widespread use of idealizations in our models raises (at least

potential) problems for the scientific realist (Cartwright 1983; McMullin 1985;

Odenbaugh 2011; Psillos 2011; Suárez 1999). The central idea is that, given that we

know our models include false assumptions, even if they make accurate predictions,

we have no reason to believe that they, or the theories that employ them, are true (or

accurate).

One potential response, which many philosophers have adopted, is for the realist

to claim that highly idealized models can provide partially accurate representations

(Bueno and Colyvan 2011; Kitcher 1993; Peters 2014; Psillos 1999; Pincock 2011;

Strevens 2009; Weisberg 2007a, b; Worrall 1989). Although models will typically

(if not always) involve some level of idealization, this does not entail that they are

incapable of accurately representing some features of real-world systems. Indeed, as

many authors have noted, idealizations can play important roles in our best scientific
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models—e.g. by showing that certain features are irrelevant to the occurrence of

some phenomenon (Batterman 2002; Strevens 2009; Wayne 2011; Weisberg 2007a,

2013). The key to this realist strategy is to point out that not every part of the model

is required (or even intended) to accurately represent the target system(s). Rather, in

many cases, highly idealized models can provide partially accurate representations

of real system(s).

The greatest challenge for such a ‘‘selective confirmation’’ or ‘‘decompositional’’

strategy is to provide principled ways for distinguishing which parts, features, or

aspects are actually required for the success of the model (or theory) from those that

are idle or irrelevant (Stanford 2003, 2006). Much of the literature on idealization

has focused either on how they can ultimately be eliminated (McMullin 1985;

Weisberg 2007a), or how they can be justified by playing a strictly periphery role in

the explanations and understanding provided by models—i.e. by distorting only

what is already known to be irrelevant (Elgin and Sober 2002; Weisberg 2007a,

2013; Strevens 2009).

However, although some idealizations can perhaps be justified in these ways,

there are many instances in which the idealizations are ineliminable and play

central roles within our best scientific models (Batterman 2002, 2009; Batterman

and Rice 2014; Rice 2012, 2015; Wayne 2011). Indeed, as I discussed above,

idealizations are often essential assumptions within our best scientific models and

there is often no expectation that the idealizations will eventually be removed or

resigned to the periphery of our understanding (Batterman 2002, 2009; Elgin 2007;

Morrison 2009; Rice 2015; Wayne 2011). For example, in both of the cases

described above it is unclear how the idealizations could be removed from the

model without consequently eliminating the model’s ability to fulfill the purpose for

which it was constructed. At the very least, eliminating the idealizations from these

models would make the model much worse at fulfilling the goals of the model-

builder. Moreover, removing (or correcting) the idealizations of these models would

entail that the models no longer produce the target phenomenon; e.g. without the

idealizations of infinite population size, asexual reproduction, isolation of the

selected feature, no intergenerational overlap, etc. the optimal strategy would no

longer be the expected outcome of the evolving population.

Furthermore, these models use a variety of idealizations that drastically distort

the selection process(es) that led to the target phenomenon. Because they are

adaptationist models, these models assume that natural selection is the most

important—i.e. difference making—factor in the evolution of the trait in question.

However, due to the numerous idealizations listed above, these models distort the

actual selection process(es) that led to the target phenomenon. Consequently, rather

than distorting only irrelevant factors in order to isolate difference makers (as

Strevens’s view and other minimalist approaches would have it) these optimization

models drastically distort the difference making processes (or factors) that led to the

target explanandum. For example, selection in an infinitely large asexually

reproducing population is an importantly different kind of process than what

occurs in all real-world biological populations.

Indeed, the biggest problem for the selective confirmation strategy is that, in

many cases, there simply is no clear mapping from each idealization onto a
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particular set of features that are irrelevant. Instead, in many cases, idealizations

distort features that do make a difference to the target phenomenon (Batterman and

Rice 2014; Levy 2011; Morrison 2009; Rice 2015). This makes it far more

challenging to say precisely which aspects are essential and which are irrelevant to

the success of the model. As a result, while this kind of selective confirmation

strategy is possible, adequately defending it will require a far more complicated

answer about how to distinguish the essential and irrelevant aspects of idealized

models.

However, even if this selective confirmation strategy fails (or is exceedingly

difficult), the above discussion suggests another more novel line of defense for the

realist. The alternative realist strategy is for the realist to point out that both of the

cases discussed here are capable of producing the cognitive achievement of factive

scientific understanding—which involves incorporating true beliefs into a cognitive

corpus in which most of what one believes about the phenomenon of interest is true.

In system-specific modeling, the model will generate factive scientific understand-

ing by providing information about the counterfactual relevance and irrelevance of

various features within the model’s target system. Perhaps more interestingly, in

hypothetical modeling the model is still capable of producing factive scientific

understanding even when the model does not even aim to provide an accurate

representation of the difference-making features, relations, or processes of a real-

world target system.

Recognizing that idealized models can produce a large body of factive scientific

understanding without having to accurately represent the (difference-making)

features of their target system(s) reveals a large class of systematized true beliefs

about the natural world. However, philosophical discussions of scientific realism

frequently focus exclusively on the truth or accuracy of models (or theories)

themselves rather than the truth, accuracy, or justification of the body of scientific

understanding produced by scientists’ use of those models. I contend that this focus

is too narrow for adequately evaluating scientific realism. Philosophers must also

look beyond the accuracy of the models (or theories) in question and evaluate the

body of factive scientific understanding that can be produced by using idealized

models in various ways.

Unfortunately, the debate over scientific realism has been so focused on the truth

and continuity of parts of our theories or models themselves that it has failed to even

consider alternative ways that the required truth and continuity might be achieved

by scientific inquiry. As I noted above, in most cases the debate is put in terms of

whether our best scientific theories or models are true or which parts of them are

true. However, I hope to have shown that it is at least possible that our best scientific

models are known to be wholly inaccurate and yet there can still be a kind of truth

about the world that is achieved by scientific inquiry. Moreover, I think it is at least

worth investigating whether the factive understanding produced by these models

might be able to provide (at least some of) the continuity the realist seeks. Although

our current models and theories will continually be replaced with other models and

theories, perhaps the understanding we acquire from scientific models can

‘‘survive’’ those changes. The question then becomes which highly idealized

models provide factive understanding and can this understanding survive changes in
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the theories and models used to acquire it. In order to answer these questions, a

case-by-case analysis will be required. However, it is important to note that this

project is importantly different from what is traditionally focused on in the debate

over realism.

Consequently, my analysis reveals a novel (although admittedly limited) form of

scientific realism.13 This version of realism claims that even when they fail to

accurately represent the features of real-world systems, highly idealized models are

nonetheless capable of producing factive scientific understanding about the natural

world. In other words, this version of realism claims that science aims at factive

understanding of the natural world and that our best models (and theories) provide

us with a large body of factive scientific understanding, even when they are known

to be inaccurate representations of most, or perhaps even all, of the features of real-

world systems.

The mistake of many accounts in the literature is to assume that the only way to

argue for scientific realism is to show one of the following: that our models and

theories (1) are literally true (or approximately true) as a whole (Cartwright 1983;

Odenbaugh 2011); (2) are all partially true in the same way (Ladyman et al. 2007;

Peters 2014; Worrall 1989); or (3) require accurate representation of the difference-

making features of a target system(s) in order for us to have factive understanding of

the natural world (Strevens 2009, 2013; Trout 2007). Instead, I recommend a more

nuanced form of realism, which claims that highly idealized models often produce

factive scientific understanding of how the natural world works—even when they do

not (even aim to) accurately represent the difference-making features of their target

system(s) (Bokulich 2012). Although far more will have to be said in order to

adequately evaluate this view, recognizing it as a viable form of realism reveals a

novel set of questions concerning a class of scientific truths that have been largely

neglected by philosophical discussions of scientific realism.14 Most importantly, I

contend that the realism debate needs to explore the body of factive scientific

understanding that can be provided by the process of building, using, and

investigating highly idealized models. The next step is to analyze additional ways

that building idealized models can furnish factive scientific understanding across

different contexts, modeling strategies, and disciplines.

Conclusion

Scientists often use multiple highly idealized models to investigate natural

phenomena. This paper has investigated two ways that highly idealized models

produce factive scientific understanding. In light of these cases, I have argued that

models can provide factive scientific understanding of a phenomenon even when

they fail to provide an accurate representation of the difference-making features of a

13 However, this version of realism may only be applicable to model-based theorizing.
14 While a complete remodeling of the debate over scientific realism may not be required, these

additional questions ought to be part of the story or at least need to be investigated before we can

adequately determine whether scientific inquiry can provide the kind of truth and continuity that is

typically required of realism.
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real-world target system. In addition, I have suggested that the debate over scientific

realism needs to investigate the factive understanding produced by scientists’ use of

multiple idealized models (and theories) rather than focusing exclusively on the

accuracy of our best models (and theories) themselves. In the end, we need not

believe our models are (approximately or partially) accurate representations of real-

world systems in order to be justified in believing that the understanding we acquire

from them accurately describes the world we live in.
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