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Abstract  Current methods for green synthesis of 
metal nanoparticles often require continuous harvest-
ing of fresh bio-materials for every synthesis cycle. 
Practices and procedures that economize bio-mate-
rials need to be employed if green synthesis could 
become a sustainable and eco-friendly method for 
synthesizing metal nanoparticles. This study explores 
Chrysophyllum albidum peels (mostly regarded as 
waste) to prepare silver nanoparticles (Alb-AgNPs). 
The technique employed in the synthesis allows 
repeated use of the peels, thus, reducing the heavy 
dependence on bio-materials. The optical and struc-
tural properties of the Alb-AgNPs were studied with 
Scanning electron microscope, Fourier transform 
infrared spectrometer, UV-Vis spectrophotometer 
and powder X-ray diffractometer. The antimicro-
bial properties of the Alb-AgNPs were studied with 
selected microorganisms namely; S. aureus, E. coli, 
K. pneumoniae, B. subtilis, S. mutans, P. aeruginosa, 
S. typhi, and Candida albicans. High inhibitory activ-
ity against the microorganisms were exhibited with 
MICs ranging from 15.62 to 1000 µg/mL. Again, the 

Alb-AgNPs showed the ability to enhance the effi-
cacy of standard antimicrobial agents. The results 
of the combined interaction with standard antibacte-
rial and antifungal agents ranged from synergistic to 
antagonistic effects against the tested microorgan-
isms. In addition, the Alb-AgNPs could serve as a bio-
film inhibitor with the highest percent inhibition of 
about 92% against methicillin-resistant Staphylococ-
cus aureus. The results from this study thus provide 
access to the simple, sustainable, economic and eco-
friendly synthesis of silver nanoparticles with effi-
cient antimicrobial properties as drug candidates as a 
means of overcoming the prevailing antibiotic resist-
ance menaces.

Keywords  Chrysophyllum albidum · Silver 
nanoparticles · Biofilm inhibition · Synergistic effect · 
Antimicrobial properties · Green synthesis

Introduction

The rise in concerns about the health implications 
of metal nanoparticles (MNPs) has necessitated the 
search for methods that aid the production of MNPs 
which are benign to the environment. The green 
method for synthesizing MNPs offers the possibil-
ity of producing nanoparticles through routes that 
reduce or eliminate the use of dangerous, costly and 
toxic chemicals (Shankar et  al. 2003; Philip 2009; 
Bankar et  al. 2010; Vanaja and Annadurai 2013; 
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Mo et  al. 2015; Skiba and Vorobyova 2019). This 
approach uses biochemicals in extracts of plants, 
bacteria, fungi, algae, yeast etc., for the preparation 
of MNPs (Gajbhiye et al. 2009; Khanna et al. 2019; 
Gloria Martin and Vergara Padilla 2020; Shu et  al. 
2020; Yusefi et  al. 2021; Bahrulolum et  al. 2021). 
Plant products, when used to prepare MNPs furnish 
the nanoparticles with numerous properties. Plants 
extracts are mostly non-toxic and possess little or 
no environmental toxicity, thus serving as a benign 
reducing and stabilizing agent for preparing nanopar-
ticles (Zhang et al. 2020).

Metal nanoparticles prepared by the green 
approach, especially that of silver, have been exten-
sively studied for their ability to disrupt and dam-
age bacteria and fungi cells to inhibit growth (Anees 
Ahmad et  al. 2020). Silver nanoparticles prepared 
biogenically with extracts from Centella asiatica, B. 
diffusa, P endlicherianum, Solanum tricobatum, Ada-
thoda vasica, Ocimum tenuiflorum, Syzygium cumini 
etc., have shown enhanced efficacy in preventing 
the growth of bacteria (Brayner 2008; Vijay Kumar 
et al. 2014; Latha et al. 2016; Şeker Karatoprak et al. 
2017). This efficacy spans from the ability to inhibit 
and kill bacteria cells, synergistically increase the 
potency of antibiotic or antifungal agents, and inhibit 
the formation of microorganism biofilms (Fayaz et al. 
2010; Sadeghi-Kiakhani et al. 2022).

Green synthesis of MNPs requires continuous 
harvesting of natural plant products which can place 
gruesome stress on biodiversity if demands for bio-
synthesized MNPs continue to rise. The review study 
by Siddiqi et al. (2018) revealed that plant parts such 
as leaves, fruits and seeds are mainly used for the 
green synthesis of MNPs. These plant parts are cru-
cial in other respects, in that most of the fruits used in 
green synthesis of nanoparticles are ‘super foods’ for 
human consumption and are already in high demand 
(Sabine 2017). On the other hand, plant leaves are 
indispensable in photosynthetic processes, which 
are crucial in the fight against global warming (Tke-
maladze and Makhashvili 2016). Therefore, it is not 
an overstatement that the current most subscribed 
practice, and used plant parts, may not be sustain-
able in the near future if green synthesis becomes 
the household method for nanoparticle synthesis. As 
a result, studies have focused on using other plant 
parts of less demand and considered ‘non-essential’ 
or ‘waste’ to prepare MNPs. Plants products such as 

orange peels (Skiba and Vorobyova 2019), banana 
peel (Bankar et al. 2010), avocado peels (Villanueva-
Ibáñez et al. 2015), rice husk (Lieu et al. 2018), corn 
husk (Villanueva-Ibáñez et  al. 2015) etc., have been 
explored as potential sources of bio reductants for the 
preparation of MNPs.

In this study, we explore plant extracts obtained 
from the peels of Chrysophyllum albidum fruit as 
potent bio-reducing and stabilizing agents for synthe-
sizing silver nanoparticles. Chrysophyllum albidum, 
also known as African star fruit, is mainly grown in 
tropical regions. Healthwise, it contains an adequate 
amount of carbohydrates, protein, fats, oil, and vita-
mins (Asare et  al. 2015). It has anti-inflammatory 
properties, and the high amount of pectin, polyphe-
nols and vitamin C make it a potent plant for detoxi-
fication (Folasade et  al. 2019). Previously, efforts 
have gone into synthesizing silver nanoparticles from 
seed and leaf extracts of Chrysophyllum albidum 
for catalytic applications and investigating α- amyl-
ase interaction, respectively. These silver nanopar-
ticles were attained through elaborate processes of 
pulverization, heating and microwave irradiation. 
In the present study, dried peels of Chrysophyllum 
albidum fruit were swirled with deionized water and 
used to prepare silver nanoparticles. The peels could 
then be reused in a subsequent synthesis, making the 
approach simple, easy and economical. The nanopar-
ticles were studied for their bactericidal, fungicidal, 
synergistic and biofilm inhibition effects. The results 
from this study showed that the peels of Chrysophyl-
lum albidum can serve as an effective bio-reductant 
source for green synthesis of silver nanoparticles for 
antibacterial applications in the combat against anti-
microbial resistance.

Experimental

Chemicals

Silver nitrate (AgNO3, Merck, ≥ 99%) was used as 
a precursor in the synthesis of silver nanoparticles. 
Chrysophyllum albidum fruit was purchased from 
the local market. Hypochlorite solution was used to 
disinfect the Chrysophyllum albidum fruit peel before 
use. Methanol (Sigma Aldrich, analytical grade),  
Mueller-Hinton Broth (Oxoid, USA), MTT (3-(4,5- 
dimethylthiazole-2-yl)-2,5-diphenyltetrazolium 
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bromide, 0.1%, w/v, Sigma Aldrich), Phosphate Buff-
ered Saline (PBS, Sigma Aldrich, analytical grade), 
McFarland standard (barium chloride and sulphuric 
acid) were used to study the antimicrobial properties 
of the prepared silver nanoparticles.

Biosynthesis of silver nanoparticles using peel extract 
of Chrysophyllum albidum fruit (Alb‑AgNPs)

Preparation of Chrysophyllum albidum peel extract

The outer layer of Chrysophyllum albidum fruit was 
peeled off, washed, and then dried in an oven at 80 °C 
for 4 h. About 1 g of the Chrysophyllum albidum peel 
was measured and disinfected with hypochlorite solu-
tion. Deionized water was finally used to wash the 
peels severally. About 40 mL of deionized water was 
added to the peels and swirled for less than a minute. 
The water was decanted through filter paper, and the 
filtrate (extract) was stored for further use. It is note-
worthy that the peels can be reused through the out-
lined procedure to attain fresh extracts.

Synthesis of silver nanoparticles using peel extracts 
of Chrysophyllum albidum

About 1 mL of 0.01 M AgNO3 was added to 40 mL of 
extract solution and exposed to the sunlight for 5 min. 
The formation of the Chrysophyllum albidum stabi-
lized silver nanoparticle (Alb-AgNPs) was observed 
as a colour change from pale yellow to dark red. The 
Alb-AgNPs were purified severally by centrifugation 
and redispersed in deionized water for further use.

Antimicrobial properties of Alb‑AgNPs

Test organisms

The antimicrobial properties of the Alb-AgNPs 
were tested against eight different microorganisms, 
namely, Methicillin resistant Staphylococcus aureus 
(NCTC12493), Escherichia coli (ATCC25922), Kleb-
siella pneumoniae (NCTC 13,440), Bacillus subti-
lis (ATCC 10,004), Streptococcus mutans (ATCC 
700,610), Pseudomonas aeruginosa (ATCC 4853), 
Salmonella typhi (ATCC14028), and Candida albi-
cans (ATCC 90,028). These organisms were selected 
based on their implications in microbial infections. 
Next, these microorganisms were sub-cultured for 

24 h before the experiment in a nutrient agar at 37 ºC. 
A prepared inoculum of these strain cultures was then 
adjusted to obtain a final concentration of 105 CFU/
mL using a 0.5 McFarland standard.

Determination of minimum inhibitory and bacteri/
fungi‑cidal concentrations (MIC and MBC/MFC) 
of Alb‑AgNPs

The minimal inhibitory concentration (MIC) was 
performed using a microdilution broth susceptibility 
assay (Clinical and Laboratory Standards Institute, 
2011). Two-fold serial dilutions of the Alb-AgNPs 
ranging from 500 to 0.198 µg/mL in methanol were 
prepared in Mueller-Hinton Broth (MHB;100 µL) in a 
96-well microtiter plate. Microbial suspensions were 
prepared from each test strain freshly grown in Muel-
ler Hinton broth (approximately 105 CFU/mL), and 
100 µL of these individual suspensions were added 
to each well. In all cases on each column, one well 
was designated as positive control inoculated with 
each test microorganism and the sterile broth plus 
methanol (diluent) as the negative control without 
organism in another well (12). After incubation at 
37 °C for 24/48 h, microbial growths were recorded 
using MTT (i.e., 3-(4,5- dimethylthiazole-2- yl)-
2,5-diphenyltetrazolium bromide, 0.1%, w/v). MICs 
of the various Alb-AgNPs samples were denoted as 
the lowest concentrations at which no colour change 
(from yellow to purple) was observed. Afterwards, 
cultures were seeded in Mueller-Hinton Agar (MHA) 
medium and incubated for 24  h at 37  °C to deter-
mine the minimum bacteri/fungi-cidal concentration 
(MBC/ MFC)  which gives the lowest concentration 
of the Alb-AgNPs sample that kills test organisms. 
All experiments were performed in triplicate (Nester 
et al. 2004).

Evaluation of synergistic effects of the Alb‑AgNPs 
sample and antibiotics

Combinatory effects between the Alb-AgNPs and 
antibiotics were carried out using the checkerboard 
test against the strains of test microbes with slight 
modification according to the protocol reported by 
Khodavandi et  al. (2010 and Nascimento Da Silva 
et al. (2013). Briefly, solutions with different propor-
tions of Alb-AgNPs : drug (final volume of 200 µL) 
were prepared from twice MIC solutions of each 
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test sample (2 × MIC) and the individual antibiotics 
(1  mg/mL), and the antibacterial activity was tested 
as described for MIC determination. The Fractional 
Inhibitory Concentration index (FICI) was calculated 
according to Eq. (1);

where MICA + S is the minimal inhibitory concen-
tration of antibiotic in combination with Alb-AgNPs 
sample, MICS + A is minimum inhibitory concentra-
tion of Alb-AgNPs sample in combination with anti-
biotic. MICA and MICS are the minimum inhibitory 
concentrations of antibiotic and Alb-AgNPs, respec-
tively. Results were categorized as synergistic if FICI 
was ≤ 0.5, partial synergistic if FICI was ˃ 0.5 and 
< 1, additive if FICI was = 1, no difference if FICI 
was ˃ 1 and ≤ 4, antagonistic if FICI was ˃ 4.0.

Determination of antibiofilm activity of Alb‑AgNPs

The activity of the Alb-AgNPs against the microbial 
biofilms was examined using the 96-well microtiter 
plate of microbial biofilm formation and susceptibil-
ity testing (Pierce et  al. 2010) with slight modifica-
tion. Briefly, Mueller Hinton broth (50 µL) were 
added to each well in a flat-bottom 96-well micro-
plate; each of the Alb-AgNPs samples (50 µL) was 
then serially diluted to arrive at 10 different concen-
trations ranging from 500 to 0.197  µg/mL. Subse-
quently, 50 µL of the microbial suspension at a con-
centration of 2 × 106 cells/mL were added to wells of 
columns 1–11, and the microtiter plates were incu-
bated for 24 h at 37 °C. After this period, the liquid 
was carefully pipetted without touching the biofilm. 
They were then washed with PBS (100 µL) twice to 
remove planktonic and non-adherent cells. The post-
processing to quantify the metabolic activity after the 
antimicrobial treatment was checked by XTT (Sigma 
Aldrich) reduction assay as previously described by 
(Pierce et al. 2008) with slight modifications. Finally, 
plates were read by spectrophotometry at 490 nm in 
a microtiter plate reader. Each of the procedures was 
repeated thrice. The biofilm inhibition potential of 
each of the Alb-AgNPs samples to reduce the optical 
density compared to the negative control was noted as 
the biofilm inhibitory activity;

(1)FICI =

(

MICA + S

MICA

)

+

(

MICS + A

MICS

)

Characterization

The morphology of the Alb-AgNPs was observed 
with Hitachi S-4800 FE-SEM (field emission scan-
ning electron microscope). Shimadzu UV − 1800 
UV-VIS Spectrophotometer was used to measure the 
plasmonic absorption of the Alb-AgNPs. The FTIR 
spectrum of the Alb-AgNPs were acquired with Perki-
nElmer FT-IR spectrometer. The PXRD pattern of the 
Alb-AgNPs was acquired with PANalytical Empyrean 
X-ray Diffractometer.

Results and discussion

Synthesis of Chrysophyllum albidum peel extract 
stabilized silver nanoparticles (Alb‑AgNPs)

In the preparation of the Alb-AgNPs, the extract and 
AgNO3 mixture was exposed to sunlight for about 
5 min leading to a complete reduction of Ag+ to Ag0 
and the subsequent formation of silver nanoparticles. 
The formation of the Alb-AgNPs was observed as a 
colour change from pale yellow to dark red (Fig. 1). 
After the dark red colour was attained, no visible 
colour change was observed when the reaction was 
allowed to proceed for an hour. In the absence of sun-
light, the Alb-AgNPs still form under normal room 
conditions; however, the reaction occurs in about 4 h. 
Sunlight, thus, speeds up the reduction of silver ions 
leading to the formation of the Alb-AgNPs (Ahmed 
et al. 2015; Nguyen 2020). The faster reaction under 
sunlight might be because electron transfer from the 
phytochemicals in the extract to the Ag+ is faster 
under sunlight exposure compared to normal room 
conditions.

The FTIR spectrum of the Alb-AgNPs presented in 
Fig. 2a reveals the functional group of the phytochem-
icals in the extract solution, which were responsible 
for reducing silver ions and stabilizing the nanoparti-
cles. As shown in Fig. 2(a), a number of bands were 
recorded. Prominent bands were observed around 
3268  cm−1, 2970  cm−1 and 2921  cm−1, 1736  cm−1, 
1620  cm−1, 1365  cm−1, 1216  cm−1, and 1042  cm−1. 
These bands can be assigned to O‒H stretch, ‒C‒H 

(2)

% biofilm inhibition =

(

optical density (OD)of control −
OD of treatment

OD of control

)

× 100
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stretch, ‒C=O stretch, aromatic ‒C=C‒ stretch, 
‒C‒H stretch of alkene, ‒C‒N stretch of aliphatic 
amine and ‒C‒O stretch, respectively (Krithiga et al. 
2015). It presupposes that molecules with these func-
tional groups in the extract solution may have been 
responsible for the reduction of the Ag+ and stabili-
zation of the Alb-AgNPs (Huang et  al. 2007). Stud-
ies have revealed the presence of phytochemicals 
such as flavonoids, phenolic compounds and vitamin 
C in the peels of Chrysophyllum albidum (Folasade 
et  al. 2019). These phytochemicals may have been 
responsible for the reduction and stabilization of the 
Alb-AgNPs.

Figure  2b shows the Scanning electron micro-
scope image of the Alb-AgNPs. The size of the parti-
cles ranged between 28 and 90 nm and was primarily 
quasi-spherical. Occasionally, nanoparticles greater 
than 100  nm were observed. Similar polydisperse 
silver nanoparticles resulting from green synthesis 
have been observed in the study reported by Jelin 
et  al. (2015). The EDS spectrum of the Alb-AgNPs 
confirms the presence of silver metal in the compos-
ite nanostructure (Fig. 2c). The plasmonic absorption 

of the Alb-AgNPs was observed around 434  nm in 
the visible region of the electromagnetic spectrum 
(Fig. 3a).

The X-ray diffraction spectrum of the Alb-AgNPs 
is presented in Fig.  3b; the diffraction pattern 
observed around 38°, 44°, 64°, 78° and 82° can be 
attributed to the (111), (200), (220), (311) and (322) 
diffraction planes of face-centred cubic (FCC) struc-
ture silver nanoparticles (Krithiga et al. 2015).

Antibacterial properties of Alb‑AgNPs

Minimum inhibitory and bacteri/fungi‑cidal 
concentrations (MIC and MBC) of Alb‑AgNPs

Nanoparticles interact strongly with microbial sur-
faces primarily due to their high surface-volume ratio 
and size. This strong interaction facilitates the anti-
microbial actions of the metal nanoparticles. In the 
present study, the antimicrobial properties of silver 
nanoparticles stabilized with extracts from Chryso-
phyllum albidum were studied against a broad range 
of microorganisms. These microorganisms comprised 

Fig. 1   Photographs of 
a Chrysophyllum albidum 
fruit peels, b peels extract 
of Chrysoplhyllum albidum 
fruit, c Alb-AgNPs formed 
through addition of AgNO3 
to extract, followed by sun-
light exposure for 5 min

Fig. 2   a FTIR spectrum of Alb-AgNPs, b Scanning electron microscope image of Alb-AgNPs, c EDS spectrum of Alb-AgNPs. 
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gram-negative and gram-positive bacteria, as well as 
fungus. Table 1 presents the MIC values of the Alb-
AgNPs against the selected microorganisms. The syn-
thesized silver nanoparticles (Alb-AgNPs) have the 
potency to inhibit and destroy microbial cells. The 
lowest MIC value of 15.62 µg/mL was recorded for E. 
coli, K. pneumoniae, P. aeruginosa and C. albicans.

Further insight into the antimicrobial efficacy of 
the Alb-AgNPs was gained when it was compared to 
AgNO3 of the same Ag concentration. As illustrated 
in Fig.  4a, the effectiveness of the Alb-AgNPs was 

greater than silver nitrate of similar Ag concentration. 
Except for S. mutans, B. subtilis and S. typhi, the MIC 
values of Alb-AgNPs, was lower than that of AgNO3. 
Moreover, the lowest MIC value AgNO3 could attain 
against the selected microorganism was 62.5 µg/mL, 
threefold higher than the 15.62 µg/Ml for Alb-AgNPs.

Analysis of the antimicrobial efficacy in Fig. 4b 
reveals that the Alb-AgNPs is more sensitive to 
gram-negative than gram-positive bacteria. Except 
for S. typhi, all the gram-negative bacteria showed 
higher susceptibility towards the Alb-AgNPs than 

Fig. 3   a UV-Vis spectrum 
of Alb-AgNPs, b P-XRD 
spectrum of Alb-AgNPs.

Fig. 4   a Comparison 
between the MIC of Alb-
AgNPs and AgNO3, b sus-
ceptibility of Alb-AgNPs 
towards gram-negative and 
gram-positive bacteria

Table 1   MIC and MBC of 
Alb-AgNPs against selected 
microorganisms

Test Organism Alb-AgNPs 

MIC (µg/mL) MBC (µg/mL) MIC/MBC Interpretation

E. coli (ATCC 25922) 15.62 125 8 Bacteriostatic
K. pneumoniae (NCTC 13440) 15.62 125 8 Bacteriostatic
MRSA (NCTC 12493) 125 125 1 Bactericidal
S. mutans (ATCC 700610) 250 250 1 Bactericidal
B. subtilis (ATCC 10004) 1000 1000 1 Bactericidal
S. typhi (ATCC 14028) 1000 1000 1 Bactericidal
P. aeruginosa (ATCC 4853) 15.62 1000 64 Bacteriostatic
Candida albicans (ATCC 90028) 15.62 62.5 4 Fungistatic
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their gram-positive counterparts. This variation 
can be attributed to the differences in the cell wall 
structures of both gram-negative and gram-positive 
bacteria.

The MBC/MIC ratio presented in Table 1 clearly 
shows the efficacy of the Alb-AgNPs against the 
selected microorganisms. Interpretation of the MBC/
MIC values shows that the Alb-AgNPs are bacte-
ricidal against MRSA, S. mutans, B. subtilis and S. 
typhi, bacteriostatic towards E. coli, K. pneumoniae 
and P. aeruginosa, and fungistatic against Candida 
albicans. The antimicrobial properties of silver nano-
particles have extensively been studied, and although 
there has not yet been any definitive mechanism for 
the effect, studies have suggested various plausi-
ble mechanisms. It is reported that the antimicro-
bial activities might be attributed to the release of 
Ag+ ions into the microbial medium (Siddiqi et  al. 
2018). The positively charged silver ions can inter-
act with negatively charged molecules in microbial 
cells through electrostatic interactions. This interac-
tion can occur, for instance, when silver ions bind to 
sulfur-containing proteins in the cytoplasm or cell 
wall of the microbe (Hsueh et  al. 2015; Helmlinger 
et  al. 2016; Siddiqi et  al. 2018). The strong adher-
ence significantly increases the permeability of the 
Ag+ into the internal structures of the microbe result-
ing in disruption and damage to the microbial cell. 
Studies have revealed that when the free Ag+ enters 
the microbe’s cells, it produces reactive oxygen spe-
cies (ROS), which are responsible for the disruption 
and damage of the microbe (Siddiqi et al. 2018). This 
damage may arise from deoxyribonucleic acid (DNA) 
alteration, which affects replication, cell propagation, 
etc., or hinder the manufacturing of ribosomal com-
ponents (Anees Ahmad et al. 2020).

Synergistic effect of the Alb‑AgNPs

The synergistic effect of the Alb-AgNPs was studied 
in combination with antibiotic and antifungal agents 
using a checkerboard microdilution method. The 
effects were evaluated by determining the Fractional 
Inhibitory Concentration index (FICI) (Eq.  1); the 
results are presented in Table 2. The Alb-AgNPs was 
investigated in combination with tetracycline (TET) 
and ciprofloxacin (CIP) against bacteria strains. 
The Alb-AgNPs in combination with TET (Alb-
AgNPs + TET) showed synergistic effect against K. 
pneumoniae, S. mutans and B. subtilis. Partial syn-
ergy was demonstrated against MRSA and P. aerugi-
nosa, whereas against E. coli and S. typhi, the effect 
was antagonistic. This shows that the Alb-AgNPs can 
enhance the efficacy of standard antibiotics. Studies 
have reported that biosynthesized AgNPs in combina-
tion tetracycline have a synergistic effect. Aabed and 
Mohammed (2021) observed that AgNPs prepared 
biogenically with (A) hierochuntica plants in com-
bination with TET shows synergistic effect against 
MRSA and E. coli. Masoud Hussein et  al. (2019) 
also reported that biosynthesized AgNPs in combi-
nation with TET show synergistic effect against K. 
pneumoniae. These results are in agreement with 
that reported in the present study. The Alb-AgNPs, 
when combined with ciprofloxacin (CIP), showed 
synergistic effect against MRSA and P. aeruginosa. 
Partial synergy was observed for K. pneumoniae, 
and antagonistic effect was displayed against E. coli 
and S. typhi. The effect was additive and indifference 
for B subtilis and S. mutans, respectively. The syner-
gism of the Alb-AgNPs + CIP towards MRSA and P. 
aeruginosa also agrees with the study by Aabed and 
Mohammed (2021)

Table 2   FICI of the Alb-
AgNPs in combination 
with tetracycline and 
ciprofloxacin

Text Organism FIC Index Interpretation FIC Index Interpretation
Alb-AgNPs + 
Tetracycline 

Alb-AgNPs + 
Ciprofloxacin 

E. coli (ATCC 25,922) 4.25 Antagonism 127.67 Antagonism
K. pneumoniae (NCTC 13,440) 0.14 Synergy 0.78 Partial synergy
MRSA (NCTC 12,493) 0.56 Partial synergy 0.02 Synergy
S. mutans (ATCC 700,610) 0.08 Synergy 1.5 Indifference
B. subtilis (ATCC 10,004 0.07 Synergy 1.13 Additive
S. typhi (ATCC 14,028) 32.39 Antagonism 127.8 Antagonism
P. aeruginosa (ATCC 4853) 0.62 Partial synergy 0.14 Synergy
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The Alb-AgNPs were also investigated for their 
ability to enhance the efficacy of standard antifungal 
agents  as shown in Table  3. To study this, the Alb-
AgNPs were tested in combination with fluconazole, 
ketoconazole and Nystatin, against Candida albi-
cans. The Alb-AgNPs, in combination with flucona-
zole showed an additive effect. The effect was also 
additive in combination with ketoconazole, and with 
nystatin, an antagonistic effect was observed. The 
potency of the Alb-AgNPs to enhance the efficacy 
of antibiotics and antifungal agents has been attrib-
uted to the strong interaction of AgNPs with certain 
components in antibiotics. It is reported that AgNPs 
form complexes with antibiotics molecules, which 
then bind to the bacterium. The Ag+ in the complex is 
released to create high silver ions concentration, kill-
ing the bacterial or fungal strains (Fayaz et al. 2010).

Biofilm inhibition properties of the Alb‑AgNPs

Studies have shown that biofilm-forming microbes 
are responsible for many infectious diseases (Joo and 
Otto 2012). Pathogenically important microbes such 
as the gram-positive Methicillin resistant S. aureus 
biofilms are responsible for many nosocomial infec-
tions (Joo and Otto 2012). The biosynthesized Alb-
AgNPs were studied for their ability to inhibit bio-
film formation of gram-negative and gram-positive 
bacteria, namely Staphylococcus aureus, Salmonella 
typhi, Streptococcus mutans and Bacillus subtilis, as 
well as, the fungus Candida albicans (Fig. 5). For all 
the test organisms, the amount of biofilm formation 
was found to decrease with increasing Alb-AgNPs 
concentration. The inhibition in biofilm formation by 
Alb-AgNPs was dramatic against MRSA. At a 250 µg/
mL concentration, over 90% of S. aureus biofilm for-
mation was inhibited. This result is comparable to 
the study reported by Goswami et  al. (2015), where 
about 89% inhibition was observed for biosynthe-
sized AgNPs using tea leaves. The Alb-AgNPs were 

also able to inhibit the biofilm formation of Bacillus 
subtilis; similar to the case of MRSA, biofilm forma-
tion was decreased as Alb-AgNPs concentration was 
increased. At the highest concentration (250 µg/mL), 
the maximum inhibition was about 54%. This result is 
consistent with the study by Rodríguez-Serrano et al. 
(2020), which observed inhibition of about 50% when 
AgNPs synthesized with A. tubingensis fungus were 
used against B. subtilis biofilm.

The antibiofilm inhibition properties of the Alb-
AgNPs against S. mutans, as presented in Table  4, 
show that biofilm formation decreased with increas-
ing concentration. At a 250 µg/mL concentration, bio-
film formation was inhibited for about 57%. Biofilm 
formation inhibition with AgNPs against S. mutans 
has also been observed by Pipattanachat et al. (2021) 
with graphene oxide-coated silver nanoparticles. 
Against S. typhi, the Alb-AgNPs also showed the anti-
biofilm formation of about 83% at the highest concen-
tration of 250 µg/mL. Balakrishnan et al. (2020) also 
observed this enhanced antibiofilm formation. The 
Alb-AgNPs also showed enhanced activity against 
Candida albicans biofilm formation. A decrease in 
biofilm formation when Alb-AgNPs concentrations 
were increased was also observed. As presented 
in Table  4, at a concentration of 250  µg/mL, about 
88% of Candida albicans biofilm was inhibited. The 
enhanced inhibition of the Alb-AgNPs against Can-
dida albicans biofilm agree with the study   reported  
by Lara et al. (2015).

A comparison between the sensitivity of the Alb-
AgNPs toward the individual microorganisms reveals 
that the as-prepared nanoparticles are active against 
both gram-negative and gram-positive bacteria, as 
well as fungus (Fig.  5f). However, the sensitivity 
towards each microorganism differs. For the bacte-
ria strains, the Alb-AgNPs were more active against 
inhibiting MRSA biofilms, followed by S. typhi, then 
B. subtilis and finally, S. mutans. Several factors can 
be attributed to the variation in sensitivity. It has 

Table 3   Synergistic effect of Alb-AgNPs against fluconazole, ketoconazole and nystatin antifungal agents

Text Organism FIC Index Interpretation FIC Index Interpretation FIC Index Interpretation
Alb-
AgNPs + Flu-
conazole 

Alb-
AgNPs + Keto-
conazole 

Alb-AgNPs +Nystatin

Candida albicans (ATCC 
90,028) 

1.12 Additive 1.12 Additive 8.12 Antagonism
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been observed that the strength of biofilms may dif-
fer for different microorganisms due to variations in 
cell properties. Biofilm formation may depend on 

cell surface hydrophobicity, extracellular append-
ages such as flagella, and extracellular polymeric sub-
stances. As these properties differ from cell to cell, 

Fig. 5   a–e plots of optical 
density (OD) against con-
centration of Alb-AgNPs, 
indicative of the amount 
of biofilm formed by the 
different microorganisms, 
f comparison of % biofilm 
inhibition by the different 
concentration of Alb-AgNPs 
against different microor-
ganisms

Table 4   Percentage (%) biofilm inhibition of the Alb-AgNPs against microorganisms

% Biofilm inhibition at various concentrations 

Test Organ-
ism

1.96 (µg/mL) 3.91 (µg/mL) 7.81 (µg/mL) 15.63 (µg/
mL)

31.25 (µg/
mL)

62.5 (µg/mL) 125 (µg/mL) 250 (µg/mL)

MRSA 58.32 ± 3.7 68.40 ± 2.4 70.75 ± 2.6 77.42 ± 2.6 82.44 ± 0.9 88.73 ± 1.7 90.86 ± 2.1 92.46 ± 1.6
 S. mutans 23.17 ± 2.0 24.89 ± 0.1 27.51 ± 0.1 28.92 ± 0.4 30.7 ± 1.9 37.8 ± 0.4 39.2 ± 0.5 57.8 ± 0.4

B. subtills 28.8 ± 2.4 28.9 ± 2.4 29.3 ± 2.5 29.6 ± 2.5 39.1 ± 3.0 42.9 ± 0.1 53.8 ± 2.8 54.8 ± 2.1
 S. typhi 10.1 ± 13.1 21.1 ± 10.4 48.8 ± 11.6 53.2 ± 8.5 59.9 ± 7.9 62.9 ± 7.7 68.2 ± 10.2 83.1 ± 7.7
 C. albicans 32.6 ± 0.3 40.3 ± 0.4 44.9 ± 0.1 46.1 ± 1.0 59.0 ± 0.1 71.4 ± 1.1 77.7 ± 1.1 87.5 ± 1.0
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biofilm formation’s strength may also vary (Right 
et al. 2021). Several studies have reported the mecha-
nisms underlying silver nanoparticles’ inhibition of 
bacteria biofilms. Biofilms are generally strong extra-
cellular matrix due to the strong cell-cell adhesion 
of bacteria that prevent drug permeation (Joo and 
Otto 2012). Thus, the ability of silver nanoparticles 
to enter the biofilm matrix has been attributed to the 
potency of silver nanoparticles to destabilize bacteria 
cell walls (Barapatre et al. 2016).

Conclusion

This study has demonstrated that the peel extract of 
Chrysophyllum albidum fruit can be an effective bio-
reductant for the green synthesis of silver nanoparti-
cles (Alb-AgNPs) and a drug candidate for explora-
tion in the quest against antibiotic resistance fight. 
The Alb-AgNPs were characterized with FTIR, UV-
Vis, SEM and PXRD. The ability of the Alb-AgNPs 
to inhibit bacterial growth, synergically enhance the 
efficacy of antibacterial or antifungal agents, and pre-
vent biofilm formation were studied. The Alb-AgNPs 
displayed an enhanced ability to inhibit microbial 
growth with MICs as low as 15.62  µg/mL against 
E. coli, K. pneumoniae, P. aeruginosa and Candida 
albicans. The synergy between the Alb-AgNPs and 
standard antibacterial and antifungal agents was also 
observed. In addition, the Alb-AgNPs demonstrated 
over 90% ability to inhibit biofilm formation. The 
results from this study suggest that Chrysophyllum 
albidum peels can serve as an efficient bio product 
for sustainable green synthesis of silver nanoparticles, 
and the nanoparticles thus obtained can also provide 
access to cheap and eco-friendly antimicrobial agents.
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