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µM against the A549, SW1116, and MDA-MB-231 
cell lines, respectively. 1a–d showed a higher selec-
tivity index (SI) than cisplatin. Docking studies con-
firmed interaction to the DNA minor groove for all 
complexes. Genotoxicity studies on 1c showed inter-
actions with the genomic content of malignant cells. 
Compared with cisplatin as a positive control, a slight 
shift was found in the electrophoresis mobility, which 
was utilized further to study the direct interaction of 
1c with DNA.

Abstract The cytotoxic activity of four cyclo-
metalated platinum(II) complexes [PtMe(vpy)(L)], 
containing 2-vinylpyridine (vpy) and the phosphine 
ligands (L)  PMe2Ph (1a),  PPh3 (1b),  PMePh2 (1c), 
and P(c-Hex)3 (1d), were evaluated against human 
breast cancer (MDA-MB-231), human lung cancer 
(A549), human colon cancer (SW1116), and non-
tumor epithelial breast (MCF-10  A) cell lines. The 
highest activity was found for 1c with  IC50 values 
of 21.10 µM, 23.36 µM, and 12.96 µM, compared to 
cisplatin, which was 10.12 µM, 47.57 µM, and 19.50 
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Graphical abstract 

et  al. 2015). To overcome these concerns, various 
methods and approaches have been recommended 
and developed by many research groups. Therefore, 
it is vital to improve the biological activity of these 
categories of anticancer agents or introduce new 
chemotherapeutic drugs with differences in their 
mechanisms of action or coordination properties to 
the current marketed antitumor agents (Bergamo and 
Sava 2015; Johnstone et al. 2016).

Cyclometalated platinum(II) complexes are a novel 
class of organometallic compounds with broad appli-
cations in the material (Berenguer et al. 2018; Chi and 
Chou 2010; Ezquerro et  al. 2017; Murphy and Wil-
liams 2010), and medicinal (Lalinde et al. 2018; Mil-
lán et al. 2019) sciences. They have shown attractive 
luminescence and promising anticancer properties, 
while becoming good alternatives to the present plati-
num chemotherapy agents (Babak et al. 2018; Omae 
2014; Zou et al. 2014). The propensity to the bioactive 
cycloplatinated(II) complexes is mainly related to the 
unrivaled structure of these compounds in biological 

Keywords Cyclometalated complexes of platinum 
(II) · Cytotoxic activity · Apoptosis · DNA binding

Introduction

Cisplatin, oxaliplatin, and carboplatin are the only 
FDA-approved platinum-based anticancer drugs (Far-
rell 2015; Johnstone et al. 2016; Kenny and Marmion 
2019; Messori and Merlino 2016). These anticancer 
agents and other potential metallodrugs such as loba-
platin, heptaplatin, and nedaplatin are used to treat 
variety of tumors (Oun et al. 2018; Wang et al. 2015). 
However, these compounds have serious disadvan-
tages, side effects, and toxicities for the healthy cells 
and organs in the patient’s body (Oun et  al. 2018). 
Furthermore, another main issue with the chemo-
therapy treatment is the resistance of cancer cell 
lines against antitumor drugs. Since the potency of 
these chemotherapeutic agents often decreases or is 
lost after a number of cycles of remedy (Burger et al. 
2011; Oun et  al. 2018; Wang and Guo 2011; Wang 
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conditions due to the existence of strong sigma bonds 
between the platinum center and the coordinated car-
bon of cyclometalated ligands. This feature enhances 
the stability of the cycloplatinated(II)complexes com-
plexes in physiological media and excludes undesir-
able reactions (Bauer et  al. 2017; Fereidoonnezhad 
et al. 2018a; Lalinde et al. 2018; Millán et al. 2019). 
These capabilities have allowed these compounds to 
demonstrate high cytotoxicity against resistant can-
cer cell lines. Also, the correct selection of the ancil-
lary groups (phosphines) (Fereidoonnezhad et  al. 
2018a; Lalinde et  al. 2018; Millán et  al. 2019), and 
cyclometalated ligands  (C˄N) (Fereidoonnezhad et al. 
2017a, b; Shahsavari et  al. 2021) in the structure of 
the cycloplatinated(II) complexes has a vital role in 
the antiproliferative activity of these compounds. 
As a result, slight changes in the backbone of Pt(II) 
complexes can manifest different biological activities 
(Shahsavari et al. 2021).

Based on this perspective and our great inter-
est in the evaluation of the anticancer activity of 
cycloplatinated(II) complexes (Fereidoonnezhad 
et  al. 2017a, b, c, 2018a; Hajipour et  al. 2021; Shah-
savari et al. 2019, 2021), we decided to choose a less 
explored category of cycloplatinated(II)compounds 
i.e., 2-vinylpyridine (vpy) family (Dolatyari et al. 2021; 
Niazi and Shahsavari 2016a, b; Zucca et al. 2014). We 
synthesized four previously reported 2-vinylpyridi-
nate Pt(II) complexes with different phosphine donor 
ligands. The kinetic, photophysical properties (Dola-
tyari et al. 2021; Niazi and Shahsavari 2016a), and elec-
trochemical behavior (Zucca et al. 2014) of this class of 
complexes have been investigated, while in the present 
study, the in vitro cytotoxic activity of these compounds 
against several tumor cell lines such as lung (A549), 
invasive breast cancer (MDA-MB-231), and colon 
(SW1116), as well as normal breast (MCF-10 A) using 
MTT assay, has for the first time been reported by us. 
To understand the antiproliferative mechanism of these 
compounds, the interaction of these compounds with 
DNA using molecular docking studies, comet assay, 
and electrophoresis mobility shift assay was explored. 
The effect of 1c on the induction of apoptosis against 
MDA-MB-231 has also been investigated.

Materials and methods

Chemistry

1H NMR (400 MHz), and 31P{1H} NMR (162 MHz) 
spectra were recorded on a Bruker Avance III instru-
ment and were referenced to SiMe4 (for 1H and 13C) 
and 85%  H3PO4 (for 31P). 2-Vinylpyridine (vpy), 
 PPhMe2,  PPh3,  PPh2Me,  PCy3 and the other chemi-
cals were purchased from commercial sources. 
The complexes [PtMe(vpy)(dmso)], A, (Niazi and 
Shahsavari 2016a, b; Zucca et  al. 2014) PtMe(vpy)
(PPhMe2)], 1a, (Dolatyari et  al. 2021) [PtMe(vpy)
(PPh3)], 1b, (Dolatyari et  al. 2021; Zucca et  al. 
2014) [PtMe(vpy)(PPh2Me)], 1c, (Niazi and Shah-
savari 2016a) and [PtMe(vpy)(PCy3)], 1d, (Zucca 
et al. 2014) were prepared according to the literature 
methods.

Cell culture and MTT assay

MDA-MB-231, A549, SW1116, and MCF-10 A were 
used alongside with a standard 3-(4,5-dimethylthi-
azol-yl)-2,5-diphenyl-tetrazolium bromide (MTT) 
assay as described in our previous work (Fereidoon-
nezhad et  al. 2020). All experimental details were 
reported in the Supplementary Information.

Docking procedure

The complexes 1a–d were studied on four different 
DNA structures, (PDB ID: 1BNA, 3CO3, 198D, and 
1LU5), and human serum albumin (HSA, PDB ID: 
4S1Y) using AutoDock 4.2 based on the Lamarckian 
genetic algorithm (Taheri et al. 2020). All the details 
were reported in the Supplementary Information.

Shift mobility assay

The interaction of 1c with the circular pGEM-FT 
plasmid was assessed using the electrophoresis mobil-
ity shift assay based on known methods (Sakamaki 
et  al. 2019). All the experimental details have been 
reported in the Supplementary Information.

Comet assay

We also used the comet assay to determine the gen-
otoxic potential of 1c. To accomplish this, 5 ×  105 
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MCF7 cells were cultured in 2 ml complete culture 
media and treated with 1c in a 13 µM. All the experi-
mental details were reported in the Supplementary 
Information.

Cellular uptake

Inductively coupled plasma mass spectrometry 
(ICP-MS) were carried out to quantify the amount 
of Pt taken up by the cells based on known method 
(Nahaei et  al. 2022). All the experimental details 
were reported in the Supplementary Information.

Statistical analysis

Figure 4b graph, calculations, and statistical analy-
ses (Tables S1–S4) were performed using GraphPad 
Prism software version 8.0 (GraphPad Software, 

San Diego, CA, USA). The one-way ANOVA was 
used to compare the means of various numerical 
variables.

Results and discussion

Chemistry

Based on the previously reported methods, the syn-
thesis of the cycloplatinated(II) complexes bear-
ing various phosphines (L) is shown in Scheme  1. 
(Dolatyari et al. 2021; Niazi and Shahsavari 2016a, 
b; Zucca et  al. 2014). The reaction of previously 
reported starting material complex [PtMe(vpy)
(DMSO)], A,(Niazi and Shahsavari 2016a, b; Zucca 
et  al. 2014) vpy = 2-vinylpyridine; DMSO = dime-
thyl sulfoxide, with one equivalent of different L 
ligands gave known product complexes [PtMe(vpy)

Scheme 1  Synthesis of 
cyclometalated 2-vinylpyri-
dine Pt(II) complexes 
1a‒d. (i): L, acetone, room 
temperature (Dolatyari et al. 
2021; Niazi and Shahsavari 
2016a, b; Zucca et al. 2014)

N

Pt
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Me

N
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L

Me
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PP

Me
Me

P P
Me

1

1a 1b 1c 1d

L =

Table 1  Cytotoxic activity of the studied complexes against three cancerous cell lines (A549, SW1116, and MDA-MB-231) and 
non-tumorigenic breast cell line (MCF-10 A)

Incubation time: 72 h
1 IC50 for MCF-10 A cell line/IC50 for MDA-MB-231 cell line

Complex (IC50 ± SD) µM MCF-10 A Selectivity Index (SI)1

A549 SW1116 MDA-MB-231 

1a 24.94 ± 1.84 27.96 ± 0.09 21.96 ± 0.32 42.36 ± 0.87 1.92
1b 49.48 ± 2.77 92.80 ± 0.81 36.18 ± 1.19 75.32 ± 1.54 2.08
1c 21.10 ± 2.53 23.36 ± 0.73 12.96 ± 0.90 29.84 ± 1.23 2.30
1d 91.89 ± 1.49 57.86 ± 0.75 44.08 ± 0.65 96.16 ± 1.49 2.18
Cisplatin 10.12 ± 1.52 47.57 ± 1.29 19.50 ± 1.30 28.73 ± 1.55 1.47
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(L)], 1, L = dimethylphenylphosphine  (PPhMe2, 
1a); (Dolatyari et  al. 2021) triphenylphosphine 
 (PPh3, 1b); (Dolatyari et al. 2021; Zucca et al. 2014) 
methyldiphenylphosphine  (PPh2Me, 1c); (Dolatyari 
et  al. 2021; Niazi and Shahsavari 2016a) tricy-
clohexylphosphine  (PCy3, 1d), (Zucca et  al. 2014) 
in good yield. The successful preparation of these 
compounds was confirmed by (1H and 31P{1H}) 
NMR spectroscopy. The presence of the phosphine 
ligands can improve the anti-proliferative activity of 
the Pt(II) complexes. Therefore, we investigated the 
biological activity of our cycloplatinated(II) com-
pounds 1a‒d on several tumor cell lines.

Biological activity

From the four Pt complexes (1a–d), 1c showed the 
highest activity with  IC50 values of 21.10 µM, 23.36 
µM, and 12.96 µM, against the A549, SW1116, and 
MDA-MB-231 cell lines, respectively (Table 1), all of 
them lower than the values for cisplatin (10.12 µM, 
47.57 µM, and 19.50 µM). One-way ANOVA statisti-
cal analysis showed that this difference is statistically 
significant. In addition, the MTT test against MCF-
10  A, a non-tumorigenic epithelial breast cell line, 
revealed that the compounds could differentiate well 
between tumorigenic and non-tumorigenic cell lines. 
The selectivity index  (IC50 for the MCF-10  A cell 
line/IC50 for the MDA-MB-231 cell line) for the four 
Pt(II) complexes was generally larger than 2, com-
pared with the 1.47, calculated for cisplatin. The stud-
ied complexes were shown to have a good and accept-
able selectivity index (SI) between the tumorigenic 
and non-tumorigenic cell lines. 1b and 1c have a 
higher selectivity for human breast cancer cells while 
causing less harm to normal epithelial breast cells.

The structure-activity relationship investigation 
revealed that 1c and 1a, which contain  PPh2Me and 
 PPhMe2 ligands, show significantly higher antitumor 
activity than the other compounds, while the presence 
of the  PPh3 and  PCy3 ligands in compounds 1b and 
1d significantly reduced cytotoxic activity in these 
complexes. It seems that the presence of a small, non-
cyclic group such as methyl attached to the phospho-
rus moiety can increase the anti-proliferative activity.

To compare the cytotoxic activity of the synthe-
sized compounds in this study with that of other stud-
ies, we used papers whose MTT method was almost 
similar to ours, to make a more accurate comparison. 

In this regard, the results obtained from the cyto-
toxic activity of the best compound studied by Mav-
roidi et al. showed that this compound had an  IC50 of 
26.7 µM on invasive breast cancer (MDA-MB-231), 
in contrast, 1c in our study showed higher anti-
proliferative activity with an  IC50 of 12.96 µM on 
the same cancer cell line (Mavroidi et  al. 2016). In 
another study based on the results of cytotoxic activ-
ity, [Pt(bzq)(SpyO)], had an  IC50 of 59.1 µM on the 
A549 cell line, while 1c in our study had an  IC50 of 
22.1 µM on the same cancer cells (Fereidoonnezhad 
et al. 2018b).

Molecular docking studies

To find the binding position and binding modes for 
DNA, molecular docking studies were performed 
on the Pt(II) complexes containing 2-vinylpyridine. 
The docking binding energies of complexes (1a–d) 
with various DNA structures and HSA are shown in 
Table 2. Negative binding free energy values indicate 
that these complexes are tightly linked to DNA. The 
ΔGbind values of the best-docked poses of the Pt(II) 
complexes in binding to DNA (PDB ID: 1LU5) are 
within the range of − 6.10 to − 8.21 kcal  mol−1, in 
binding to 1BNA are within the range of −  8.95 to 
−  10.06  kcal  mol−1, in binding to 3CO3 are within 
the range of −  6.92 to −  8.15  kcal  mol−1, and in 

Table 2  Molecular docking binding energies (kcal/mol) of the 
complexes (1a–d) in binding to different DNA structures, as 
well as HSA (human serum albumin)

a Structure of a B-DNA dodecamer
b Trigonal form of the idarubicin-D(CGA TCG ) complex (DNA 
structure with intercalation site)
c Cis-Diammine(pyridine)chloroplatinum(II) Bound to Deoxy-
guanosine in a Dodecamer Duplex (a monofunctional plati-
num-DNA Adduct) (Lovejoy et al.)
d Asymmetric platinum complex {Pt(NH3)(cyclohexy-
lamine)}2+ bound to a Dodecamer DNA Duplex. (Silverman 
et al.)
e X-ray structure of human serum albumin complexed with cis-
platin

Name/receptor 1BNAa 198Db 3CO3c 1LU5d 4S1Ye

1a − 8.95 − 8.51 − 6.92 − 6.10 − 6.04
1b − 9.91 − 9.23 − 8.00 − 7.15 − 6.61
1c − 10.06 − 8.71 − 8.08 − 7.35 − 7.17
1d − 9.74 − 8.88 − 8.15 − 8.21 − 7.04
Cocrystal-Ligand – – − 6.39 − 6.78 − 6.90
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binding to 198D are within the range of −  8.51 to 
− 9.23 kcal  mol−1.

As shown in Table  2, compound 1d has the best 
(most negative) binding energy to different DNA 
structures. This compound performs better in bind-
ing to DNA due to its platinum nucleus containing 
the vinylpyridine-2 ligand. However, better binding 
to DNA does not indicate better cytotoxic activity 
of this compound. The order of the docking energy 
of the compounds on the four DNA structures is as 
follows: in binding to 1BNA: 1c > 1b > 1d > 1a, 
in binding to 1LU5: 1d > 1c > 1b > 1a, in binding 
to 3CO3: 1d > 1c > 1b > 1a, in binding to 198D: 
1b > 1d > 1c > 1a.

Re-docking of the co-crystallized conformation of 
ligands (as shown in Table  2 for 3CO3, 1LU5, and 
4S1Y) into the 3D structure of the receptors was also 
studied as part of the docking validation stage. For 
the studied targets, the RMSD was less than 2 Å.

As shown in Fig.  1a, compound 1a is located in 
the minor groove of DNA (1BNA), so the key con-
nections of this compound are with the bases in the 
minor groove of DNA. It has shown interaction via 
hydrophobic interaction with bases G4, G10, and C11 
through its two methyl groups. The compound also 

forms a π–π interaction with the G10 base through 
the pyridine ring. As shown in Fig. 1b, compound 1b 
is also oriented in the minor groove of DNA (1LU5). 
It binds to the G5 base through carbon number 2 of 
the pyridine ring and its phosphine group. The key 
junctions of compound 1c with the bases in the minor 
groove of DNA (3CO3) are shown in Fig. 1c. It binds 
to the T5 base through its methyl group via hydro-
phobic interaction. It has also interacted through the 
methyl group and carbon number 5 of the pyridine 
ring with the C6 base.

Genotoxicity and DNA interaction studies of 1c

In the present study, to evaluate the genotoxic effect of 
compound 1c (as the most effective cytotoxic compound) 
against the MDA-MB-231 cells, the comet assay method 
was applied. Figure 2 shows that treatment with low-con-
centration MDA-MB-231 cells and 13 µM of 1c results 
in a relatively long tail followed by electrophoresis cells, 
demonstrating that 1c has a strong genotoxicity capabil-
ity. It should be mentioned that in some parts, no nucleus 
remains and only a blunt sequence of degraded DNA is 
visible. Untreated cells (Fig. 2a) and cisplatin’s (Fig. 2b) 

Fig. 1  Studies of the interaction between compounds and DNA using molecular docking simulations. a 1a with PDB ID: 1BNA, b 
1b with 1LU5, c 1c with 3CO3
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genotoxicity behavior was also determined as negative 
and positive control, respectively. The findings revealed 
that compound 1c has a remarkable affinity for the can-
cer cell genome. Although the effect of genotoxicity in the 
comet assay clearly showed that the effective mechanism 
of 1c is more related to direct interaction with DNA. Pos-
sibly other mechanisms are also involved in this process.

In order to check the DNA binding activity of 
compound 1c, the electrophoretic mobility shift was 
also measured. As shown in Fig. 2d, cisplatin created 
a shift in plasmid mobility relative to untreated DNA, 
indicating its interaction with DNA. On the other 
hand, 1c can lead to a significant change in plasmid 
motility compared to untreated DNA at higher con-
centrations (400 µM). Although these changes are 
less than cisplatin, they indicate 1c interactions with 
DNA. Therefore, our results showed that at least part 

of the cytotoxic effect of 1c is exerted through direct 
interaction with DNA.

Determining the apoptotic effect of 1c on 
MDA-MB-231 cell line

As shown in Fig. 3, increasing the concentration of 1c 
from 10 to 40 µM considerably increases the propor-
tion of cells in the apoptotic phase from 20.2 to 56.5% 
and 86.2% in the treated cells, respectively. The apop-
tosis results indicated that 1c could actively induce 
apoptosis in the MDA-MB-231 cell line, and that the 
apoptosis increases with an increasing concentration 
of 1c. By increasing the concentration of 1c, the can-
cer cells entered the apoptotic phase and underwent a 
small amount of necrosis. Thus, 1c can cause apop-
tosis in tumor cells in a dose-dependent way. It can 
be concluded that the anti-proliferative activity of 

Fig. 2  Genotoxic effect of 1c on the MDA-MB-231 cell line. 
In comparison to the untreated cells as negative control (a), the 
percentage of damaged DNA in the tail increased dramatically 
after treatment with cisplatin as positive control (b), and com-

pound 1c (c). A circular pGEM-FT plasmid was treated with 
various doses of cisplatin (positive controls) and compound 1c 
(d)
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1c in a cytotoxic assay may be mediated in part by 
inducing apoptosis in cancer cells. Furthermore, the 
entry of cells into the process of programmed cell 
death is much more desirable because the apoptotic 
cells are removed by the xenophagous cells, includ-
ing the macrophages in the liver and spleen, without 
inflammation and damage to the normal surrounding 
tissues.

Intracellular ROS generation in MDA-MB-231 cells 
exposed to 1c

To investigate the effects of 1c on ROS (Reactive 
Oxygen Species) generation in the MDA-MB-231 
cells, 2′,7′-dichlorodihydrofluorescein diacetate 
(DCFH-DA) was used. An analysis of the mito-
chondrial membrane potential and intracellular ROS 
generation in the MDA-MB-231 cells exposed to 1c 
(13, 26 and 39 µM) for 4 h is shown in Fig. 4. In our 
study, we found that 1c induces ROS production in 

Fig. 3  Analyzing the 
apoptotic properties of 1c in 
the MDA-MB-231 cell line 
using flow cytometry
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the MDA-MB-231 cells when it is treated with DCF 
(2′–7′-dichlorofluorescein). As the concentration of 
the compound is increased from 13 µM to 39 µM, the 
amount of produced ROS is increased.

Cellular uptake

Using ICP-MS the amount of Pt taken in by the cells 
were calculated. After 12 h of exposure to 50 µM of 
1c, the Pt content was determined. ICP-MS results 
revealed 150 µg/µg protein. The complex is expected 
to be uniformly distributed throughout the cell, 
despite the fact that the average cell volume is antici-
pated to be 1.3 pL. The Pt concentration in the cell is 
around 0.97 µM.

Conclusions

In the present work, the cytotoxic activity of a 
series of Pt(II) complexes [PtMe(vpy)(L)], 1, 
2-vinylpyridine (vpy), and different phosphine (L) 
ligands were evaluated against human breast can-
cer (MDA-MB-231), human lung cancer (A549), 
human colon cancer (SW1116), and non-tumorigenic 

epithelial breast (MCF-10  A) cell lines. The most 
cytotoxic compound, [PtMe(vpy)(PPh2Me)], 1c, 
 PPh2Me = methyldiphenylphosphine, effectively 
causes cell death in the MDA-MB-231 cancer cell 
line by inducing apoptosis. It has a strong anti-pro-
liferative effect on the A549, SW1116, and MDA-
MB-231 cell lines, with the  IC50 values of 21.10 
µM, 23.36 µM, and 12.96 µM, respectively. One-way 
ANOVA statistical analysis revealed that it shows 
higher antiproliferative activity than cisplatin against 
the SW1116 and MDA-MB-231 cell lines with a 
better selectivity index against MCF-10a cells. To 
understand the antiproliferative mechanism of these 
compounds, the interaction of these compounds with 
DNA was explored using molecular docking studies, 
comet assay, and electrophoresis mobility shift assay. 
1c intensely targets the genome content of cancer-
ous cells. However, in electrophoresis mobility shift 
assay, a very small shift was observed compared to 
cisplatin. The effect of 1c on the induction of apopto-
sis against MDA-MB-231 has also been investigated, 
which showed that it could induce apoptosis in MDA-
MB-231 cells on a concentration-dependent basis. 
These compounds, especially 1c, have the potential 
to enter further clinical stages to introduce a suitable 

Fig. 4  Flow cytometric analysis of ROS generated within the 
MDA-MB-231 cells for 4  h after exposure to 1c (13, 26 and 
39  M µM). a Representative spectra of fluorescent DCF as a 
function of 1c concentration. Control (red line), 1c at 13 µM 
(orange line), 26 µM (green line), and 39 µM (blue line). b An 
analysis of the fluorescence enhancement of DCF by increas-

ing the concentration of 1c. Each histogram represents the 
mean ± S.D. values of DCF fluorescence obtained from three 
independent experiments. The ** represented the pv < 0.01, and 
the *** represented the pv < 0.001versus control. (Color figure 
online)
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anticancer agent with lower toxicity properties in 
comparison to cisplatin.
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