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Simulation and Similarity: Using Models to Understand the World is an account of

modeling in contemporary science. Modeling is a form of surrogate reasoning where

target systems in the natural world are studied using models, which are similar to

these targets. My book develops an account of the nature of models, the practice of

modeling, and the similarity relation that holds between models and their targets. I

also analyze the conceptual tools that allow theorists to identify the trustworthy

aspects of models. Taken as a whole, I try to account for the ways that modeling is

actually practiced by theorists, while abstracting sufficiently to understand the

similarities and differences among examples of concrete, mathematical, and

computational modeling.

I am grateful to Wendy Parker, Jay Odenbaugh, and Bill Wimsatt for their careful

and interesting reading of my book, as well as their constructive criticisms.

Although I naturally disagree with some of their critiques, I have learned much from

them and appreciate the chance to clarify my own thinking about these matters. I

will discuss their comments sequentially.

Parker’s commentary is focused primarily on my account of similarity, what I

call weighted feature matching (WFM). This account formalizes the idea that

models stand in representational relations to their targets in virtue of sharing some

set of highly important features with their targets, not lacking too many of these

features, and not having too many extra features. Scientific context, as recorded in

what I call the modelers’ construal, determines the choice and weighting of

important features. Parker argues that I equivocate on the aim of giving such an

account, and then offers some very interesting technical objections about the content
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of the feature set, the notion of sharing a feature, and the assignment of weights to

features.

What is Weighted Feature Matching an account of?

What is WFM an account of? Parker suggests three possibilities: (a) an account of

the model/world relation in virtue of which scientific models are successful, (b) an

account of the relation that generally holds between models and their targets, or

(c) an account of the judgments of scientists about the relationship between models

and their targets. She argues that my discussion sometimes moves between these

three aims, and that I have conflated them. While I discuss all three of these

motivations, I don’t think my account conflates them. Rather, I see my account as

addressing all three of these themes.

I begin from Cartwright (1983), Giere (1988), Teller (2001) and Godfrey-Smith’s

(2006) insight that good scientific models are similar to their targets in certain

respects and degrees. WFM is a way of filling in what this claim amounts to. The

main components of the account are a set of features, weights on those features, and

an abstract, set-theoretic expression describing the similarity relation. The contents

of a feature are Cartright, Giere, and Teller, and Godfrey-Smith’s ‘‘respects,’’ while

the weighting function gives the ‘‘degrees.’’

This is of course all very vague, so let me elaborate on some details. In its most

abstract form, with no terms filled in, the WFM expression describes the general

form of similarity relations that can hold between models and targets. It says that:

S m; tð Þ ¼
hf Ma \ Tað Þ þ qf ðMm \ TmÞ

hf Ma \ Tað Þ þ qf Mm \ Tmð Þ þ af Ma � Tað Þ þ bf Mm � Tmð Þ þ cf Ta �Mað Þ þ df Tm �Mmð Þ

where m and t correspond to the model and target, M and T the sets of features

possessed by the model and target that are members of the feature set D, f a

weighting function, and the additional greek letters correspond to weights on each

term.

With no parameters set and no weighting function defined, the equation describes

an infinite set of potential relations—at least one of which almost certainly holds

between a model and a target. So it is correct to say that WFM is an account of the

sort of relation that generally holds between models and their targets, which was

Parker’s second option. But the story doesn’t end here.

Parker notes that I sometimes adopt psychological terms in my discussion. For

example, I say that my account of similarity ‘‘should also be able to help diagnose

such extraempirical disagreements, locating the sources of disagreement in context,

use, and weighting of various features of the model.’’ I also say that the account

should reflect judgments that scientists can actually make, as opposed to

asserting that the relation holds between inaccessible, hidden features of

models and targets. This is clearly a modal desideratum, because in many
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cases theorists won’t necessarily articulate the grounds for the judgments of

similarity—the judgments are just made. Nevertheless, when it matters, such

as in cases of disagreement, theorists should be able to work out the grounds

for their similarity judgment (137)

and I go on to note that this is similar to Grice’s calculability assumption (Grice

1975, 1981).

Bring these psychological ideas to my account might look like a confusion, but I

think it makes sense for two reasons. First, even the most strictly metaphysical parts

of my account have a substantial pragmatic element. This is because on my view,

the relation between a model and a target depends, in part, on the scientific context.

Further, and this is the point of the passages quoted above, my account allows

disagreements to be articulated and characterized. Although judgments about

similarity relations are often made implicitly, in cases of disagreement among

scientists, they can be articulated explicitly. This means they are in principle

cognitively accessible.

What goes in a feature set?

Parker’s second criticism concerns my notion of a feature set. To understand her

critique, let me review some of the details of my account: WFM requires defining a

weighting function over the feature set D, the set of features with respect to which a

model is compared to a target. Given the elements of this set, the weighting function

tells us how similar a model is to its target. When WFM is coupled to my overall

picture of modeling, I see the choice of a feature set as equivalent to the choice of

the modeler’s intended scope, which is connected in important ways to the

modeler’s choice of target (Elliott-Graves and Weisberg 2014).

A specification of intended scope is a specification of what parts of the real-world

one intends to capture, and this corresponds to some set of features of interest. Even

though target systems are abstract relative to real-world systems, they will still be

quite rich compared to many models since they are parts of real-world systems. So

feature sets will be quite rich, even while excluding features of real-world systems.

Parker wonders about the relationship between my discussion of feature set

construction, and my discussion of different types of modeling practices. For the

latter, I say that a particular type of practice may be such that some of the term

weights for the WFM equation are set to zero. For example, in how possibly

modeling, we are interested in overlap between the attributes of model and target, but

not the mechanism. Models will contain some mechanism or other by which the

systems gains its attributes, but the modeler is not trying to find the actual mechanism

by which this happens (if she finds it, so much the better, but that isn’t the point).

If we suppress the weighting function and term weights, the WFM equation for

how possibly modeling has this form:

Ma \ Taj j
Ma \ Taj j þ Ma � Taj j
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This means that a model is similar to its target to the degree that it has some

mechanism or other that can reproduce the attributes of the target. The attributes of

the model and target must be similar, but any plausible mechanism can be used to

generate these attributes.

Parker sees a dilemma:

Either the goal of how-possibly modeling is such that its feature set never includes

mechanisms or, even when the goal is how-possibly modeling, the feature set can

sometimes include mechanisms. If it never includes mechanisms, then there is no

need for the weighting parameters, because Mm and Tm are always empty (;), and

according to Weisberg f(;) = 0. If it sometimes does include mechanisms, then

not all features in the feature set are important for establishing similarity, which

directly contradicts Weisberg’s claim that they are.

I don’t accept this dilemma. As I said above, the choice of the feature set is

equivalent to the choice of the target system, not the model, and certainly not the

goal of modeling. Depending on how the target system is specified, the feature set

may include (or not) mechanistic features.

However, the fact that the theorist is engaged in how possibly modeling does set

constraints on the overall weighting function. The most perspicuous way to see this

is that how-possibly modeling puts zero weight on the mechanism terms. But one

can also see this as giving weight of zero to mechanistic features individually. So

while only the specification of the target determines the content of the feature set,

the modeling activity (how-possibly vs. minimal vs. hyper-accurate modeling)

determines how the weights are set.

Do model and target need to share features or have similar features?

Parker’s third criticism has to do with my account of feature matching. She thinks

that it is odd to say that one is giving an account of similarity, which admits of

degrees, on one hand, and that features must be shared on the other. So she

concludes that I think sharing of individual features comes in degrees, and draws on

a passage where I say something that can be interpreted along these lines. Parker

concludes that

This sort of ‘matching’ can be cast in terms of genuinely shared properties but

only, it would seem, in a rather awkward way: The Bay Model and the real

Bay share the property of having a Froude number that is within 0.1 of the real

Bay’s number. It is more natural to say that the Bay model and the real Bay

have similar Froude number …

Perhaps it is more natural to express the relationship this way, but this is not my

account, nor need it be. WFM requires that features be shared, but there is no reason

that features can’t take the form of ranges.

There are many different ways to partition up properties of models and targets.

For example, if we say that model and target both have Froude number of 0.1, does
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that mean 0.10000 or 0.100 or 0.100000000 or some other degree of precision? Each

of these is really a range. The number 0.100 usually means 0.104–0.095. So to

specify a feature as the sharing of Froude number within 0.1 is just code for saying

that if the target’s Froude number is exactly 1.0, then the model’s value has to be

somewhere between 1.1 and 0.9 to share the feature with the target.

This is how I can allow matching between features that are not perfectly precise.

But what of the larger issue that Parker raises? Isn’t it weird that an account of

similarity admitting of degrees bottoms out with features that are either shared or

not?

I argue no. Critics of the use of similarity relations such as Quine (1969) and

Goodman (1972) ask us for precisely this type of analysis. They say that similarity

is illegitimate unless we can give a reductive analysis of it. To do so isn’t to change

the character of similarity, but rather to explain the character of similarity.

Can feature weights be set independently in WFM?

Parker’s final criticism concerns the independence assumption of WFM. This is a

restriction that I introduced because in Tversky’s original account, a weight had to

be assigned to each element of the power set of the feature set. Since the cardinality

of the powerset is 2n for sets of cardinality n, this means that the weighting function

would be astonishingly complex for even moderately sized feature sets. On the other

hand, if we impose an additivity restriction roughly of the form

f Að Þ þ f Bð Þ ¼ f ðA;BÞ, then the weighting function only needs to be defined over

n terms. This restriction is motivated by my contention that for the account to be

plausible, scientists need to be able to work out their weighting functions if called

on to do so.

Parker raises a very interesting potential counterexample:

Suppose a modeler is interested in predicting quantity C with a specified level

of accuracy, and she believes that her model will succeed in doing this if either

(1) insofar as it underestimates A, it does so by an amount that is compensated

for enough by an overestimate of contributing quantity B or (2) insofar as it

overestimates A, it does so by an amount that is compensated for enough by an

underestimate of B. It is not entirely clear how fidelity criteria related to A and

B will be specified here—whether the criteria will be disjunctive, etc.

No doubt there are cases where setting feature weights independently is difficult or

impossible, perhaps in the kinds of climate forecasting models that Parke (2014) has

extensively discussed. However, I don’t think the case described above is a

counterexample. In a case like this, our primary fidelity criterion would be

prediction of C with accuracy a. This would be reflected in the weight given to

feature C’s being shared between the model and target. Over-estimating A or under-

estimating A is only indirectly relevant to the theorists’ goals and would not be

given a high weight. The point is that only the features whose presence is essential

are given a high weight. Means to finding them, even when known, should be given

lower weights.
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However, there may be cases where there are genuine tradeoffs between the

achievement of different features (whose presence in the model are the goal of

modeling), so that it only makes sense to consider their weighting functions

together. In those cases, Parker is certainly right that good weighting functions have

to take this into account. Perhaps in these cases we should see the independence

assumption as relaxed, or, perhaps, we could construct compound features of the

tightly coupled ones, and weigh them accordingly.

Must I be a mathematical realist (and if so, is that incompatible with WFM)?

Odenbaugh focuses on a different set of issues, specifically the ones surrounding the

ontology of models. He specifically critiques my agnosticism about the ontology of

mathematics, my distinction between models and model descriptions, and my

handling of the debates about fictionalist accounts of models.

Odenbaugh argues that I cannot remain agnostic about matters of ontology

because my insistence on the distinction between models and their descriptions

commits me to mathematical realism. Only the mathematical realist, he argues, can

claim that equations or other model descriptions are descriptions of something,

namely mathematical models. But this option isn’t very appealing, he argues,

because mathematical realism is incompatible with WFM. If models are genuine

mathematical objects, they can’t have physical properties like a period, length, and

so-forth. Since my position requires models to share features with their targets, and

targets do have physical properties, it is incoherent.

I think this objection misses the mark in substantial ways. First, as I say

throughout the book, I try to articulate the main claims of my book at what Stacey

Friend dubbed the epistemic level of theorizing. This level of theorizing asks what

categories and concepts we need to construct an account of the practice in question,

not what the ultimate ontology has to look like in order to provide a supporting

structure for this account. So when I say I want to be neutral about the ontology of

mathematics, it is because I am trying to give an account that can make sense of the

scientific practice as it currently stands, not make ultimate claims about the ontology

of models.

Like most philosophers of science, I assume that whatever account of ontology of

mathematics is ultimately shown to be correct, it will have to be compatible with all

or most aspects of successful scientific practice. So whatever account of

mathematical ontology is true will have to let us make sense of apparently realist

talk about mathematical objects.

Even setting the deeper questions of ontology aside, another part of Odenbaugh’s

objection requires response. Mathematical objects as understood by scientists don’t

have properties that would make them similar to real-world targets, and they have

many properties that no physical system can have. This is an important objection

when directed at those who see mathematical models as strictly mathematical

objects, such as some structural realists and traditional defenders of the semantic

view of theories. But I think that mathematical models are interpreted mathematical

objects. A harmonic oscillator model can be said to have a period because modelers
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interpret part of its mathematical structure as denoting a period. These relations of

denotation are such that it makes sense to say that the model, but not the

mathematical structure itself, has properties like a period.

Are models constructed by their descriptions?

Odenbaugh challenges my claim that models are created by their descriptions.

Having had the chance to reflect further on this claim, I agree with his critique; this

is not a good way to put the point I wanted to make. Model descriptions represent

models, they do not create them. Models are created when modelers construct a

structure or choose a pre-existing structure, and then interpret this structure.

Sometimes writing down a model description is an essential part of this process,

such as in the creation of ODD model descriptions for computational models

(Grimm et al. 2010). But even in these cases, there is almost always a

developmental cycle, where the modeler refines both the model and the description

of the model.

Is the problem of variation really a problem?

Most of Odenbaugh’s other objections to Simulation and Similarity concern my

handling of fictionalist accounts of mathematical models. Although fictionalist

accounts differ in various respects, most proponents of fictionalism argue that

mathematical models are not mathematical objects but are instead imaginary

systems that would be concrete if they are real. In my book, I discuss various

problems for the specific accounts, and then give a number of objections to the idea

in general, preferring, as I do, to see mathematical models as interpreted

mathematical structures.

I argue that one reason to rejection fictionalist accounts of mathematical models

is because of what I call the problem of variation. While in literary fictions,

variations in the way that people imagine a fictional world can be part of what

makes fiction enjoyable, the content of scientific models shouldn’t vary between

users of the model. Mathematical models should be completely public in the way

the appreciation of fictional worlds is not.

Odenbaugh responds by saying that there is no more reason to think that there is

problematic variation for models than for literary fictions. He doesn’t explain why

he thinks this, but I suspect it is because in both cases, the important details are

either mentioned in the explicit communication of the model/story or else we have

principles of generating the unmentioned properties.

To see why I don’t accept this line of response, we need to distinguish between

focal and non-focal properties of fictions. Focal properties are properties of the

fictional world that are required to understand the story (e.g. Rohan is west of

Mordor), non-focal properties are other properties required to fill in the details of a

fictional world, but that aren’t necessary for understanding what is happening (e.g.

the number of toes on Orc’s feet). Most fictional texts leave both focal and non-focal
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properties unmentioned, and descriptions of models are especially sparse in

comparison to works of literary fiction.

If we understand models as concrete fictional worlds, they are sure to have many

focal properties not explicitly given by their descriptions. But if that is right, then

we need to account for how there can be focal properties of models that are

generated but not contained in their descriptions. Odenbaugh seems confident that

the same ways we deal with the unmentioned focal properties of literary fictions will

be sufficient to deal with models, but I am fairly confident that they will not.

A popular way to deal with unmentioned focal properties in literary fiction is to

appeal to Lewis (1978) and Walton’s (1990) mutual belief principle. This principle

says that we import into a fictional world all of the beliefs that would be accepted by

people in that world. While this is a very plausible account of how unmentioned

focal properties of fictional stories can be filled in, it is unlikely to work in the case

of mathematical models. Many of the relevant properties are simply unknown to the

scientific community before they are researched.

For example, consider the Lotka-Volterra model. The mathematics of the model

are given at the population level, so spatial arrangement of individuals is

unmentioned in the model description. On the non-fictionalist view of mathematical

models, this means that the mathematical model is literally about populations, not

individuals. It isn’t that the model doesn’t mention particular individuals; it isn’t

about them at all. But if the model is a concrete fictional scenario, then we have to

understand populations concretely. Since real, concrete populations are composed

of individuals, the Lotka-Volterra model is actually about individual organisms

located somewhere in space.

Modern research using agent-based models (Weisberg and Reisman 2008) shows

that when we represent populations as being composed of individuals, the Lotka-

Volterra model is sensitive to spatial arrangements. Some spatial arrangements

generate its characteristic properties, and some of them won’t.

Does this mean that for the fictionalist, only some concrete, imagined populations

are Lotka-Volterra populations? It must be, because how can concrete instantiations

that don’t have these properties be instantiations of the model? If that is the case, the

mutual belief principle would have to rule out the instantiations that don’t have

these properties. Since nothing in everyday life or biology tells us this, this seems to

be an ad hoc application of the principle.

Can fictionalists account for different representational capacities?

A second objection of mine to the fictionalist view is that it cannot account for the

differing representational capacities of different kinds of models. I write that:

models can be discrete or probabilistic, aggregative or individualistic, spatially

explicit or not, and so forth. If models are mathematical objects, these differences

are easy to make sense of. Different kinds of models will use different kinds of

mathematics and this will account for differences in their representational

capacities. However, fictions accounts cannot make these distinctions. (61)
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The reason I don’t think fictions can make these distinctions is because concrete

fictional scenarios, at least in biology, are one in which some determinant thing

happens to individuals. Odenbaugh responds that I misunderstand the fictionalist

account and that the ‘‘fictionalist makes-believes that the model description is true.’’

But this is just what I claim is hard to understand in the kinds of examples I give.

How does a probabilistic outcome get represented in a concrete fictional scenario?

Are there also modal facts internal to the scenario? How are they evaluated? And

how about a model of an infinite population, or an ensemble of infinite populations?

What is the face value practice of modeling?

Odenbaugh’s third objection concerns the face value practice (Thomson-Jones

1997) of modeling. Godfrey-Smith and other fictionalists say that the face value

practice suggests modelers are conceiving of models as fictions, where I argue that

there is too much variety to draw that conclusion.

Odenbaugh agrees that there is variation, and that modelers don’t always start

their discussions with the locution ‘‘Imagine that…’’ But he also points out that

storytellers don’t always start with this phrase either. So a variety of locutions, and

perhaps even cognitive styles, doesn’t threaten the face value practice and its

support for the fictionalist account.

I strongly disagree with Odenbaugh. There is a huge variety of structures that can

serve as mathematical models. To take one important example: mathematical

structures used in modeling are often high dimensional. These dimensions might

represent loci, population level properties, space and time, and many other things.

Whatever they represent, beyond a certain point, such models cannot be imagined in

any real sense. Simple systems can be imagined, but complex structures can only be

manipulated mathematically or inside of a computer.

If one thinks that we ought to give a very deflationary account of modeling,

where to model is simply to represent a system in an idealized way, than this

argument looses its force. But if one wants to characterize modeling as Godfrey-

Smith, Frigg, and I do, as a kind of surrogate reasoning, then this is not an attractive

way to set things up. Modeling involves the construction and analysis of something,

so what kind of thing is it? I argue that it cannot be an imaginary, concrete system in

these kinds of cases.

How much is modeling like experimentation?

The main theme of Wimsatt’s comments concerns the parallel between modeling

and experimentation. He contends that my account, especially of model/target

relations and model analysis, is directly applicable to experiments. Moreover, he

thinks my account shows that the differences between models and experiments

seems to be ‘‘strikingly trivial’’ a matter of ‘‘medium’’ rather than ‘‘strong formal

similarities.’’
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I am sympathetic to just about everything that Wimsatt says, and admit this is a

theme which I have not spent enough time thinking about before writing this

response. Let me start with a small disagreement: I think that asking about the

relationship between models and experiments is a category mistake. Models are

objects (interpreted structures), experiments are procedures for analyzing objects.

Simulations and mathematical analyses are also procedures for analyzing objects.

Rather than distinguish between models and experiments, we should ask about how

the procedures involved in modeling and experimentation are related.

We can thus reframe Wimsatt’s question as follows: What, if anything, is the

difference between modeling and experimenting? When we reframe the question

this way, I think we should accept Wimsatt’s perspective. Many activities involving

concrete models are experimental, and many important experiments seem to involve

models. As Wimsatt points out, the calibration and analysis of the Bay Model

involved, quite literally, experimentally manipulating the model. Similarly, in

canonical experiments, we often construct a model of the system we really want to

study. Since it is difficult, for example, to study natural selection in the wild, many

evolution experiment evolution experiments are done with model organisms such as

fruit flies and E. coli. So when we ask the question this way, and think about

concrete models, it is hard to see where a line can be drawn.

Things are more complex when we think about computational and mathematical

models. There is no totally straightforward analogy between experimentally

manipulating something in the laboratory and the manipulation of a mathematical

or computational model by hand or using a computer. Nevertheless, there are

striking parallels. With experimental systems, one aims to systematically ma-

nipulate the important variables in order to understand how the properties of the

system depend on those variables. Similarly, theorists study models in order to

understand how some of the model’s properties are related to other properties. In the

case of computer simulations, this can look very much like experiments: dependent

variables and parameters are set, and the time course of a system is studied.

All of this is not to say that there aren’t differences between the kinds of activities

that scientists call modeling and the ones that they call experimenting. One

difference between many modeling activities and many experimental activities

might be understood using Simon’s (1969) distinction between the natural and

artificial. Modeling tends to involve the study of objects which are artifacts, while

experimentation tends to involve the study of natural systems, or objects that have

their origins in natural systems. In an appropriate hedged sense, this is a reasonable

thing to say. But it is important to note, as Wimsatt does, that many experimental

systems are highly artificial in the sense that while they are derived from nature,

they would not be found in nature but for the manipulation of scientists (Morgan’s

fruit flies are an excellent example). Similarly, some models systems are natural

occurrences. In my book, I discuss several examples of natural experiments which

are used as concrete models. So while once can see experimenting and modeling as

often on different parts of the natural/artificial continuum, this is just what it looks

like most of the time.

Another difference between many instances of modeling and many instances of

experimentation involves theoretical aims. Most instances of experimental work and
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some instances of modeling aim to explain how a particular system works, including

what mechanisms drive its behavior, how the behavior can be changed, and what the

system will do in the future. Some, and classically much of, modeling effort has had

a different, theoretical aim. It aimed to articulate a systematic framework to account

for a broad range of phenomena, study phenomena not known to exist, learn about

the formal properties of systems, characterize the relationship between the system of

interest and possibly related systems, and so-forth. The hundreds of papers about

Schelling’s model of segregation are of this character, and it is hard to think of

equivalents from the experimental literature. This difference between many of the

activities called modeling and experimentation is, again, not a hard and fast

distinction. But I think it is a real difference.

One last small point of disagreement with Wimsatt. At the end of his comments,

he suggests that we might be able to distinguish experiments and models in material

terms: experimental systems are made of the same kind of stuff as their targets. Like

Parke (2014), I think this view is mistaken because experimental systems are often

not made of the same kind of stuff as their targets, and sometimes models are. The

Bay Model is, in part, made of salt water. The E. coli in experimental evolution

experiments are not the same as any organisms in nature, but more importantly, are

often standing in for very different kinds of organisms, and even sometimes for

macroevolutinoary trends (Blount et al. 2008).

Robustness as a general tool

Another theme in Wimsatt’s commentary concerns robustness analysis. He notes

that the notion of robustness I discuss in S&S is more narrow than the one he

endorses. The scope of Wimastt’s own notion of robustness is as follows.

[A]ll the variants and uses of robustness have a common theme in the

distinguishing of the real from the illusory; the reliable from the unreliable;

the objective from the subjective; the object of focus from artifacts of

perspective; and, in general, that which is regarded as ontologically and

epistemologically trustworthy and valuable from that which is unreliable,

ungeneralizable, worthless, and fleeting (Wimsatt 1981).

I fully accept the idea that there is a family of procedures reasonably called

robustness analysis that involve finding conditions of reliability for systems, be they

concrete, computational, or mathematical, and whether they are natural or

artificially occurring. This broader notion involves gaining confidence in a robust

result.

We can call all of these things robustness, but I also think that the more narrow

version of robustness that I discuss poses special challenges. Unlike finding the

conditions under which a circuit will fail or a bridge will collapse, finding a robust

theorem is a matter of gaining understanding of a real or potentially real-world

system using models known to be inaccurate. This is why Levins characterizes

robust theorems as the truth ‘‘at the intersection of independent lies’’ (Levins 1966).

Many of the procedures (varying parameters, structure, representational systems)
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are common between these activities, but the goal is different in the two cases.

Everyone agrees that gaining confidence in a system in the region of certain

parameters is something that we can do, but it remains controversial that we can

understand something about the world through robustness analysis. As Wimsatt

himself once wondered (1987), how can false models be a means to truer theories?

Robustness analysis is a big part of the answer.
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