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Abstract. Another look is taken at the model assumptions involved in William Dembski’s (2002a,

No Free Lunch: Why Specified Complexity Cannot be Purchased without Intelligence. Roman &

Littlefield, Lanham, MA) use of the NFL theorems from optimization theory to disprove the

Darwinian theory of evolution by natural selection, and his argument is shown to be irrelevant to

evolutionary biology.

Introduction

Recent years have witnessed, mainly in the United States, a change of focus in
the anti-Darwinian discourse. Biblical literalists and young-earth creationists
have to a large extent given way to proponents of Intelligent Design (ID),
who accept much of modern biology and natural history, insisting only that
complex creatures such has ourselves cannot come about ‘bottom-up’ in a
universe governed just by natural laws, but bear unmistakable signs of being
the work of an intelligent agent. The identity of this agent – be it God,
extraterrestrial aliens, or something else – is typically left out of the discussion.
For critical surveys of the ID movement, see for instance Crews (2001) and Orr
(2005); see also the collections edited by Pennock (2001) and Brockman (2006).

Although there are many advocates of ID with a high profile in public
debate, there are in fact very few that combine this with scientific aspirations.
Besides Michael Behe, famous for his best-seller Darwin’s Black Box (1996), the
most well-known such advocate is William Dembski. The purpose of the
present paper is to make a critical evaluation of some central parts of
Dembski’s arguments against the Darwinian paradigm in biology.

Going back to Paley (1802) and others, the so-called ‘argument from design’
is classical: it is unfathomable that advanced life forms, with all their com-
plexity and apparent purposefulness, could come about if not as the work of an
intelligent designer. Phrased in this way, the argument suffers, obviously, from
a lack of precision. In his book The Design Inference (1998), Dembski sets out
to improve it by making precise the meaning of ‘complexity’ through his notion
of specified complexity (although see Wein (2002a) for an account of how
inconsistently Dembski uses his own concept). His follow-up book No Free
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Lunch (Dembski 2002a) is an ambitious project. In his own words: ‘The Design
Inference laid the groundwork. This book demonstrates the inadequacy of the
Darwinian mechanism to generate specified complexity’ (Dembski 2002a,
p. xiii). The title of the book refers to the key role in Dembski’s argument
played by the so-called NFL (No Free Lunch) theorems from optimization
theory.

After giving the necessary background on the mathematics of optimization
theory and the NFL theorems in Sections ‘A few mathematical preliminaries’
and ‘Optimization and the NFL theorems,’ I will outline Dembski’s use of the
latter in Section ‘Dembski’s application to evolution.’ Then, in Sections ‘A
probabilistic interpretation of NFL’ and ‘Dembski’s error,’ I will demonstrate
the main error in his argument and the irrelevance of NFL to evolutionary
biology.

Dembski’s No Free Lunch (2002a) has been sharply criticized elsewhere, as in
Orr (2002), Shallit (2002) and especially Wein (2002a)1. However, much of this
criticism is less devastating than it might have been with a proper under-
standing of what the NFL theorems actually say (in my concluding Section
‘Remarks on extensions’, I will briefly comment on some of these shortcom-
ings). The role of the present paper is to try to remedy the situation by offering
a mathematician’s account of what the NFL theorems really mean, and why
they cannot be applied to evolutionary biology. Along the way, we will see that
they are in fact much simpler than earlier marketing has suggested, and readers
looking for a quick and easy way to grasp what NFL is all about are recom-
mended to glance ahead at statement (6) at the end of Section ‘A probabilistic
interpretation of NFL.’

A few mathematical preliminaries

In order to discuss mathematical optimization theory, we first need to recall the
basic mathematical notions of sets and functions.

A set is a collection of objects, called the elements of the set. A set may be
finite or infinite. Examples of finite sets are, e.g., the set S1 of all
positive integers up to 3, and the set S2 of all Nordic countries: S1 = {1,2,3}
and S2 = {Denmark, Finland, Iceland, Norway, Sweden}. As an example of
an infinite set, me may for instance take S3 to be the set of all positive integers:
S3 = {1,2,3, ...}. It is important to note that the definition of a set is inde-
pendent of the order in which the elements are written down, so that for
instance {1,2,3} = {2,1,3}. As shorthand mathematical notation for the
statement ‘the set S includes the element x,’ we write x 2 S. For instance,
1 2 S1, Sweden 2 S2 and 792 2 S3 are true statements, while 792 2 S1 is not.
Furthermore, write |S| for the number of elements of S, so that for instance
|S1| = 3, |S2| = 5, and |S3| = ¥; |S| is called the cardinality of S.

1 See also the subsequent exchange in Dembski (2002b, c) and Wein (2002b).
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A function is a rule which to each element of a given set assigns a single
element from another given set. We write f: V fi S to emphasize that f is a
function that to each element of the set V assigns an element of the set S. In this
case we say that f is a function from V to S. For instance, f: S2 fi S3, with S2

and S3 as above, could be the function which to each Nordic country assigns its
population number as of January 1, 2006. Nothing prevents two elements of
the first set to be assigned the same value from the second set, as would be the
case here if Denmark and Finland happened to have exactly the same number
of inhabitants.

If V and S are sets, then the collection of all possible functions from V to S is
itself a set, and is denoted by SV. This notation is partly explained by the fact
that if V and S are finite sets with cardinalities |V| and |S|, then SV has
cardinality |S||V|. As an example, let us take V = {1,2,..., 100} and S = {0,1}.
Then each f 2 SV is a function that gives a binary value (0 or 1) to each integer
between 1 and 100. The function is specified by its values f(1), f(2),..., f(100),
and can thus be thought of as a binary sequence consisting of 100 bits (0’s or
1’s), where f(1) specifies the first bit, f(2) specifies the second bit, and so on.
This means that the set

SV ¼ f0; 1gf1;2;...;100g ð1Þ

can be thought of as the set of all possible binary sequences of length 100, and
by the cardinality formula |S||V| there exist 2100 different such sequences.

For any set S and any positive integer n, it is customary to write Sn as
shorthand for S{1,2, ..., n}. For instance, the set of length-100 binary strings in (1)
can be written as {0,1}100. As another example {A,C,G,T}1000 denotes the set of
all length-1000 DNA sequences, and there exist precisely 41000 different such
sequences.

Optimization and the NFL theorems

In combinatorial optimization, one is given a finite set V and a function f: V
fi R which to each x 2 V assigns a real number (we write, following con-
vention, R for the set of all real numbers). The task is to find an element x 2 V
that maximizes f(x). At first sight, this may seem like a trivial task: since V is
finite, all we need to do is simply to go through all x 2 V systematically,
calculate f(x) for each of them, while keeping track of the maximum seen so
far.

The reason why this ‘‘brute force’’ approach does not suffice is that V is
usually so large that time constraints make the approach infeasible. Typically,
the number of elements of V grows exponentially (or faster) in some parameter
n that describes the size of the problem in some natural way. For instance, V
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could be the set of binary strings of length n, a set having cardinality 2n. Or V
could be the set of all permutations of n distinct objects (i.e., all the ways to line
up the n objects in a queue); in this case V has cardinality n!. In both cases, the
brute force method of calculating f(x) for all x 2 V is out of the question even
for moderately sized problems such as n = 100.

Other, less time-consuming, algorithms are therefore needed. A common
approach involves so-called local search in V. This necessitates the introduction
of some ‘geographic’ structure in V, which can be accomplished by declaring
the existence of links between some (but not all) pairs of elements x, y 2 V.
The set of all y that are linked to a given x 2 V is called the neighborhood of x.
There is much freedom in setting up the links, but it needs to be done in such a
way that, on one hand, each x has a neighborhood of manageable size, and, on
the other hand, the network of links becomes ‘well connected’ (in some sense).
In specific examples, natural link structures often more or less suggest them-
selves: when V is the set of length-n binary strings, we may declare links pre-
cisely between those x, y 2 V that differ only in one bit, or when V is the set of
permutations of n objects we may decide to declare a link between two per-
mutations when one of them can arise from the other by interchange of exactly
two of the objects.

Given the link structure, the basic local search algorithm proceeds as fol-
lows. Start at some arbitrary x 2 V, compute f at x and at all of its neighbors,
and move to the neighbor y whose f-value is the largest (unless they are all
smaller than f(x) in which case we stay at x). Then repeat the process, moving
to the vertex z that has the largest f-value among y and y’s neighbors. This goes
on until we get stuck.

This algorithm is sometimes called the hill-climber, as it can be pictured as a
hiker in a hilly landscape, always going in the direction of the steepest climb,
until the top of a hill is reached. Such hill-climbing sometimes works well, but a
huge drawback is that the algorithm may get stuck on a relatively modest hill
without noticing the huge mountain peak further away.

To deal with this drawback, a variety of modifications of the hill-climber
algorithm have been proposed and are widely used; see, e.g., Aarts and Lenstra
(1997). These modifications may for instance include randomizing the walk to
allow occasional downhill steps (as in the famous simulated annealing algo-
rithm) or permitting occasional ‘long jumps’ in the landscape. Many of these
modifications are quite sophisticated.

These algorithms are not only used for the pure optimization problem that
we have focused on so far, but also – in fact more often – for the purpose of
locating some large (but not necessarily the largest) value of f. Specifically, the
goal may be to find an x 2 V such that f(x) exceeds some given level t. The
algorithm then proceeds until it encounters an element of the set T consisting
of all x 2 V satisfying f(x) ‡ t. The problem of finding some x 2 T should,
strictly speaking, be called a search problem rather than an optimization
problem. We call T the target set, and it can be written in compact mathe-
matical notation as
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T ¼ fx 2 V : fðxÞ � tg: ð2Þ

More generally, we may not always be in a situation where ‘the larger the value
of f, the better’, so it makes sense to allow for a target set T that is not
necessarily of the form (2), but may be an arbitrary subset of V. In interesting
search problems, T is typically very rare, in the sense that only a very small
fraction of all elements x 2 V are also in T.

This sets the stage for the NFL theorems of Wolpert and Macready (1997),
who showed that for these optimization and search problems, no algorithm is
better than any other, in a certain average sense. This may sound very sur-
prising, so let me describe in more detail what the basic NFL theorem actually
says.2

Wolpert and Macready restrict to the setting where the function f is only
allowed to take values in some prescribed finite subset S of R. In terms of set
notation, f: V fi S, where S is a finite set of real numbers. This restriction is
natural because in a computer implementation everything is necessarily
discrete.

Once the set V over which we optimize, and the set S of allowed values for
the function f, are given, we know from Section ‘A few mathematical prelim-
inaries’ that there exist exactly |S||V| different functions f: V fi S. Usually the
number |S||V| of such functions is a stupendously large numbers, since already
|V| is typically very large. The basic NFL theorem concerns an average over all
these functions.

The algorithms considered by Wolpert and Macready are of the following
form. First, an element x(1) 2 V is chosen according to some rule (which, like
those that follow, may or may not involve the use of random numbers), and
f(x(1)) is computed. Then x(2) 2 V is chosen according to some rule that may
take into account x(1) and f(x(1)), after which f(x(2)) is computed. And so on:
after k steps of the algorithm, it has recorded x(1),..., x(k) and f(x(1)),..., f(x(k)),
and goes on to choose an x(k+1) using a rule that may take into account all
these previous values. The only other condition that the basic NFL theorem
requires is that no x 2 V is chosen more than once.

Imagine now that the first k f-values f(x(1)),..., f(x(k)) have been re-corded,
and define some event Ek solely in terms of these. The prototype example is to
take Ek to be the event that at least one of the recorded values f(x(1)),..., f(x(k))
puts its corresponding x(i) in the target set T. The basic NFL theorem now
states that

2 Most of the discussion will focus on this particular NFL theorem, but see Section ‘Remarks on

extensions’ for some indication of why the plural form ‘theorems’ is used above.
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averaged over all the jSjjVj different possible functions f;

the probability of the event Ek is the same for any choice

of algorithm:

Among other things, this tells us that no algorithm is better than any other at
quickly finding an element in the target set T. In particular, no algorithm is
better than the ‘blind search’ algorithm that does the following: first pick x(1)
uniformly at random from V (i.e., every element of V has the same probability
1/|V| of being chosen), then x(2) is chosen uniformly at random among the
others (regardless of f(x(1))), and so on. If, as usual, V is a very large set and the
target set T is very rare, then the time taken to find some x 2 T will most likely
be enormous.

Thus, the basic NFL theorem seems to provide us with a disheartening
message: no matter how clever we are, we cannot expect to devise algorithms
that are better than the hopelessly primitive and inefficient blind search algo-
rithm.

In practice, however, there is no reason to despair. The key property of
the basic NFL theorem that allow us in practice to circumvent its dark
message is the averaging over all possible functions f that is involved. In
almost all concrete optimization problems we have some prior information
or at least some rough idea of how f varies across V, and such information
can be exploited in the construction of clever and efficient optimization
algorithms, unfettered by any NFL theorem. The reason why the pessimistic
message of the basic NFL theorem no longer applies in such a situation is
that it averages over all possible f, and not just over the kinds of f that we
know to be more likely.

The moral of Wolpert and Macready (1997) is that we cannot expect to
construct efficient optimization or search algorithms unless we exploit some
specific property of f.3 Further light on their result will be shed in Section ‘A
probabilistic interpretation of NFL,’ but before that, I will explain how NFL is
claimed to disprove Darwinian evolution.

Dembski’s application to evolution

During the last couple of decades, evolutionary biology has had a large
influence on optimization theory: much of the development of optimization
algorithms as described in the previous section has been based on mimicking
the biological principles of reproduction, mutation, and evolution. Information
has also travelled in the other direction, and viewing biological evolution from

3 It is this observation that prompted them to use the phrase No Free Lunch.
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an algorithmic perspective has sometimes turned out useful; see, e.g., the
popular account by Dennett (1995) for a very consistent employment of this
perspective.

The algorithmic view on Darwinian evolution is also taken up by Dembski
(2002a). In this section, I will describe his NFL-based argument in the case of a
single species evolving in a fixed environment. I will thus ignore for the mo-
ment the complications of time-dependent environments or of several species
coevolving. Dembski’s argument, as well as my refutation of it, extend in a
straightforward manner to these situations; see Section ‘Remarks on exten-
sions’ for some brief remarks in this direction.

As a preparatory lemma to his main argument, Dembski notes that the kind
of blind search that was described in the previous section cannot possibly
account for the occurrence of what he calls specified complexity, such as
ourselves or other large animals and plants. This is absolutely correct. The
human genome is about 3,000,000,000 base pairs long. Let us now take V to
consist of all DNA sequences up to that length, and the target set T to be the
set of all such DNA sequences giving rise to a creature exhibiting specified
complexity. The number of elements of V then becomes something of the order
101,800,000,000 – a truly Vast number. (Following Dennett (1995), I write Vast for
‘Very much larger than ASTronomical.’) The target set T is also Vast, but a
more important observation is that T is so much smaller than V that if we pick
an element at random (uniform distribution) from V, then the odds against
getting an element of T are also Vast. The precise Vast-ness of this quantity is
very difficult to estimate (partly because of the difficulty in pinpointing exactly
what specified complexity is), but it seems reasonably safe to state that |V|/|T|
is somewhere between 101000 and 101,000,000,000. Assuming this, the probability
that a random choice from |V| hits the target set |T| is between 10)1000 and
10)1,000,000,000, and the number of attempts needed by the blind search algo-
rithm before hitting T will most likely be somewhere between 101000 and
101,000,000,000. The age of the earth (or of the universe, for that matter) is
nowhere near long enough to encompass such a search procedure – even if we
take into account the massive parallelism that evolution may exploit through
searching along a large number of lines of descent simultaneously. Thus, the
infeasibility of the blind search algorithm is settled.

Equipped with this lemma, the basic NFL theorem does the rest, according
to Dembski.4 Of course, no one claims that Darwinian evolution proceeds via
the above blind search algorithm. The basic NFL theorem, however, tells us
that no other algorithm can expect to do better, and hence Darwinian evolu-
tion cannot produce specified complexity. That is, unless either the algorithm is

4 Dembski picked up the idea that the NFL theorems might pose a challenge to evolutionary

biology from Stuart Kauffman, who writes: ‘The no-free-lunch theorem proves that, averaged over

all landscapes, no search algorithm outperforms any other. [...] And here we organisms are, stuck

using mutation, recombination and selection. [...] Where did the ‘good’ landscapes come from,

those that Darwinian gradualism works so well in searching?’ (Kauffman 2000, p. 197). A similar

quote of Kauffman appears in Dembski (2002a, p. 224).
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set up using prior information of the function f (and here it is inconsequential
whether this function represents some fitness quantity, or some more general
phenotypic aspect) to help it reach the target set T, or conversely f is set up to
fit the algorithm (Dembski 2002a, Sections 4.4 and 4.6). This means, still
according to Dembski, that the specified complexity appearing as the result of
biological evolution must have been present already in the algorithm or the
fitness landscape – an observation that he calls the displacement problem
(Dembski 2002a, Section 4.7). This demonstrates that natural laws are
‘intrinsically incapable of delivering [specified intelligence]. Indeed, all our
evidence points to intelligence as [its] only source’ (Dembski 2002a, p. 207).

Of course, this argument is elaborated in much more detail in No Free
Lunch, and perhaps Dembski upon reading this will feel that the last three
sentences of the previous paragraph do not give complete justice to his line of
reasoning. The rough description I have given of Dembski’s argument in this
section is nevertheless sufficient to make it clear that the next two sections
refute it irreparably.

A probabilistic interpretation of NFL

In this section I will give a probabilistic interpretation of the underlying
assumption of the NFL theorems that make them look a lot less mysterious.
Earlier treatments of the NFL theorems have, as far as I know, not employed
this perspective.5 In particular, Dembski (2002a) shows no sign of probabilistic
understanding of the NFL theorems, although later in Dembski (2005) he
begins to speak of similar matters in probabilistic terms.

The basic NFL theorem involves an average over all possible functions f.
Whenever an average or a weighted average appears in a mathematical argu-
ment, one may stop and consider whether the averaging has some probabilistic
interpretation (as it usually does), and if so, how the implicit probabilistic
model might be interpreted. This can often be quite illuminating.

In the setting of Section ‘Optimization and the NFL theorems,’ the aver-
aging amounts to picking one of the |S||V| different possible functions f:V fi
S at random according to uniform distribution, meaning that each one is
picked with probability 1/|S||V|. For the search problem of finding some x 2 V
belonging to the target set T, an equivalent probabilistic way of formulating
the basic NFL theorem is thus as follows: the distribution of the time taken for
a search algorithm A to find an element of T is the same regardless of the
choice of A – provided that the function f is generated by a random mechanism
that picks one of the |S||V| possible realizations with equal probability.

It is worthwile to reflect over what it means that f is chosen according to
uniform distribution on SV. I claim that

5 Figure 2 of Wein (2002a) suggests that Wein is aware of the key observation (3) below, but it is

not spelled out in his text.
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choosing a random function f : V ! S according to

uniform distribution on SV is equivalent to choosing; ð3Þ
for each x 2 V independently; fðxÞ according to

uniform distribution onS:

Here and throughout, independence is taken to mean statistical independence.
This, in turn, means in this particular context that for any collection x1,..., xk
of different elements of V, and any given values s1,... sk from S, we have that6

Pðfðx1Þ ¼ s1; . . . ; fðxkÞ ¼ skÞ ¼ Pðfðx1Þ ¼ s1Þ � � � � � PðfðxkÞ ¼ skÞ:

A nice intuitive interpretation is that no knowledge of the f-values for any
collection of elements from V gives reason to deviate from the belief that the f-
values of the other elements from V are uniformly distributed on S.

Statement (3) is a well-known fact in probability theory, and really nothing
more than a straightforward extension of the standard first-year textbook
example concerning the roll of two dice: the statement that all 36 outcomes
(1,1),(1,2),..., (1,6), (2,1),..., (6,6) have the same probability is equivalent to the
the statement that the two dice are independent and that the distribution for
each of them is uniform on {1,2,..., 6}.

For completeness and for the reader’s convenience, let me nevertheless give
the explicit argument for (3). Suppose that V has m elements x1,..., xm, and that
S has l elements s1,..., sl. Suppose furthermore that for each x 2 V indepen-
dently, we choose f(x) according to uniform distribution on S. To prove the
claim (3), we need to show that for any s1,..., sm 2 S, the formula

Pðfðx1Þ ¼ s1; . . . ; fðxmÞ ¼ smÞ ¼ 1=lm ð4Þ

holds. Now, the independence assumption tells us that the left-hand-side of
(4) can be factorized into

Pðfðx1Þ ¼ s1Þ � � � � � PðfðxmÞ ¼ smÞ: ð5Þ

6
P is short for ‘the probability of.’
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Since each of the factors in (5) equals 1/l, the identity (4) is verified, and the
claim (3) established.

Now that we are equipped with the characterization (3), the basic NFL
theorem becomes very easy to understand (and to prove). To this end, imagine
an algorithm A, as in Section ‘Optimization and the NFL theorems,’ that after
k steps has visited x(1),..., x(k) 2 V, and observed f(x(1)),..., f(x(k)).

7 Now,
whichever x(k+1) the algorithm chooses to visit next, the f-value that it will find
there is, due to the independence property in (3), uniformly distributed on S
(regardless of which elements x(1),..., x(k) of V the algorithm has visited, and
which values of f(x(1)),..., f(x(k)) it has observed). Hence, the rule for how to
select x(k+1) does not influence what we see there. Since k was arbitrary it
follows that f(x(1)), f(x(2)),... form a sequence of independent random values
whose common distribution is uniform on S. Since this conclusion is reached
regardless of the details of A, it follows that the choice of A has no influence on
the distribution of the sequence f(x(1)), f(x(2)),.... And this is precisely what the
basic NLF theorem says.

In fact, not only does the observation (3) provide us with an almost trivial
proof of the basic NFL theorem – it also suggests some immediate general-
izations. Indeed, the argument we just indicated uses that the f(x)’s are inde-
pendent with the same distribution, but not that their common distribution is
uniform on S. Hence, the assertion of the basic NFL theorem holds under this
weaker independence assumption. And by the same token, the assumption can
be weakened even further to that of so-called exchangeability, which means
that the joint distribution of f(x1),..., f(xm) equals the joint distribution of any
permutation of them (see, e.g., Kallenberg 2005).

With this latter generality in mind, the basic NFL theorem is not much more
than a fancy (and more general) way of phrasing the following fact:

If we spread a well-shuffled deck of cards face-down on a

table and wish to find the ace of spades by turning over ð6Þ
as few cards as possible, then no sequential procedure for

doing so is better than any other.

This obvious card-deck example summarizes pretty much all there is to the
basic NFL theorem (or any of its variants). In spite of this, Dembski is not the
only one who has tried to create a hype around the result. For instance,
Wolpert and Macready themselves (1997) contribute their share to the hype.
And with astonishing lack of perspective, Ho and Pepyne (2002) compare the

7 The notation is worth stressing: x(i) denotes the i:th element visited by the algorithm, whereas xi
denotes the i:th element in some fixed but arbitrary enumeration of V.
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basic NFL theorem to one of the deepest achievements in 20th century
mathematics: Gödel’s incompleteness theorem.

Dembski’s error

Let us now examine Dembski’s use of NFL in the light of the probabilistic
interpretation given in Section ‘A probabilistic interpretation of NFL.’ For
concreteness take, as in Section ‘Dembski’s application to evolution,’ V to be
the set of all DNA sequences of length up to 3,000,000,000. Also, take f:V fi
S to be some measure of fitness, so that for each x 2 V, f(x) describes the
fitness of an organism with DNA sequence x. Of course, most such DNA
sequences do not correspond to an organism at all, so for such x we take f(x) to
be the minimum of the set S of possible values – say, f(x) = 0.

Furthermore, let us equip V with a link structure as in Section ‘Optimization
and the NFL theorems.’ Specifically, let us declare a link between two DNA
sequences x,y 2 V precisely when one of them can be obtained from the other
either by changing a single nucleotide pair, by inserting one, or by deleting one.
This choice of link structure is made in order that a move from an element x 2 V
to a neighbor y 2 V corresponds to a mutation of the simplest possible (single-
nucleotide) kind.8 Thus, the reproduction-mutation-selection mechanism of
Darwinian evolution can be seen as one variant or another of the local search
algorithms in Section ‘Optimization and the NFL theorems,’ with the given link
structure. Althoughwe do not know the precise details of this algorithm, let us call
it A.

Dembski’s (2002a) application of NFL now says that

if the fitness function f is generated at random according

to uniform distribution among all thejSjjVjpossibilities; ð7Þ

then the Darwinian algorithm A cannot be expected to fare any better than
blind search, and will therefore almost certainly fail to produce specified
complexity (the odds against it succeeding to do so are Vast).

Phrased in this way, the result is pretty much correct.9 Its relevance to evo-
lution depends, however, on the extent to which (7) reflects properties of the
true fitness landscape.We could, if we wanted to, dismiss Dembski’s application
as irrelevant on the grounds that no physical or biological mechanism

8 This ignores inversions, gene duplications, and other kinds of macromutations. It also ignores

the recombination mechanisms of sexual reproduction. Still, it provides a good enough model of

evolution to make my point clear.
9 This statement is still somewhat charitable to Dembski, as it ignores his confusion (remarked

upon in Section ‘Introduction’) concerning what specified complexity actually means; see Wein

(2002a).

227



motivating (7) has been proposed.10 But that would, in my mind, be to make
things a bit too easy, because even if no candidate for such a mechanism is
available, Dembski’s NFL argument would still pose an interesting challenge to
evolutionary biology provided that empirical evidence shows that the true fit-
ness landscape is similar to what one would expect to see under assumption
(7).11

A minimum requirement, however, for the NFL argument to merit taking
seriously, is that the actual fitness landscape exhibits at least some rough
resemblance with what one would expect to arise from a model based on (7).
Alas, it does not. I will now show that any reasonably realistic model for the
actual fitness landscape will produce something that is very, very different from
what (7) produces.

From the characterization (3) that we established in Section ‘A probabilistic
interpretation of NFL,’ we see that under assumption (7), the fitnesses of any
two DNA sequences (or any collection of them, for that matter) are inde-
pendent – a complete disarray. It follows that, with overwhelming probability,
a fitness landscape produced by (7) will exhibit no significant tendency for
neighboring DNA sequences to give any more similar values than do two
totally unrelated DNA sequences.12

On the other hand, any realistic model for a fitness landscape will have to
exhibit a considerable amount of what I would like to call clustering, meaning
that similar DNA sequences will tend to produce similar fitness values much
more often than could be expected under model (7). In particular, if we take the
genome of a very fit creature – say, you or me – and change a single nucleotide
somewhere along the DNA, then we expect with high probability that this will
still produce an organism with high fitness. In contrast, under assumption (7),
changing a single nucleotide is just as bad as putting together a new genome
from scratch and completely at random, something that we have already noted
(see Section ‘Dembski’s application to evolution’) will with overwhelming
probability produce not just a slightly less fit creature, but no creature at all. (If
the true fitness function had this property, then, given the human mutation
rate, none of us would be around.)

10 There certainly is not any a priori reason to expect that the ‘blind forces of nature’ should

produce a fitness landscape distributed according to (7). Anyone reasonably experienced in

probabilistic modeling in science knows that such uniform distributions have no privileged status

over other models as realistic descriptions of what the laws of nature produce, and that in fact only

rarely do they turn out to provide good models for physical or biological systems.
11 In the hypothetical scenario that we had strong empirical evidence for the claim that the true

fitness landscape looks like a typical specimen from the model (7), then this evidence would in

particular (as argued in the next few paragraphs) indicate that an extremely small fraction of

genomes at one or a few mutations’ distance from a genome with high fitness would themselves

exhibit high fitness. It is hard to envision how the Darwinian algorithm A could possibly work in

such a fitness landscape.
12 For further discussion and an illustration of this lack of structure of fitness landscapes pro-

duced by (7), see Section 7 of the earlier version Häggström (2005) of the present paper.
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Thus – and since fitness landscapes produced by (7) are extremely unlikely to
exhibit any significant amount of clustering – we can safely rule out (7) in favor
of fitness landscapes exhibiting clustering, thereby demonstrating the irrele-
vance of Dembski’s NFL-based approach. Note in this context that it is to a
large extent clustering properties that make local search algorithms (such as A)
work better than, say, blind search: the gain of moving from an x 2 V to a
neighbor y with a higher value of f is not so much this high value itself, as the
prospect that this will lead the way to regions in V with even higher values of f.

One minor issue that we touched upon at the end of Section ‘Dembski’s
application to evolution’ remains to be considered, namely the idea that if the
true fitness landscape f deviates in important respects from typical behavior
under the averaging (7), then there is something fishy about f that cannot be
explained without invoking an intelligent designer. Such an idea is hinted in
Dembski (2002a), Section 4.4 and elsewhere. But the clustering property of f
that demonstrates the irrelevance of results derived under model assumption
(7) hardly requires such mysterious explanations. A much more sensible mode
of explanation is to view it as a manifestation of the phenomenon ‘like causes
tend to have like consequences’ that is prevalent throughout science and
elsewhere.13

Remarks on extensions

Other than Wein, one of the most ardent public critics of Dembski’s No Free
Lunch is the well-known evolutionary biologist Allen Orr (2002, 2005). His
criticism in these mostly pertinent contributions fails, however, to identify the
preponderant shortcoming of the NFL application outlined in Section
‘Dembski’s error,’ and some of his more mathematical concerns are uncon-
vincing. In particular, in Orr (2002), it is claimed that the the NFL arguement
does not apply when the function f changes over time (corresponding to an
evolving fitness landscape). But in fact, Wolpert and Macready (1997) have a
variant of the basic NFL theorem for precisely such cases, and this variant can
be plugged into Dembski’s argument to give an evolving-fitness-landscape
analog of his constant-fitness-landscape result. Such a modified Dembski
argument is vaguely hinted at in No Free Lunch, but the fact of the matter is
that it fails to be relevant to biological evolution, for very much the same
reasons as those outlined in Section ‘Dembski’s error.’

In Orr (2005), it is instead claimed that NFL does not apply to the situation
of two or more coevolving species.14 But again, although I have not been able
to find in the literature an NFL theorem adapted to this situation, it is easy to
devise one15 and plug it into Dembski’s argument. But yet again, the story is

13 See Häggström (2005) or Wein (2002a) for further elaboration of this point.
14 The claim seems to originate from Wolpert (2002).
15 See Häggström (2005), Footnote 19.
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the same as in the evolving-fitness-landscape setting: the arguments in Section
‘Dembski’s error’ show that also this extension lacks relevance to evolution.
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